1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
/*
* Copyright 2012 Freescale Semiconductor, Inc.
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <mach/common.h>
#include <mach/mx28.h>
#include "clk.h"
#define CLKCTRL MX28_IO_ADDRESS(MX28_CLKCTRL_BASE_ADDR)
#define PLL0CTRL0 (CLKCTRL + 0x0000)
#define PLL1CTRL0 (CLKCTRL + 0x0020)
#define PLL2CTRL0 (CLKCTRL + 0x0040)
#define CPU (CLKCTRL + 0x0050)
#define HBUS (CLKCTRL + 0x0060)
#define XBUS (CLKCTRL + 0x0070)
#define XTAL (CLKCTRL + 0x0080)
#define SSP0 (CLKCTRL + 0x0090)
#define SSP1 (CLKCTRL + 0x00a0)
#define SSP2 (CLKCTRL + 0x00b0)
#define SSP3 (CLKCTRL + 0x00c0)
#define GPMI (CLKCTRL + 0x00d0)
#define SPDIF (CLKCTRL + 0x00e0)
#define EMI (CLKCTRL + 0x00f0)
#define SAIF0 (CLKCTRL + 0x0100)
#define SAIF1 (CLKCTRL + 0x0110)
#define LCDIF (CLKCTRL + 0x0120)
#define ETM (CLKCTRL + 0x0130)
#define ENET (CLKCTRL + 0x0140)
#define FLEXCAN (CLKCTRL + 0x0160)
#define FRAC0 (CLKCTRL + 0x01b0)
#define FRAC1 (CLKCTRL + 0x01c0)
#define CLKSEQ (CLKCTRL + 0x01d0)
#define BP_CPU_INTERRUPT_WAIT 12
#define BP_SAIF_DIV_FRAC_EN 16
#define BP_ENET_DIV_TIME 21
#define BP_ENET_SLEEP 31
#define BP_CLKSEQ_BYPASS_SAIF0 0
#define BP_CLKSEQ_BYPASS_SSP0 3
#define BP_FRAC0_IO1FRAC 16
#define BP_FRAC0_IO0FRAC 24
#define DIGCTRL MX28_IO_ADDRESS(MX28_DIGCTL_BASE_ADDR)
#define BP_SAIF_CLKMUX 10
/*
* HW_SAIF_CLKMUX_SEL:
* DIRECT(0x0): SAIF0 clock pins selected for SAIF0 input clocks, and SAIF1
* clock pins selected for SAIF1 input clocks.
* CROSSINPUT(0x1): SAIF1 clock inputs selected for SAIF0 input clocks, and
* SAIF0 clock inputs selected for SAIF1 input clocks.
* EXTMSTR0(0x2): SAIF0 clock pin selected for both SAIF0 and SAIF1 input
* clocks.
* EXTMSTR1(0x3): SAIF1 clock pin selected for both SAIF0 and SAIF1 input
* clocks.
*/
int mxs_saif_clkmux_select(unsigned int clkmux)
{
if (clkmux > 0x3)
return -EINVAL;
__mxs_clrl(0x3 << BP_SAIF_CLKMUX, DIGCTRL);
__mxs_setl(clkmux << BP_SAIF_CLKMUX, DIGCTRL);
return 0;
}
static void __init clk_misc_init(void)
{
u32 val;
/* Gate off cpu clock in WFI for power saving */
__mxs_setl(1 << BP_CPU_INTERRUPT_WAIT, CPU);
/* 0 is a bad default value for a divider */
__mxs_setl(1 << BP_ENET_DIV_TIME, ENET);
/* Clear BYPASS for SAIF */
__mxs_clrl(0x3 << BP_CLKSEQ_BYPASS_SAIF0, CLKSEQ);
/* SAIF has to use frac div for functional operation */
val = readl_relaxed(SAIF0);
val |= 1 << BP_SAIF_DIV_FRAC_EN;
writel_relaxed(val, SAIF0);
val = readl_relaxed(SAIF1);
val |= 1 << BP_SAIF_DIV_FRAC_EN;
writel_relaxed(val, SAIF1);
/* Extra fec clock setting */
val = readl_relaxed(ENET);
val &= ~(1 << BP_ENET_SLEEP);
writel_relaxed(val, ENET);
/*
* Source ssp clock from ref_io than ref_xtal,
* as ref_xtal only provides 24 MHz as maximum.
*/
__mxs_clrl(0xf << BP_CLKSEQ_BYPASS_SSP0, CLKSEQ);
/*
* 480 MHz seems too high to be ssp clock source directly,
* so set frac0 to get a 288 MHz ref_io0.
*/
val = readl_relaxed(FRAC0);
val &= ~(0x3f << BP_FRAC0_IO0FRAC);
val |= 30 << BP_FRAC0_IO0FRAC;
writel_relaxed(val, FRAC0);
}
static struct clk_lookup uart_lookups[] = {
{ .dev_id = "duart", },
{ .dev_id = "mxs-auart.0", },
{ .dev_id = "mxs-auart.1", },
{ .dev_id = "mxs-auart.2", },
{ .dev_id = "mxs-auart.3", },
{ .dev_id = "mxs-auart.4", },
{ .dev_id = "8006a000.serial", },
{ .dev_id = "8006c000.serial", },
{ .dev_id = "8006e000.serial", },
{ .dev_id = "80070000.serial", },
{ .dev_id = "80072000.serial", },
{ .dev_id = "80074000.serial", },
};
static struct clk_lookup hbus_lookups[] = {
{ .dev_id = "imx28-dma-apbh", },
{ .dev_id = "80004000.dma-apbh", },
};
static struct clk_lookup xbus_lookups[] = {
{ .dev_id = "duart", .con_id = "apb_pclk"},
{ .dev_id = "80074000.serial", .con_id = "apb_pclk"},
{ .dev_id = "imx28-dma-apbx", },
{ .dev_id = "80024000.dma-apbx", },
};
static struct clk_lookup ssp0_lookups[] = {
{ .dev_id = "imx28-mmc.0", },
{ .dev_id = "80010000.ssp", },
};
static struct clk_lookup ssp1_lookups[] = {
{ .dev_id = "imx28-mmc.1", },
{ .dev_id = "80012000.ssp", },
};
static struct clk_lookup ssp2_lookups[] = {
{ .dev_id = "imx28-mmc.2", },
{ .dev_id = "80014000.ssp", },
};
static struct clk_lookup ssp3_lookups[] = {
{ .dev_id = "imx28-mmc.3", },
{ .dev_id = "80016000.ssp", },
};
static struct clk_lookup lcdif_lookups[] = {
{ .dev_id = "imx28-fb", },
{ .dev_id = "80030000.lcdif", },
};
static struct clk_lookup gpmi_lookups[] = {
{ .dev_id = "imx28-gpmi-nand", },
{ .dev_id = "8000c000.gpmi", },
};
static struct clk_lookup fec_lookups[] = {
{ .dev_id = "imx28-fec.0", },
{ .dev_id = "imx28-fec.1", },
{ .dev_id = "800f0000.ethernet", },
{ .dev_id = "800f4000.ethernet", },
};
static struct clk_lookup can0_lookups[] = {
{ .dev_id = "flexcan.0", },
{ .dev_id = "80032000.can", },
};
static struct clk_lookup can1_lookups[] = {
{ .dev_id = "flexcan.1", },
{ .dev_id = "80034000.can", },
};
static struct clk_lookup saif0_lookups[] = {
{ .dev_id = "mxs-saif.0", },
{ .dev_id = "80042000.saif", },
};
static struct clk_lookup saif1_lookups[] = {
{ .dev_id = "mxs-saif.1", },
{ .dev_id = "80046000.saif", },
};
static const char *sel_cpu[] __initconst = { "ref_cpu", "ref_xtal", };
static const char *sel_io0[] __initconst = { "ref_io0", "ref_xtal", };
static const char *sel_io1[] __initconst = { "ref_io1", "ref_xtal", };
static const char *sel_pix[] __initconst = { "ref_pix", "ref_xtal", };
static const char *sel_gpmi[] __initconst = { "ref_gpmi", "ref_xtal", };
static const char *sel_pll0[] __initconst = { "pll0", "ref_xtal", };
static const char *cpu_sels[] __initconst = { "cpu_pll", "cpu_xtal", };
static const char *emi_sels[] __initconst = { "emi_pll", "emi_xtal", };
static const char *ptp_sels[] __initconst = { "ref_xtal", "pll0", };
enum imx28_clk {
ref_xtal, pll0, pll1, pll2, ref_cpu, ref_emi, ref_io0, ref_io1,
ref_pix, ref_hsadc, ref_gpmi, saif0_sel, saif1_sel, gpmi_sel,
ssp0_sel, ssp1_sel, ssp2_sel, ssp3_sel, emi_sel, etm_sel,
lcdif_sel, cpu, ptp_sel, cpu_pll, cpu_xtal, hbus, xbus,
ssp0_div, ssp1_div, ssp2_div, ssp3_div, gpmi_div, emi_pll,
emi_xtal, lcdif_div, etm_div, ptp, saif0_div, saif1_div,
clk32k_div, rtc, lradc, spdif_div, clk32k, pwm, uart, ssp0,
ssp1, ssp2, ssp3, gpmi, spdif, emi, saif0, saif1, lcdif, etm,
fec, can0, can1, usb0, usb1, usb0_pwr, usb1_pwr, enet_out,
clk_max
};
static struct clk *clks[clk_max];
static enum imx28_clk clks_init_on[] __initdata = {
cpu, hbus, xbus, emi, uart,
};
int __init mx28_clocks_init(void)
{
int i;
clk_misc_init();
clks[ref_xtal] = mxs_clk_fixed("ref_xtal", 24000000);
clks[pll0] = mxs_clk_pll("pll0", "ref_xtal", PLL0CTRL0, 17, 480000000);
clks[pll1] = mxs_clk_pll("pll1", "ref_xtal", PLL1CTRL0, 17, 480000000);
clks[pll2] = mxs_clk_pll("pll2", "ref_xtal", PLL2CTRL0, 23, 50000000);
clks[ref_cpu] = mxs_clk_ref("ref_cpu", "pll0", FRAC0, 0);
clks[ref_emi] = mxs_clk_ref("ref_emi", "pll0", FRAC0, 1);
clks[ref_io1] = mxs_clk_ref("ref_io1", "pll0", FRAC0, 2);
clks[ref_io0] = mxs_clk_ref("ref_io0", "pll0", FRAC0, 3);
clks[ref_pix] = mxs_clk_ref("ref_pix", "pll0", FRAC1, 0);
clks[ref_hsadc] = mxs_clk_ref("ref_hsadc", "pll0", FRAC1, 1);
clks[ref_gpmi] = mxs_clk_ref("ref_gpmi", "pll0", FRAC1, 2);
clks[saif0_sel] = mxs_clk_mux("saif0_sel", CLKSEQ, 0, 1, sel_pll0, ARRAY_SIZE(sel_pll0));
clks[saif1_sel] = mxs_clk_mux("saif1_sel", CLKSEQ, 1, 1, sel_pll0, ARRAY_SIZE(sel_pll0));
clks[gpmi_sel] = mxs_clk_mux("gpmi_sel", CLKSEQ, 2, 1, sel_gpmi, ARRAY_SIZE(sel_gpmi));
clks[ssp0_sel] = mxs_clk_mux("ssp0_sel", CLKSEQ, 3, 1, sel_io0, ARRAY_SIZE(sel_io0));
clks[ssp1_sel] = mxs_clk_mux("ssp1_sel", CLKSEQ, 4, 1, sel_io0, ARRAY_SIZE(sel_io0));
clks[ssp2_sel] = mxs_clk_mux("ssp2_sel", CLKSEQ, 5, 1, sel_io1, ARRAY_SIZE(sel_io1));
clks[ssp3_sel] = mxs_clk_mux("ssp3_sel", CLKSEQ, 6, 1, sel_io1, ARRAY_SIZE(sel_io1));
clks[emi_sel] = mxs_clk_mux("emi_sel", CLKSEQ, 7, 1, emi_sels, ARRAY_SIZE(emi_sels));
clks[etm_sel] = mxs_clk_mux("etm_sel", CLKSEQ, 8, 1, sel_cpu, ARRAY_SIZE(sel_cpu));
clks[lcdif_sel] = mxs_clk_mux("lcdif_sel", CLKSEQ, 14, 1, sel_pix, ARRAY_SIZE(sel_pix));
clks[cpu] = mxs_clk_mux("cpu", CLKSEQ, 18, 1, cpu_sels, ARRAY_SIZE(cpu_sels));
clks[ptp_sel] = mxs_clk_mux("ptp_sel", ENET, 19, 1, ptp_sels, ARRAY_SIZE(ptp_sels));
clks[cpu_pll] = mxs_clk_div("cpu_pll", "ref_cpu", CPU, 0, 6, 28);
clks[cpu_xtal] = mxs_clk_div("cpu_xtal", "ref_xtal", CPU, 16, 10, 29);
clks[hbus] = mxs_clk_div("hbus", "cpu", HBUS, 0, 5, 31);
clks[xbus] = mxs_clk_div("xbus", "ref_xtal", XBUS, 0, 10, 31);
clks[ssp0_div] = mxs_clk_div("ssp0_div", "ssp0_sel", SSP0, 0, 9, 29);
clks[ssp1_div] = mxs_clk_div("ssp1_div", "ssp1_sel", SSP1, 0, 9, 29);
clks[ssp2_div] = mxs_clk_div("ssp2_div", "ssp2_sel", SSP2, 0, 9, 29);
clks[ssp3_div] = mxs_clk_div("ssp3_div", "ssp3_sel", SSP3, 0, 9, 29);
clks[gpmi_div] = mxs_clk_div("gpmi_div", "gpmi_sel", GPMI, 0, 10, 29);
clks[emi_pll] = mxs_clk_div("emi_pll", "ref_emi", EMI, 0, 6, 28);
clks[emi_xtal] = mxs_clk_div("emi_xtal", "ref_xtal", EMI, 8, 4, 29);
clks[lcdif_div] = mxs_clk_div("lcdif_div", "lcdif_sel", LCDIF, 0, 13, 29);
clks[etm_div] = mxs_clk_div("etm_div", "etm_sel", ETM, 0, 7, 29);
clks[ptp] = mxs_clk_div("ptp", "ptp_sel", ENET, 21, 6, 27);
clks[saif0_div] = mxs_clk_frac("saif0_div", "saif0_sel", SAIF0, 0, 16, 29);
clks[saif1_div] = mxs_clk_frac("saif1_div", "saif1_sel", SAIF1, 0, 16, 29);
clks[clk32k_div] = mxs_clk_fixed_factor("clk32k_div", "ref_xtal", 1, 750);
clks[rtc] = mxs_clk_fixed_factor("rtc", "ref_xtal", 1, 768);
clks[lradc] = mxs_clk_fixed_factor("lradc", "clk32k", 1, 16);
clks[spdif_div] = mxs_clk_fixed_factor("spdif_div", "pll0", 1, 4);
clks[clk32k] = mxs_clk_gate("clk32k", "clk32k_div", XTAL, 26);
clks[pwm] = mxs_clk_gate("pwm", "ref_xtal", XTAL, 29);
clks[uart] = mxs_clk_gate("uart", "ref_xtal", XTAL, 31);
clks[ssp0] = mxs_clk_gate("ssp0", "ssp0_div", SSP0, 31);
clks[ssp1] = mxs_clk_gate("ssp1", "ssp1_div", SSP1, 31);
clks[ssp2] = mxs_clk_gate("ssp2", "ssp2_div", SSP2, 31);
clks[ssp3] = mxs_clk_gate("ssp3", "ssp3_div", SSP3, 31);
clks[gpmi] = mxs_clk_gate("gpmi", "gpmi_div", GPMI, 31);
clks[spdif] = mxs_clk_gate("spdif", "spdif_div", SPDIF, 31);
clks[emi] = mxs_clk_gate("emi", "emi_sel", EMI, 31);
clks[saif0] = mxs_clk_gate("saif0", "saif0_div", SAIF0, 31);
clks[saif1] = mxs_clk_gate("saif1", "saif1_div", SAIF1, 31);
clks[lcdif] = mxs_clk_gate("lcdif", "lcdif_div", LCDIF, 31);
clks[etm] = mxs_clk_gate("etm", "etm_div", ETM, 31);
clks[fec] = mxs_clk_gate("fec", "hbus", ENET, 30);
clks[can0] = mxs_clk_gate("can0", "ref_xtal", FLEXCAN, 30);
clks[can1] = mxs_clk_gate("can1", "ref_xtal", FLEXCAN, 28);
clks[usb0] = mxs_clk_gate("usb0", "usb0_pwr", DIGCTRL, 2);
clks[usb1] = mxs_clk_gate("usb1", "usb1_pwr", DIGCTRL, 16);
clks[usb0_pwr] = clk_register_gate(NULL, "usb0_pwr", "pll0", 0, PLL0CTRL0, 18, 0, &mxs_lock);
clks[usb1_pwr] = clk_register_gate(NULL, "usb1_pwr", "pll1", 0, PLL1CTRL0, 18, 0, &mxs_lock);
clks[enet_out] = clk_register_gate(NULL, "enet_out", "pll2", 0, ENET, 18, 0, &mxs_lock);
for (i = 0; i < ARRAY_SIZE(clks); i++)
if (IS_ERR(clks[i])) {
pr_err("i.MX28 clk %d: register failed with %ld\n",
i, PTR_ERR(clks[i]));
return PTR_ERR(clks[i]);
}
clk_register_clkdev(clks[clk32k], NULL, "timrot");
clk_register_clkdev(clks[enet_out], NULL, "enet_out");
clk_register_clkdevs(clks[hbus], hbus_lookups, ARRAY_SIZE(hbus_lookups));
clk_register_clkdevs(clks[xbus], xbus_lookups, ARRAY_SIZE(xbus_lookups));
clk_register_clkdevs(clks[uart], uart_lookups, ARRAY_SIZE(uart_lookups));
clk_register_clkdevs(clks[ssp0], ssp0_lookups, ARRAY_SIZE(ssp0_lookups));
clk_register_clkdevs(clks[ssp1], ssp1_lookups, ARRAY_SIZE(ssp1_lookups));
clk_register_clkdevs(clks[ssp2], ssp2_lookups, ARRAY_SIZE(ssp2_lookups));
clk_register_clkdevs(clks[ssp3], ssp3_lookups, ARRAY_SIZE(ssp3_lookups));
clk_register_clkdevs(clks[gpmi], gpmi_lookups, ARRAY_SIZE(gpmi_lookups));
clk_register_clkdevs(clks[saif0], saif0_lookups, ARRAY_SIZE(saif0_lookups));
clk_register_clkdevs(clks[saif1], saif1_lookups, ARRAY_SIZE(saif1_lookups));
clk_register_clkdevs(clks[lcdif], lcdif_lookups, ARRAY_SIZE(lcdif_lookups));
clk_register_clkdevs(clks[fec], fec_lookups, ARRAY_SIZE(fec_lookups));
clk_register_clkdevs(clks[can0], can0_lookups, ARRAY_SIZE(can0_lookups));
clk_register_clkdevs(clks[can1], can1_lookups, ARRAY_SIZE(can1_lookups));
for (i = 0; i < ARRAY_SIZE(clks_init_on); i++)
clk_prepare_enable(clks[clks_init_on[i]]);
mxs_timer_init(MX28_INT_TIMER0);
return 0;
}
|