summaryrefslogtreecommitdiff
path: root/drivers/dma/fsl_raid.c
blob: ccab1885d955cbe35d93d5bdebea32433b4ce784 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * drivers/dma/fsl_raid.c
 *
 * Freescale RAID Engine device driver
 *
 * Author:
 *	Harninder Rai <harninder.rai@freescale.com>
 *	Naveen Burmi <naveenburmi@freescale.com>
 *
 * Copyright (c) 2010-2013 Freescale Semiconductor, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Freescale Semiconductor nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation, either version 2 of that License or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Theory of operation:
 *
 * General capabilities:
 *	RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
 *	calculations required in RAID5 and RAID6 operations. RE driver
 *	registers with Linux's ASYNC layer as dma driver. RE hardware
 *	maintains strict ordering of the requests through chained
 *	command queueing.
 *
 * Data flow:
 *	Software RAID layer of Linux (MD layer) maintains RAID partitions,
 *	strips, stripes etc. It sends requests to the underlying AYSNC layer
 *	which further passes it to RE driver. ASYNC layer decides which request
 *	goes to which job ring of RE hardware. For every request processed by
 *	RAID Engine, driver gets an interrupt unless coalescing is set. The
 *	per job ring interrupt handler checks the status register for errors,
 *	clears the interrupt and schedules a tasklet. Main request processing
 *	is done in tasklet. A software shadow copy of the HW ring is kept to
 *	maintain virtual to physical translation. Based on the internal indexes
 *	maintained, the tasklet picks the descriptor address from shadow copy,
 *	updates the corresponding cookie, updates the outbound ring job removed
 *	register in RE hardware and eventually calls the callback function. This
 *	callback function gets passed as part of request from MD layer.
 */

#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/slab.h>

#include "dmaengine.h"
#include "fsl_raid.h"

#define MAX_XOR_SRCS		16
#define MAX_PQ_SRCS		16
#define MAX_INITIAL_DESCS	256
#define FRAME_FORMAT		0x1
#define MAX_DATA_LENGTH		(1024*1024)

#define to_fsl_re_dma_desc(tx) container_of(tx, \
		struct fsl_re_dma_async_tx_desc, async_tx)

/* Add descriptors into per jr software queue - submit_q */
static dma_cookie_t re_jr_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct fsl_re_dma_async_tx_desc *desc = NULL;
	struct re_jr *jr = NULL;
	dma_cookie_t cookie;

	desc = container_of(tx, struct fsl_re_dma_async_tx_desc, async_tx);
	jr = container_of(tx->chan, struct re_jr, chan);

	spin_lock_bh(&jr->desc_lock);

	jr->timer.data = (unsigned long)tx->chan;
	cookie = jr->chan.cookie + 1;
	if (cookie < 0)
		cookie = 1;

	desc->async_tx.cookie = cookie;
	jr->chan.cookie = desc->async_tx.cookie;
	jr->pend_count++;

	if (!timer_pending(&jr->timer))
		add_timer(&jr->timer);

	spin_unlock_bh(&jr->desc_lock);

	return cookie;
}

static void re_jr_desc_done(struct fsl_re_dma_async_tx_desc *desc)
{
	struct dma_chan *chan = &desc->jr->chan;
	dma_async_tx_callback callback;
	void *callback_param;

	callback = desc->async_tx.callback;
	callback_param = desc->async_tx.callback_param;

	dma_run_dependencies(&desc->async_tx);

	if (chan->completed_cookie < desc->async_tx.cookie) {
		chan->completed_cookie = desc->async_tx.cookie;
		if (chan->completed_cookie == DMA_MAX_COOKIE)
			chan->completed_cookie = DMA_MIN_COOKIE;
	}

	dma_descriptor_unmap(&desc->async_tx);

	if (callback)
		callback(callback_param);
}

/*
 * Get the virtual address of software desc from virt_addr.
 * Storing the address of software desc like this makes the
 * order of alogorithm as O(1)
 */
static void re_jr_dequeue(unsigned long data)
{
	struct device *dev;
	struct re_jr *jr;
	struct fsl_re_dma_async_tx_desc *desc;
	unsigned int count;
	struct fsl_re_dma_async_tx_desc *ack_desc = NULL, *_ack_desc = NULL;

	dev = (struct device *)data;
	jr = dev_get_drvdata(dev);

	spin_lock_bh(&jr->desc_lock);
	count =	RE_JR_OUB_SLOT_FULL(in_be32(&jr->jrregs->oubring_slot_full));
	if (count) {
		out_be32(&jr->jrregs->oubring_job_rmvd,
			 RE_JR_OUB_JOB_REMOVE(count));
		while (count--) {
			jr->oub_count &= RING_SIZE_MASK;
			desc = &jr->descs[jr->oub_count++];
			list_add_tail(&desc->node, &jr->ack_q);
			re_jr_desc_done(desc);
		}
	}
	spin_unlock_bh(&jr->desc_lock);

	/* To save memory, parse the ack_q and free up descs */
	list_for_each_entry_safe(ack_desc, _ack_desc, &jr->ack_q, node) {
		if (async_tx_test_ack(&ack_desc->async_tx)) {
			spin_lock_bh(&jr->desc_lock);
			list_del(&ack_desc->node);
			ack_desc->state = RE_DESC_EMPTY;
			ack_desc->async_tx.flags = 0;
			spin_unlock_bh(&jr->desc_lock);
		}
	}
}

/* Per Job Ring interrupt handler */
static irqreturn_t re_jr_interrupt(int irq, void *data)
{
	struct device *dev = data;
	struct re_jr *jr = dev_get_drvdata(dev);

	u32 irqstate, status;
	irqstate = in_be32(&jr->jrregs->jr_interrupt_status);
	if (!irqstate)
		return IRQ_NONE;

	/*
	 * There's no way in upper layer (read MD layer) to recover from
	 * error conditions except restart everything. In long term we
	 * need to do something more than just crashing
	 */
	if (irqstate & RE_JR_ERROR) {
		status = in_be32(&jr->jrregs->jr_status);
		dev_err(dev, "jr error irqstate: %x, status: %x\n", irqstate,
			status);
	}

	/* Clear interrupt */
	out_be32(&jr->jrregs->jr_interrupt_status, RE_JR_CLEAR_INT);

	tasklet_schedule(&jr->irqtask);
	return IRQ_HANDLED;
}

static enum dma_status re_jr_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
{
	return dma_cookie_status(chan, cookie, txstate);
}


/* Copy descriptor from per jr software queue into hardware job ring */
void re_jr_issue_pending(struct dma_chan *chan)
{
	struct re_jr *jr = NULL;
	int avail = 0;

	jr = container_of(chan, struct re_jr, chan);
	if (timer_pending(&jr->timer))
		del_timer_sync(&jr->timer);

	spin_lock_bh(&jr->desc_lock);
	if (!jr->pend_count)
		goto out_unlock;

	avail = RE_JR_INB_SLOT_AVAIL(in_be32(&jr->jrregs->inbring_slot_avail));
	if (!avail)
		goto out_unlock;

	if (avail > jr->pend_count)
		avail = jr->pend_count;

	jr->pend_count -= avail;
	jr->inb_count = (jr->inb_count + avail) & RING_SIZE_MASK;

	/* add jobs into job ring */
	out_be32(&jr->jrregs->inbring_add_job, RE_JR_INB_JOB_ADD(avail));

out_unlock:
	spin_unlock_bh(&jr->desc_lock);
}

/* Per Job Ring timer handler */
static void raide_timer_handler(unsigned long data)
{
	struct dma_chan *chan = NULL;
	chan = (struct dma_chan *)data;

	re_jr_issue_pending(chan);

	return;
}

void fill_cfd_frame(struct cmpnd_frame *cf, u8 index,
		size_t length, dma_addr_t addr, bool final)
{
	cf[index].final = final;
	cf[index].length = length;
	cf[index].address = addr;
}

static struct fsl_re_dma_async_tx_desc *re_jr_init_desc(struct re_jr *jr,
	struct fsl_re_dma_async_tx_desc *desc, void *cf, dma_addr_t paddr)
{
	desc->jr = jr;
	desc->async_tx.tx_submit = re_jr_tx_submit;
	dma_async_tx_descriptor_init(&desc->async_tx, &jr->chan);
	INIT_LIST_HEAD(&desc->node);

	desc->hwdesc->format = FRAME_FORMAT;
	desc->hwdesc->address = paddr;
	desc->cf_addr = cf;

	desc->cdb_addr = (void *)(cf + RE_CF_DESC_SIZE);
	desc->cdb_paddr = paddr + RE_CF_DESC_SIZE;

	return desc;
}

static struct fsl_re_dma_async_tx_desc *re_jr_alloc_desc(struct re_jr *jr,
		unsigned long flags)
{
	struct fsl_re_dma_async_tx_desc *desc;

	spin_lock_bh(&jr->desc_lock);
	desc = &jr->descs[jr->inb_count];
	if (desc->state != RE_DESC_EMPTY) {
		spin_unlock_bh(&jr->desc_lock);
		re_jr_issue_pending(&jr->chan);
		return NULL;
	}
	desc->state = RE_DESC_ALLOC;
	desc->async_tx.flags = flags;
	spin_unlock_bh(&jr->desc_lock);

	return desc;
}

static struct dma_async_tx_descriptor *re_jr_prep_genq(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
		unsigned int src_cnt, const unsigned char *scf, size_t len,
		unsigned long flags)
{
	struct re_jr *jr;
	struct fsl_re_dma_async_tx_desc *desc;
	struct xor_cdb *xor;
	struct cmpnd_frame *cf;
	unsigned int i, j;

	if (len > MAX_DATA_LENGTH) {
		pr_err("Length greater than %d not supported\n",
		       MAX_DATA_LENGTH);
		return NULL;
	}

	jr = container_of(chan, struct re_jr, chan);
	desc = re_jr_alloc_desc(jr, flags);
	if (desc <= 0)
		return NULL;

	desc->dma_len = len;
	desc->dest_cnt = 1;
	desc->src_cnt = src_cnt;

	desc->cdb_opcode = RE_XOR_OPCODE;
	desc->cdb_len = sizeof(struct xor_cdb);

	/* Filling xor CDB */
	xor = desc->cdb_addr;
	xor->opcode = RE_XOR_OPCODE;
	xor->nrcs = src_cnt - 1;
	xor->blk_size = RE_BLOCK_SIZE;
	xor->error_attrib = INTERRUPT_ON_ERROR;
	xor->data_depend = DATA_DEPENDENCY;

	if (scf != NULL) {
		/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
		for (i = 0; i < src_cnt; i++)
			xor->gfm[i] = scf[i];
	} else {
		/* compute P, that is XOR all srcs */
		for (i = 0; i < src_cnt; i++)
			xor->gfm[i] = 1;
	}

	/* Filling frame 0 of compound frame descriptor with CDB */
	cf = desc->cf_addr;
	fill_cfd_frame(cf, 0, desc->cdb_len, desc->cdb_paddr, 0);

	/* Fill CFD's 1st frame with dest buffer */
	fill_cfd_frame(cf, 1, len, dest, 0);

	/* Fill CFD's rest of the frames with source buffers */
	for (i = 2, j = 0; j < src_cnt; i++, j++)
		fill_cfd_frame(cf, i, len, src[j], 0);

	/* Setting the final bit in the last source buffer frame in CFD */
	cf[i - 1].final = 1;

	return &desc->async_tx;
}

/*
 * Prep function for P parity calculation.In RAID Engine terminology,
 * XOR calculation is called GenQ calculation done through GenQ command
 */
static struct dma_async_tx_descriptor *re_jr_prep_dma_xor(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
		unsigned int src_cnt, size_t len, unsigned long flags)
{
	/* NULL let genq take all coef as 1 */
	return re_jr_prep_genq(chan, dest, src, src_cnt, NULL, len, flags);
}

/*
 * Prep function for P/Q parity calculation.In RAID Engine terminology,
 * P/Q calculation is called GenQQ done through GenQQ command
 */
static struct dma_async_tx_descriptor *re_jr_prep_pq(
		struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
		unsigned int src_cnt, const unsigned char *scf, size_t len,
		unsigned long flags)
{
	struct re_jr *jr;
	struct fsl_re_dma_async_tx_desc *desc;
	struct pq_cdb *pq;
	struct cmpnd_frame *cf;
	u8 *p;
	int gfmq_len, i, j;

	if (len > MAX_DATA_LENGTH) {
		pr_err("Length greater than %d not supported\n",
		       MAX_DATA_LENGTH);
		return NULL;
	}

	/*
	 * RE requires at least 2 sources, if given only one source, we pass the
	 * second source same as the first one.
	 * With only one source, generating P is meaningless, only generate Q.
	 */
	if (src_cnt == 1) {
		struct dma_async_tx_descriptor *tx;
		dma_addr_t dma_src[2];
		unsigned char coef[2];

		dma_src[0] = *src;
		coef[0] = *scf;
		dma_src[1] = *src;
		coef[1] = 0;
		tx = re_jr_prep_genq(chan, dest[1], dma_src, 2, coef, len,
				flags);
		if (tx) {
			desc = to_fsl_re_dma_desc(tx);
			desc->src_cnt = 1;
		}
		return tx;
	}

	/*
	 * During RAID6 array creation, Linux's MD layer gets P and Q
	 * calculated separately in two steps. But our RAID Engine has
	 * the capability to calculate both P and Q with a single command
	 * Hence to merge well with MD layer, we need to provide a hook
	 * here and call re_jq_prep_genq() function
	 */

	if (flags & DMA_PREP_PQ_DISABLE_P)
		return re_jr_prep_genq(chan, dest[1], src, src_cnt,
				scf, len, flags);

	jr = container_of(chan, struct re_jr, chan);
	desc = re_jr_alloc_desc(jr, flags);
	if (desc <= 0)
		return NULL;

	desc->dma_len = len;
	desc->dest_cnt = 2;
	desc->src_cnt = src_cnt;

	desc->cdb_opcode = RE_PQ_OPCODE;
	desc->cdb_len = sizeof(struct pq_cdb);

	/* Filling GenQQ CDB */
	pq = desc->cdb_addr;
	pq->opcode = RE_PQ_OPCODE;
	pq->blk_size = RE_BLOCK_SIZE;
	pq->buffer_attrib = BUFFERABLE_OUTPUT;
	pq->data_depend = DATA_DEPENDENCY;
	pq->nrcs = (src_cnt - 1);

	p = pq->gfm_q1;
	/* Init gfm_q1[] */
	for (i = 0; i < src_cnt; i++)
		p[i] = 1;

	/* Align gfm[] to 32bit */
	gfmq_len = ALIGN(src_cnt, 4);

	/* Init gfm_q2[] */
	p += gfmq_len;
	for (i = 0; i < src_cnt; i++)
		p[i] = scf[i];

	/* Filling frame 0 of compound frame descriptor with CDB */
	cf = desc->cf_addr;
	fill_cfd_frame(cf, 0, desc->cdb_len, desc->cdb_paddr, 0);

	/* Fill CFD's 1st & 2nd frame with dest buffers */
	for (i = 1, j = 0; i < 3; i++, j++)
		fill_cfd_frame(cf, i, len, dest[j], 0);

	/* Fill CFD's rest of the frames with source buffers */
	for (i = 3, j = 0; j < src_cnt; i++, j++)
		fill_cfd_frame(cf, i, len, src[j], 0);

	/* Setting the final bit in the last source buffer frame in CFD */
	cf[i - 1].final = 1;

	return &desc->async_tx;
}

/*
 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
 * command. Logic of this function will need to be modified once multipage
 * support is added in Linux's MD/ASYNC Layer
 */
static struct dma_async_tx_descriptor *re_jr_prep_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct re_jr *jr;
	struct fsl_re_dma_async_tx_desc *desc;
	size_t length;
	struct cmpnd_frame *cf;
	struct move_cdb *move;

	jr = container_of(chan, struct re_jr, chan);

	if (len > MAX_DATA_LENGTH) {
		pr_err("Length greater than %d not supported\n",
		       MAX_DATA_LENGTH);
		return NULL;
	}

	desc = re_jr_alloc_desc(jr, flags);
	if (desc <= 0)
		return NULL;

	desc->dma_len = len;
	desc->src_cnt = 1;
	desc->dest_cnt = 1;

	desc->cdb_opcode = RE_MOVE_OPCODE;
	desc->cdb_len = sizeof(struct move_cdb);

	/* Filling move CDB */
	move = desc->cdb_addr;
	move->opcode = RE_MOVE_OPCODE; /* Unicast move */
	move->blk_size = RE_BLOCK_SIZE;
	move->error_attrib = INTERRUPT_ON_ERROR;
	move->data_depend = DATA_DEPENDENCY;

	/* Filling frame 0 of CFD with move CDB */
	cf = desc->cf_addr;
	fill_cfd_frame(cf, 0, desc->cdb_len, desc->cdb_paddr, 0);

	length = min_t(size_t, len, MAX_DATA_LENGTH);

	/* Fill CFD's 1st frame with dest buffer */
	fill_cfd_frame(cf, 1, length, dest, 0);

	/* Fill CFD's 2nd frame with src buffer */
	fill_cfd_frame(cf, 2, length, src, 1);

	return &desc->async_tx;
}

static int re_jr_alloc_chan_resources(struct dma_chan *chan)
{
	int i;
	struct fsl_re_dma_async_tx_desc *desc;
	struct re_jr *jr = container_of(chan, struct re_jr, chan);
	void *cf;
	dma_addr_t paddr;

	jr->descs = kzalloc(sizeof(*desc) * RING_SIZE, GFP_KERNEL);
	if (!jr->descs) {
		dev_err(jr->dev, "No memory for sw descriptor ring\n");
		goto err_free;
	}

	cf = dma_pool_alloc(jr->re_dev->desc_pool, GFP_ATOMIC, &paddr);
	if (!cf) {
		dev_err(jr->dev, "No memory for dma descriptor ring\n");
		goto err_free;
	}
	memset(cf, 0, RE_CF_CDB_SIZE * RING_SIZE);
	jr->cfs = cf;
	jr->phys = paddr;

	for (i = 0; i < RING_SIZE; i++) {
		u32 offset = i * RE_CF_CDB_SIZE;
		desc = &jr->descs[i];
		desc->hwdesc = &jr->inb_ring_virt_addr[i];
		re_jr_init_desc(jr, desc, cf + offset, paddr + offset);
		desc->state = RE_DESC_EMPTY;
	}
	return 0;

err_free:
	kfree(jr->descs);
	return -ENOMEM;
}

static void re_jr_free_chan_resources(struct dma_chan *chan)
{
	struct re_jr *jr = container_of(chan, struct re_jr, chan);
	dma_pool_free(jr->re_dev->desc_pool, jr->cfs, jr->phys);
	kfree(jr->descs);
	return;
}

int re_jr_probe(struct platform_device *ofdev,
		struct device_node *np, u8 q, u32 off)
{
	struct device *dev;
	struct re_drv_private *repriv;
	struct re_jr *jr;
	struct dma_device *dma_dev;
	u32 ptr;
	u32 status;
	int ret = 0, rc;
	struct platform_device *jr_ofdev;

	dev = &ofdev->dev;
	repriv = dev_get_drvdata(dev);
	dma_dev = &repriv->dma_dev;

	jr = kzalloc(sizeof(struct re_jr), GFP_KERNEL);
	if (!jr) {
		dev_err(dev, "No free memory for allocating JR struct\n");
		return -ENOMEM;
	}

	jr_ofdev = of_platform_device_create(np, NULL, dev);
	if (jr_ofdev == NULL) {
		dev_err(dev, "Not able to create ofdev for jr %d\n", q);
		ret = -EINVAL;
		goto err_free;
	}
	dev_set_drvdata(&jr_ofdev->dev, jr);

	rc = of_property_read_u32(np, "reg", &ptr);
	if (rc) {
		dev_err(dev, "Reg property not found in JR number %d\n", q);
		ret = -ENODEV;
		goto err_free;
	}

	jr->jrregs = (struct jr_config_regs *)((u8 *)repriv->re_regs +
			off + ptr);

	jr->irq = irq_of_parse_and_map(np, 0);
	if (jr->irq == NO_IRQ) {
		dev_err(dev, "No IRQ defined for JR %d\n", q);
		ret = -ENODEV;
		goto err_free;
	}

	tasklet_init(&jr->irqtask, re_jr_dequeue,
		     (unsigned long)&jr_ofdev->dev);

	ret = request_irq(jr->irq, re_jr_interrupt, 0, "re-jr", &jr_ofdev->dev);
	if (ret) {
		dev_err(dev, "Unable to register JR interrupt for JR %d\n", q);
		ret = -EINVAL;
		goto err_free;
	}

	repriv->re_jrs[q] = jr;
	jr->chan.device = dma_dev;
	jr->chan.private = jr;
	jr->dev = &jr_ofdev->dev;
	jr->re_dev = repriv;
	jr->pend_count = 0;
	INIT_LIST_HEAD(&jr->ack_q);
	spin_lock_init(&jr->desc_lock);

	init_timer(&jr->timer);
	jr->timer.expires = jiffies + 10*HZ;
	jr->timer.function = raide_timer_handler;

	list_add_tail(&jr->chan.device_node, &dma_dev->channels);
	dma_dev->chancnt++;

	jr->inb_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool,
		GFP_ATOMIC, &jr->inb_phys_addr);

	if (!jr->inb_ring_virt_addr) {
		dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
		ret = -ENOMEM;
		goto err_free;
	}

	jr->oub_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool,
		GFP_ATOMIC, &jr->oub_phys_addr);

	if (!jr->oub_ring_virt_addr) {
		dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
		ret = -ENOMEM;
		goto err_free_1;
	}

	jr->inb_count = 0;
	jr->pend_count = 0;
	jr->oub_count = 0;

	/* Program the Inbound/Outbound ring base addresses and size */
	out_be32(&jr->jrregs->inbring_base_h,
		 jr->inb_phys_addr & RE_JR_ADDRESS_BIT_MASK);
	out_be32(&jr->jrregs->oubring_base_h,
		 jr->oub_phys_addr & RE_JR_ADDRESS_BIT_MASK);
	out_be32(&jr->jrregs->inbring_base_l,
		 jr->inb_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT);
	out_be32(&jr->jrregs->oubring_base_l,
		 jr->oub_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT);
	out_be32(&jr->jrregs->inbring_size, RING_SIZE << RING_SIZE_SHIFT);
	out_be32(&jr->jrregs->oubring_size, RING_SIZE << RING_SIZE_SHIFT);

	/* Read LIODN value from u-boot */
	status = in_be32(&jr->jrregs->jr_config_1) & RE_JR_REG_LIODN_MASK;

	/* Program the CFG reg */
	out_be32(&jr->jrregs->jr_config_1,
		 RE_JR_CFG1_CBSI | RE_JR_CFG1_CBS0 | status);

	/* Enable RE/JR */
	out_be32(&jr->jrregs->jr_command, RE_JR_ENABLE);

	return 0;

err_free_1:
	dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr,
		      jr->inb_phys_addr);
err_free:
	kfree(jr);
	return ret;
}

/* Probe function for RAID Engine */
static int raide_probe(struct platform_device *ofdev)
{
	struct re_drv_private *repriv;
	struct device *dev;
	struct device_node *np;
	struct device_node *child;
	u32 off;
	u8 ridx = 0;
	struct dma_device *dma_dev;
	int ret = 0, rc;

	dev_info(&ofdev->dev, "Freescale RAID Engine driver\n");
	dev = &ofdev->dev;

	repriv = kzalloc(sizeof(struct re_drv_private), GFP_KERNEL);
	if (!repriv) {
		dev_err(dev, "No memory for repriv\n");
		return -ENOMEM;
	}

	dev_set_drvdata(dev, repriv);

	/* IOMAP the entire RAID Engine region */
	repriv->re_regs = of_iomap(ofdev->dev.of_node, 0);
	if (repriv->re_regs == NULL) {
		dev_err(dev, "of_iomap failed\n");
		kfree(repriv);
		ret = -ENOMEM;
		goto err_free_4;
	}

	/* Print the RE version */
	dev_info(dev, "Ver = %x\n", in_be32(&repriv->re_regs->re_version_id));

	/* Program the RE mode */
	out_be32(&repriv->re_regs->global_config, RE_NON_DPAA_MODE);
	dev_info(dev, "RE mode is %x\n",
		 in_be32(&repriv->re_regs->global_config));

	/* Program Galois Field polynomial */
	out_be32(&repriv->re_regs->galois_field_config, RE_GFM_POLY);
	dev_info(dev, "Galois Field Polynomial is %x\n",
		 in_be32(&repriv->re_regs->galois_field_config));

	dma_dev = &repriv->dma_dev;
	dma_dev->dev = dev;
	INIT_LIST_HEAD(&dma_dev->channels);
	dma_set_mask(dev, DMA_BIT_MASK(40));

	dma_dev->device_alloc_chan_resources = re_jr_alloc_chan_resources;
	dma_dev->device_tx_status = re_jr_tx_status;
	dma_dev->device_issue_pending = re_jr_issue_pending;

	dma_dev->max_xor = MAX_XOR_SRCS;
	dma_dev->device_prep_dma_xor = re_jr_prep_dma_xor;
	dma_cap_set(DMA_XOR, dma_dev->cap_mask);

	dma_dev->max_pq = MAX_PQ_SRCS;
	dma_dev->device_prep_dma_pq = re_jr_prep_pq;
	dma_cap_set(DMA_PQ, dma_dev->cap_mask);

	dma_dev->device_prep_dma_memcpy = re_jr_prep_memcpy;
	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);

	dma_dev->device_free_chan_resources = re_jr_free_chan_resources;

	repriv->total_jrs = 0;

	repriv->desc_pool = dma_pool_create("re_dma_desc_pool", dev,
					RE_CF_CDB_SIZE * RING_SIZE,
					RE_CF_CDB_ALIGN, 0);

	if (!repriv->desc_pool) {
		pr_err("No memory for dma desc pool\n");
		ret = -ENOMEM;
		goto err_free_3;
	}

	repriv->hw_desc_pool = dma_pool_create("re_hw_desc_pool", dev,
				sizeof(struct jr_hw_desc) * RING_SIZE,
				FRAME_DESC_ALIGNMENT, 0);
	if (!repriv->hw_desc_pool) {
		pr_err("No memory for hw desc pool\n");
		ret = -ENOMEM;
		goto err_free_2;
	}

	/* Parse Device tree to find out the total number of JQs present */
	for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
		rc = of_property_read_u32(np, "reg", &off);
		if (rc) {
			dev_err(dev, "Reg property not found in JQ node\n");
			return -ENODEV;
		}
		/* Find out the Job Rings present under each JQ */
		for_each_child_of_node(np, child) {
			rc = of_device_is_compatible(child,
					"fsl,raideng-v1.0-job-ring");
			if (rc) {
				re_jr_probe(ofdev, child, ridx++, off);
				repriv->total_jrs++;
			}
		}
	}

	dma_async_device_register(dma_dev);
	return 0;

err_free_2:
	dma_pool_destroy(repriv->desc_pool);
err_free_3:
	iounmap(repriv->re_regs);
err_free_4:
	kfree(repriv);

	return ret;
}

static void release_jr(struct re_jr *jr)
{
	/* Free the memory allocated from DMA pools and destroy them */
	dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr,
		      jr->inb_phys_addr);

	kfree(jr);
}

static int raide_remove(struct platform_device *ofdev)
{
	struct re_drv_private *repriv;
	struct device *dev;
	int i;

	dev = &ofdev->dev;
	repriv = dev_get_drvdata(dev);

	/* Cleanup JR related memory areas */
	for (i = 0; i < repriv->total_jrs; i++)
		release_jr(repriv->re_jrs[i]);

	dma_pool_destroy(repriv->hw_desc_pool);
	dma_pool_destroy(repriv->desc_pool);

	/* Unregister the driver */
	dma_async_device_unregister(&repriv->dma_dev);

	/* Unmap the RAID Engine region */
	iounmap(repriv->re_regs);

	kfree(repriv);

	return 0;
}

static struct of_device_id raide_ids[] = {
	{ .compatible = "fsl,raideng-v1.0", },
	{}
};

static struct platform_driver raide_driver = {
	.driver = {
		.name = "fsl-raideng",
		.owner = THIS_MODULE,
		.of_match_table = raide_ids,
	},
	.probe = raide_probe,
	.remove = raide_remove,
};

module_platform_driver(raide_driver);

MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");