summaryrefslogtreecommitdiff
path: root/drivers/char/rio/rioboot.c
blob: eca2b95343e2c3f63a9de30dfa705a8d412e485a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
/*
** -----------------------------------------------------------------------------
**
**  Perle Specialix driver for Linux
**  Ported from existing RIO Driver for SCO sources.
 *
 *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      This program is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with this program; if not, write to the Free Software
 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**	Module		: rioboot.c
**	SID		: 1.3
**	Last Modified	: 11/6/98 10:33:36
**	Retrieved	: 11/6/98 10:33:48
**
**  ident @(#)rioboot.c	1.3
**
** -----------------------------------------------------------------------------
*/

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/termios.h>
#include <linux/serial.h>
#include <linux/vmalloc.h>
#include <asm/semaphore.h>
#include <linux/generic_serial.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/string.h>
#include <asm/uaccess.h>


#include "linux_compat.h"
#include "rio_linux.h"
#include "pkt.h"
#include "daemon.h"
#include "rio.h"
#include "riospace.h"
#include "cmdpkt.h"
#include "map.h"
#include "rup.h"
#include "port.h"
#include "riodrvr.h"
#include "rioinfo.h"
#include "func.h"
#include "errors.h"
#include "pci.h"

#include "parmmap.h"
#include "unixrup.h"
#include "board.h"
#include "host.h"
#include "phb.h"
#include "link.h"
#include "cmdblk.h"
#include "route.h"

static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);

static const unsigned char RIOAtVec2Ctrl[] = {
	/* 0 */ INTERRUPT_DISABLE,
	/* 1 */ INTERRUPT_DISABLE,
	/* 2 */ INTERRUPT_DISABLE,
	/* 3 */ INTERRUPT_DISABLE,
	/* 4 */ INTERRUPT_DISABLE,
	/* 5 */ INTERRUPT_DISABLE,
	/* 6 */ INTERRUPT_DISABLE,
	/* 7 */ INTERRUPT_DISABLE,
	/* 8 */ INTERRUPT_DISABLE,
	/* 9 */ IRQ_9 | INTERRUPT_ENABLE,
	/* 10 */ INTERRUPT_DISABLE,
	/* 11 */ IRQ_11 | INTERRUPT_ENABLE,
	/* 12 */ IRQ_12 | INTERRUPT_ENABLE,
	/* 13 */ INTERRUPT_DISABLE,
	/* 14 */ INTERRUPT_DISABLE,
	/* 15 */ IRQ_15 | INTERRUPT_ENABLE
};

/**
 *	RIOBootCodeRTA		-	Load RTA boot code
 *	@p: RIO to load
 *	@rbp: Download descriptor
 *
 *	Called when the user process initiates booting of the card firmware.
 *	Lads the firmware
 */

int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
{
	int offset;

	func_enter();

	rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);

	/*
	 ** Check that we have set asside enough memory for this
	 */
	if (rbp->Count > SIXTY_FOUR_K) {
		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
		p->RIOError.Error = HOST_FILE_TOO_LARGE;
		func_exit();
		return -ENOMEM;
	}

	if (p->RIOBooting) {
		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
		p->RIOError.Error = BOOT_IN_PROGRESS;
		func_exit();
		return -EBUSY;
	}

	/*
	 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
	 ** so calculate how far we have to move the data up the buffer
	 ** to achieve this.
	 */
	offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;

	/*
	 ** Be clean, and clear the 'unused' portion of the boot buffer,
	 ** because it will (eventually) be part of the Rta run time environment
	 ** and so should be zeroed.
	 */
	memset(p->RIOBootPackets, 0, offset);

	/*
	 ** Copy the data from user space into the array
	 */

	if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
		rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
		p->RIOError.Error = COPYIN_FAILED;
		func_exit();
		return -EFAULT;
	}

	/*
	 ** Make sure that our copy of the size includes that offset we discussed
	 ** earlier.
	 */
	p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
	p->RIOBootCount = rbp->Count;

	func_exit();
	return 0;
}

/**
 *	rio_start_card_running		-	host card start
 *	@HostP: The RIO to kick off
 *
 *	Start a RIO processor unit running. Encapsulates the knowledge
 *	of the card type.
 */

void rio_start_card_running(struct Host *HostP)
{
	switch (HostP->Type) {
	case RIO_AT:
		rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
		writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
		break;
	case RIO_PCI:
		/*
		 ** PCI is much the same as MCA. Everything is once again memory
		 ** mapped, so we are writing to memory registers instead of io
		 ** ports.
		 */
		rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
		writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
		break;
	default:
		rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
		break;
	}
	return;
}

/*
** Load in the host boot code - load it directly onto all halted hosts
** of the correct type.
**
** Put your rubber pants on before messing with this code - even the magic
** numbers have trouble understanding what they are doing here.
*/

int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
{
	struct Host *HostP;
	u8 __iomem *Cad;
	PARM_MAP __iomem *ParmMapP;
	int RupN;
	int PortN;
	unsigned int host;
	u8 __iomem *StartP;
	u8 __iomem *DestP;
	int wait_count;
	u16 OldParmMap;
	u16 offset;		/* It is very important that this is a u16 */
	u8 *DownCode = NULL;
	unsigned long flags;

	HostP = NULL;		/* Assure the compiler we've initialized it */


	/* Walk the hosts */
	for (host = 0; host < p->RIONumHosts; host++) {
		rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
		HostP = &p->RIOHosts[host];

		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);

		/* Don't boot hosts already running */
		if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
			rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
			continue;
		}

		/*
		 ** Grab a pointer to the card (ioremapped)
		 */
		Cad = HostP->Caddr;

		/*
		 ** We are going to (try) and load in rbp->Count bytes.
		 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
		 ** Therefore, we need to start copying at address
		 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
		 */
		StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];

		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
		rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);

		/* Make sure it fits */
		if (p->RIOConf.HostLoadBase < rbp->Count) {
			rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
			p->RIOError.Error = HOST_FILE_TOO_LARGE;
			func_exit();
			return -EFBIG;
		}
		/*
		 ** Ensure that the host really is stopped.
		 ** Disable it's external bus & twang its reset line.
		 */
		RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);

		/*
		 ** Copy the data directly from user space to the SRAM.
		 ** This ain't going to be none too clever if the download
		 ** code is bigger than this segment.
		 */
		rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");

		/* Buffer to local memory as we want to use I/O space and
		   some cards only do 8 or 16 bit I/O */

		DownCode = vmalloc(rbp->Count);
		if (!DownCode) {
			p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
			func_exit();
			return -ENOMEM;
		}
		if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
			kfree(DownCode);
			p->RIOError.Error = COPYIN_FAILED;
			func_exit();
			return -EFAULT;
		}
		HostP->Copy(DownCode, StartP, rbp->Count);
		vfree(DownCode);

		rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");

		/*
		 **                     S T O P !
		 **
		 ** Upto this point the code has been fairly rational, and possibly
		 ** even straight forward. What follows is a pile of crud that will
		 ** magically turn into six bytes of transputer assembler. Normally
		 ** you would expect an array or something, but, being me, I have
		 ** chosen [been told] to use a technique whereby the startup code
		 ** will be correct if we change the loadbase for the code. Which
		 ** brings us onto another issue - the loadbase is the *end* of the
		 ** code, not the start.
		 **
		 ** If I were you I wouldn't start from here.
		 */

		/*
		 ** We now need to insert a short boot section into
		 ** the memory at the end of Sram2. This is normally (de)composed
		 ** of the last eight bytes of the download code. The
		 ** download has been assembled/compiled to expect to be
		 ** loaded from 0x7FFF downwards. We have loaded it
		 ** at some other address. The startup code goes into the small
		 ** ram window at Sram2, in the last 8 bytes, which are really
		 ** at addresses 0x7FF8-0x7FFF.
		 **
		 ** If the loadbase is, say, 0x7C00, then we need to branch to
		 ** address 0x7BFE to run the host.bin startup code. We assemble
		 ** this jump manually.
		 **
		 ** The two byte sequence 60 08 is loaded into memory at address
		 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
		 ** which adds '0' to the .O register, complements .O, and then shifts
		 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
		 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
		 ** location. Now, the branch starts from the value of .PC (or .IP or
		 ** whatever the bloody register is called on this chip), and the .PC
		 ** will be pointing to the location AFTER the branch, in this case
		 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
		 **
		 ** A long branch is coded at 0x7FF8. This consists of loading a four
		 ** byte offset into .O using nfix (as above) and pfix operators. The
		 ** pfix operates in exactly the same way as the nfix operator, but
		 ** without the complement operation. The offset, of course, must be
		 ** relative to the address of the byte AFTER the branch instruction,
		 ** which will be (urm) 0x7FFC, so, our final destination of the branch
		 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
		 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
		 ** is the first byte of the initial two byte short local branch of the
		 ** download code).
		 **
		 ** To code a jump from 0x7FFC (which is where the branch will start
		 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
		 ** 0x7BFE.
		 ** This will be coded as four bytes:
		 ** 60 2C 20 02
		 ** being nfix .O+0
		 **        pfix .O+C
		 **        pfix .O+0
		 **        jump .O+2
		 **
		 ** The nfix operator is used, so that the startup code will be
		 ** compatible with the whole Tp family. (lies, damn lies, it'll never
		 ** work in a month of Sundays).
		 **
		 ** The nfix nyble is the 1s complement of the nyble value you
		 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
		 */


		/*
		 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
		 ** to 0x7FFE at reset time, and starts executing. This is
		 ** a short branch to 0x7FF8, where a long branch is coded.
		 */

		DestP = &Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */

#define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */
#define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */
#define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O      */

		/*
		 ** 0x7FFC is the address of the location following the last byte of
		 ** the four byte jump instruction.
		 ** READ THE ABOVE COMMENTS
		 **
		 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
		 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
		 ** cos I don't understand 2's complement).
		 */
		offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;

		writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
		writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
		writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
		writeb(JUMP(offset & 0xF), DestP + 3);

		writeb(NFIX(0), DestP + 6);
		writeb(JUMP(8), DestP + 7);

		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
		rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);

		/*
		 ** Flag what is going on
		 */
		HostP->Flags &= ~RUN_STATE;
		HostP->Flags |= RC_STARTUP;

		/*
		 ** Grab a copy of the current ParmMap pointer, so we
		 ** can tell when it has changed.
		 */
		OldParmMap = readw(&HostP->__ParmMapR);

		rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);

		/*
		 ** And start it running (I hope).
		 ** As there is nothing dodgy or obscure about the
		 ** above code, this is guaranteed to work every time.
		 */
		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);

		rio_start_card_running(HostP);

		rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");

		/*
		 ** Now, wait for upto five seconds for the Tp to setup the parmmap
		 ** pointer:
		 */
		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
			rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
			mdelay(100);

		}

		/*
		 ** If the parmmap pointer is unchanged, then the host code
		 ** has crashed & burned in a really spectacular way
		 */
		if (readw(&HostP->__ParmMapR) == OldParmMap) {
			rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
			HostP->Flags &= ~RUN_STATE;
			HostP->Flags |= RC_STUFFED;
			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
			continue;
		}

		rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));

		/*
		 ** Well, the board thought it was OK, and setup its parmmap
		 ** pointer. For the time being, we will pretend that this
		 ** board is running, and check out what the error flag says.
		 */

		/*
		 ** Grab a 32 bit pointer to the parmmap structure
		 */
		ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
		ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);

		/*
		 ** The links entry should be 0xFFFF; we set it up
		 ** with a mask to say how many PHBs to use, and
		 ** which links to use.
		 */
		if (readw(&ParmMapP->links) != 0xFFFF) {
			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
			rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
			HostP->Flags &= ~RUN_STATE;
			HostP->Flags |= RC_STUFFED;
			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
			continue;
		}

		writew(RIO_LINK_ENABLE, &ParmMapP->links);

		/*
		 ** now wait for the card to set all the parmmap->XXX stuff
		 ** this is a wait of upto two seconds....
		 */
		rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
		HostP->timeout_id = 0;
		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
			rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
			mdelay(100);
		}
		rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");

		if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
			rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
			HostP->Flags &= ~RUN_STATE;
			HostP->Flags |= RC_STUFFED;
			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
			continue;
		}

		rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");

		/*
		 ** It runs! It runs!
		 */
		rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);

		/*
		 ** set the time period between interrupts.
		 */
		writew(p->RIOConf.Timer, &ParmMapP->timer);

		/*
		 ** Translate all the 16 bit pointers in the __ParmMapR into
		 ** 32 bit pointers for the driver in ioremap space.
		 */
		HostP->ParmMapP = ParmMapP;
		HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
		HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
		HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
		HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));

		/*
		 ** point the UnixRups at the real Rups
		 */
		for (RupN = 0; RupN < MAX_RUP; RupN++) {
			HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
			HostP->UnixRups[RupN].Id = RupN + 1;
			HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
			spin_lock_init(&HostP->UnixRups[RupN].RupLock);
		}

		for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
			HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
			HostP->UnixRups[RupN + MAX_RUP].Id = 0;
			HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
			spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
		}

		/*
		 ** point the PortP->Phbs at the real Phbs
		 */
		for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
			if (p->RIOPortp[PortN]->HostP == HostP) {
				struct Port *PortP = p->RIOPortp[PortN];
				struct PHB __iomem *PhbP;
				/* int oldspl; */

				if (!PortP->Mapped)
					continue;

				PhbP = &HostP->PhbP[PortP->HostPort];
				rio_spin_lock_irqsave(&PortP->portSem, flags);

				PortP->PhbP = PhbP;

				PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
				PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
				PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
				PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
				PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
				PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));

				rio_spin_unlock_irqrestore(&PortP->portSem, flags);
				/*
				 ** point the UnixRup at the base SysPort
				 */
				if (!(PortN % PORTS_PER_RTA))
					HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
			}
		}

		rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
		/*
		 ** last thing - show the world that everything is in place
		 */
		HostP->Flags &= ~RUN_STATE;
		HostP->Flags |= RC_RUNNING;
	}
	/*
	 ** MPX always uses a poller. This is actually patched into the system
	 ** configuration and called directly from each clock tick.
	 **
	 */
	p->RIOPolling = 1;

	p->RIOSystemUp++;

	rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
	func_exit();
	return 0;
}



/**
 *	RIOBootRup		-	Boot an RTA
 *	@p: rio we are working with
 *	@Rup: Rup number
 *	@HostP: host object
 *	@PacketP: packet to use
 *
 *	If we have successfully processed this boot, then
 *	return 1. If we havent, then return 0.
 */

int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
{
	struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
	struct PktCmd_M *PktReplyP;
	struct CmdBlk *CmdBlkP;
	unsigned int sequence;

	/*
	 ** If we haven't been told what to boot, we can't boot it.
	 */
	if (p->RIONumBootPkts == 0) {
		rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
		return 0;
	}

	/*
	 ** Special case of boot completed - if we get one of these then we
	 ** don't need a command block. For all other cases we do, so handle
	 ** this first and then get a command block, then handle every other
	 ** case, relinquishing the command block if disaster strikes!
	 */
	if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
		return RIOBootComplete(p, HostP, Rup, PktCmdP);

	/*
	 ** Try to allocate a command block. This is in kernel space
	 */
	if (!(CmdBlkP = RIOGetCmdBlk())) {
		rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
		return 0;
	}

	/*
	 ** Fill in the default info on the command block
	 */
	CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
	CmdBlkP->Packet.dest_port = BOOT_RUP;
	CmdBlkP->Packet.src_unit = 0;
	CmdBlkP->Packet.src_port = BOOT_RUP;

	CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
	PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;

	/*
	 ** process COMMANDS on the boot rup!
	 */
	if (readb(&PacketP->len) & PKT_CMD_BIT) {
		/*
		 ** We only expect one type of command - a BOOT_REQUEST!
		 */
		if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
			rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
			RIOFreeCmdBlk(CmdBlkP);
			return 1;
		}

		/*
		 ** Build a Boot Sequence command block
		 **
		 ** We no longer need to use "Boot Mode", we'll always allow
		 ** boot requests - the boot will not complete if the device
		 ** appears in the bindings table.
		 **
		 ** We'll just (always) set the command field in packet reply
		 ** to allow an attempted boot sequence :
		 */
		PktReplyP->Command = BOOT_SEQUENCE;

		PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
		PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
		PktReplyP->BootSequence.CodeSize = p->RIOBootCount;

		CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;

		memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);

		rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);

		/*
		 ** If this host is in slave mode, send the RTA an invalid boot
		 ** sequence command block to force it to kill the boot. We wait
		 ** for half a second before sending this packet to prevent the RTA
		 ** attempting to boot too often. The master host should then grab
		 ** the RTA and make it its own.
		 */
		p->RIOBooting++;
		RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
		return 1;
	}

	/*
	 ** It is a request for boot data.
	 */
	sequence = readw(&PktCmdP->Sequence);

	rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);

	if (sequence >= p->RIONumBootPkts) {
		rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
	}

	PktReplyP->Sequence = sequence;
	memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
	CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
	RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
	return 1;
}

/**
 *	RIOBootComplete		-	RTA boot is done
 *	@p: RIO we are working with
 *	@HostP: Host structure
 *	@Rup: RUP being used
 *	@PktCmdP: Packet command that was used
 *
 *	This function is called when an RTA been booted.
 *	If booted by a host, HostP->HostUniqueNum is the booting host.
 *	If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
 *	RtaUniq is the booted RTA.
 */

static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
{
	struct Map *MapP = NULL;
	struct Map *MapP2 = NULL;
	int Flag;
	int found;
	int host, rta;
	int EmptySlot = -1;
	int entry, entry2;
	char *MyType, *MyName;
	unsigned int MyLink;
	unsigned short RtaType;
	u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);

	p->RIOBooting = 0;

	rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);

	/*
	 ** Determine type of unit (16/8 port RTA).
	 */

	RtaType = GetUnitType(RtaUniq);
	if (Rup >= (unsigned short) MAX_RUP)
		rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
	else
		rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');

	rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);

	if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
		rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
		return 1;
	}

	/*
	 ** If this RTA has just booted an RTA which doesn't belong to this
	 ** system, or the system is in slave mode, do not attempt to create
	 ** a new table entry for it.
	 */

	if (!RIOBootOk(p, HostP, RtaUniq)) {
		MyLink = readb(&PktCmdP->LinkNum);
		if (Rup < (unsigned short) MAX_RUP) {
			/*
			 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
			 ** to hold off further attempts to boot on this link for 30
			 ** seconds.
			 */
			if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
				rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
			}
		} else
			/*
			 ** RtaUniq was booted by this host. Set the booting link
			 ** to hold off for 30 seconds to give another unit a
			 ** chance to boot it.
			 */
			writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
		rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
		return 1;
	}

	/*
	 ** Check for a SLOT_IN_USE entry for this RTA attached to the
	 ** current host card in the driver table.
	 **
	 ** If it exists, make a note that we have booted it. Other parts of
	 ** the driver are interested in this information at a later date,
	 ** in particular when the booting RTA asks for an ID for this unit,
	 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
	 ** to force an open on any ports that where previously open on this
	 ** unit.
	 */
	for (entry = 0; entry < MAX_RUP; entry++) {
		unsigned int sysport;

		if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
			HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
			if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
				if (sysport < p->RIOFirstPortsBooted)
					p->RIOFirstPortsBooted = sysport;
				if (sysport > p->RIOLastPortsBooted)
					p->RIOLastPortsBooted = sysport;
				/*
				 ** For a 16 port RTA, check the second bank of 8 ports
				 */
				if (RtaType == TYPE_RTA16) {
					entry2 = HostP->Mapping[entry].ID2 - 1;
					HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
					sysport = HostP->Mapping[entry2].SysPort;
					if (sysport < p->RIOFirstPortsBooted)
						p->RIOFirstPortsBooted = sysport;
					if (sysport > p->RIOLastPortsBooted)
						p->RIOLastPortsBooted = sysport;
				}
			}
			if (RtaType == TYPE_RTA16)
				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
			else
				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
			return 1;
		}
	}

	rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");

	if (Rup >= (unsigned short) MAX_RUP) {
		/*
		 ** It was a host that did the booting
		 */
		MyType = "Host";
		MyName = HostP->Name;
	} else {
		/*
		 ** It was an RTA that did the booting
		 */
		MyType = "RTA";
		MyName = HostP->Mapping[Rup].Name;
	}
	MyLink = readb(&PktCmdP->LinkNum);

	/*
	 ** There is no SLOT_IN_USE entry for this RTA attached to the current
	 ** host card in the driver table.
	 **
	 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
	 ** current host card in the driver table.
	 **
	 ** If we find one, then we re-use that slot.
	 */
	for (entry = 0; entry < MAX_RUP; entry++) {
		if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
			if (RtaType == TYPE_RTA16) {
				entry2 = HostP->Mapping[entry].ID2 - 1;
				if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
					rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
				else
					continue;
			} else
				rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
			if (!p->RIONoMessage)
				printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
			return 1;
		}
	}

	/*
	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
	 ** attached to the current host card in the driver table.
	 **
	 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
	 ** host for this RTA in the driver table.
	 **
	 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
	 ** entry from the other host and add it to this host (using some of
	 ** the functions from table.c which do this).
	 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
	 ** following scenario:
	 **
	 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
	 **   in table)
	 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
	 **   entries)
	 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
	 ** + Unplug RTA and plug back into host A.
	 ** + Configure RTA on host A. We now have the same RTA configured
	 **   with different ports on two different hosts.
	 */
	rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
	found = 0;
	Flag = 0;		/* Convince the compiler this variable is initialized */
	for (host = 0; !found && (host < p->RIONumHosts); host++) {
		for (rta = 0; rta < MAX_RUP; rta++) {
			if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
				Flag = p->RIOHosts[host].Mapping[rta].Flags;
				MapP = &p->RIOHosts[host].Mapping[rta];
				if (RtaType == TYPE_RTA16) {
					MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
				} else
					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
				found = 1;
				break;
			}
		}
	}

	/*
	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
	 ** attached to the current host card in the driver table.
	 **
	 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
	 ** another host for this RTA in the driver table...
	 **
	 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
	 */
	if (!MapP) {
		rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
		for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
			rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);

			if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
				MapP = &p->RIOSavedTable[rta];
				Flag = p->RIOSavedTable[rta].Flags;
				if (RtaType == TYPE_RTA16) {
					for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
						if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
							break;
					}
					MapP2 = &p->RIOSavedTable[entry2];
					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
				} else
					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
				break;
			}
		}
	}

	/*
	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
	 ** attached to the current host card in the driver table.
	 **
	 ** We may have found a SLOT_IN_USE entry on another host for this
	 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
	 ** on another host for this RTA in the driver table.
	 **
	 ** Check the driver table for room to fit this newly discovered RTA.
	 ** RIOFindFreeID() first looks for free slots and if it does not
	 ** find any free slots it will then attempt to oust any
	 ** tentative entry in the table.
	 */
	EmptySlot = 1;
	if (RtaType == TYPE_RTA16) {
		if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
			RIODefaultName(p, HostP, entry);
			rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
			EmptySlot = 0;
		}
	} else {
		if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
			RIODefaultName(p, HostP, entry);
			rio_fill_host_slot(entry, 0, RtaUniq, HostP);
			EmptySlot = 0;
		}
	}

	/*
	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
	 ** attached to the current host card in the driver table.
	 **
	 ** If we found a SLOT_IN_USE entry on another host for this
	 ** RTA in the config or driver table, and there are enough free
	 ** slots in the driver table, then we need to move it over and
	 ** delete it from the other host.
	 ** If we found a SLOT_TENTATIVE entry on another host for this
	 ** RTA in the driver table, just delete the other host entry.
	 */
	if (EmptySlot == 0) {
		if (MapP) {
			if (Flag & SLOT_IN_USE) {
				rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
				HostP->Mapping[entry].SysPort = MapP->SysPort;
				memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
				HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
				RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
				if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
					p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
				if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
					p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
				rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
			} else {
				rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
				HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
			}
			if (RtaType == TYPE_RTA16) {
				if (Flag & SLOT_IN_USE) {
					HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
					HostP->Mapping[entry2].SysPort = MapP2->SysPort;
					/*
					 ** Map second block of ttys for 16 port RTA
					 */
					RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
					if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
						p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
					if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
						p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
					rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
				} else
					HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
				memset(MapP2, 0, sizeof(struct Map));
			}
			memset(MapP, 0, sizeof(struct Map));
			if (!p->RIONoMessage)
				printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
		} else if (!p->RIONoMessage)
			printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
		RIOSetChange(p);
		return 1;
	}

	/*
	 ** There is no room in the driver table to make an entry for the
	 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
	 ** so we can ignore it's ID requests.
	 */
	if (!p->RIONoMessage)
		printk("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
	for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
		if (HostP->ExtraUnits[entry] == RtaUniq) {
			/*
			 ** already got it!
			 */
			return 1;
		}
	}
	/*
	 ** If there is room, add the unit to the list of extras
	 */
	if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
		HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
	return 1;
}


/*
** If the RTA or its host appears in the RIOBindTab[] structure then
** we mustn't boot the RTA and should return 0.
** This operation is slightly different from the other drivers for RIO
** in that this is designed to work with the new utilities
** not config.rio and is FAR SIMPLER.
** We no longer support the RIOBootMode variable. It is all done from the
** "boot/noboot" field in the rio.cf file.
*/
int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
{
	int Entry;
	unsigned int HostUniq = HostP->UniqueNum;

	/*
	 ** Search bindings table for RTA or its parent.
	 ** If it exists, return 0, else 1.
	 */
	for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
		if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
			return 0;
	}
	return 1;
}

/*
** Make an empty slot tentative. If this is a 16 port RTA, make both
** slots tentative, and the second one RTA_SECOND_SLOT as well.
*/

void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
{
	int link;

	rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);

	host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
	host->Mapping[entry].SysPort = NO_PORT;
	host->Mapping[entry].RtaUniqueNum = rta_uniq;
	host->Mapping[entry].HostUniqueNum = host->UniqueNum;
	host->Mapping[entry].ID = entry + 1;
	host->Mapping[entry].ID2 = 0;
	if (entry2) {
		host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
		host->Mapping[entry2].SysPort = NO_PORT;
		host->Mapping[entry2].RtaUniqueNum = rta_uniq;
		host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
		host->Mapping[entry2].Name[0] = '\0';
		host->Mapping[entry2].ID = entry2 + 1;
		host->Mapping[entry2].ID2 = entry + 1;
		host->Mapping[entry].ID2 = entry2 + 1;
	}
	/*
	 ** Must set these up, so that utilities show
	 ** topology of 16 port RTAs correctly
	 */
	for (link = 0; link < LINKS_PER_UNIT; link++) {
		host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
		host->Mapping[entry].Topology[link].Link = NO_LINK;
		if (entry2) {
			host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
			host->Mapping[entry2].Topology[link].Link = NO_LINK;
		}
	}
}