summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/freescale/fman/Peripherals/FM/fman.c
blob: 97adbbf73e0de12dfe6ba77471eb5db2f4a99881 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
/*
 * Copyright 2008-2012 Freescale Semiconductor Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Freescale Semiconductor nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation, either version 2 of that License or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */



#include "fsl_fman.h"
#include "dpaa_integration_ext.h"

uint32_t fman_get_bmi_err_event(struct fman_bmi_regs *bmi_rg)
{
	uint32_t	event, mask, force;

	event = ioread32be(&bmi_rg->fmbm_ievr);
	mask = ioread32be(&bmi_rg->fmbm_ier);
	event &= mask;
	/* clear the forced events */
	force = ioread32be(&bmi_rg->fmbm_ifr);
	if (force & event)
		iowrite32be(force & ~event, &bmi_rg->fmbm_ifr);
	/* clear the acknowledged events */
	iowrite32be(event, &bmi_rg->fmbm_ievr);
	return event;
}

uint32_t fman_get_qmi_err_event(struct fman_qmi_regs *qmi_rg)
{
	uint32_t	event, mask, force;

	event = ioread32be(&qmi_rg->fmqm_eie);
	mask = ioread32be(&qmi_rg->fmqm_eien);
	event &= mask;

	/* clear the forced events */
	force = ioread32be(&qmi_rg->fmqm_eif);
	if (force & event)
		iowrite32be(force & ~event, &qmi_rg->fmqm_eif);
	/* clear the acknowledged events */
	iowrite32be(event, &qmi_rg->fmqm_eie);
	return event;
}

uint32_t fman_get_dma_com_id(struct fman_dma_regs *dma_rg)
{
	return ioread32be(&dma_rg->fmdmtcid);
}

uint64_t fman_get_dma_addr(struct fman_dma_regs *dma_rg)
{
	uint64_t addr;

	addr = (uint64_t)ioread32be(&dma_rg->fmdmtal);
	addr |= ((uint64_t)(ioread32be(&dma_rg->fmdmtah)) << 32);

	return addr;
}

uint32_t fman_get_dma_err_event(struct fman_dma_regs *dma_rg)
{
	uint32_t status, mask;

	status = ioread32be(&dma_rg->fmdmsr);
	mask = ioread32be(&dma_rg->fmdmmr);

	/* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */
	if ((mask & DMA_MODE_BER) != DMA_MODE_BER)
		status &= ~DMA_STATUS_BUS_ERR;

	/* clear relevant bits if mask has no DMA_MODE_ECC */
	if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC)
		status &= ~(DMA_STATUS_FM_SPDAT_ECC |
		        DMA_STATUS_READ_ECC |
				DMA_STATUS_SYSTEM_WRITE_ECC |
				DMA_STATUS_FM_WRITE_ECC);

	/* clear set events */
	iowrite32be(status, &dma_rg->fmdmsr);

	return status;
}

uint32_t fman_get_fpm_err_event(struct fman_fpm_regs *fpm_rg)
{
	uint32_t	event;

	event = ioread32be(&fpm_rg->fmfp_ee);
	/* clear the all occurred events */
	iowrite32be(event, &fpm_rg->fmfp_ee);
	return event;
}

uint32_t fman_get_muram_err_event(struct fman_fpm_regs *fpm_rg)
{
	uint32_t	event, mask;

	event = ioread32be(&fpm_rg->fm_rcr);
	mask = ioread32be(&fpm_rg->fm_rie);

	/* clear MURAM event bit (do not clear IRAM event) */
	iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr);

	if ((mask & FPM_MURAM_ECC_ERR_EX_EN))
		return event;
	else
		return 0;
}

uint32_t fman_get_iram_err_event(struct fman_fpm_regs *fpm_rg)
{
	uint32_t    event, mask;

	event = ioread32be(&fpm_rg->fm_rcr) ;
	mask = ioread32be(&fpm_rg->fm_rie);
	/* clear IRAM event bit (do not clear MURAM event) */
	iowrite32be(event & ~FPM_RAM_MURAM_ECC,
			&fpm_rg->fm_rcr);

	if ((mask & FPM_IRAM_ECC_ERR_EX_EN))
		return event;
	else
		return 0;
}

uint32_t fman_get_qmi_event(struct fman_qmi_regs *qmi_rg)
{
	uint32_t	event, mask, force;

	event = ioread32be(&qmi_rg->fmqm_ie);
	mask = ioread32be(&qmi_rg->fmqm_ien);
	event &= mask;
	/* clear the forced events */
	force = ioread32be(&qmi_rg->fmqm_if);
	if (force & event)
		iowrite32be(force & ~event, &qmi_rg->fmqm_if);
	/* clear the acknowledged events */
	iowrite32be(event, &qmi_rg->fmqm_ie);
	return event;
}

void fman_enable_time_stamp(struct fman_fpm_regs *fpm_rg,
				uint8_t count1ubit,
				uint16_t fm_clk_freq)
{
	uint32_t tmp;
	uint64_t frac;
	uint32_t intgr;
	uint32_t ts_freq = (uint32_t)(1 << count1ubit); /* in Mhz */

	/* configure timestamp so that bit 8 will count 1 microsecond
	 * Find effective count rate at TIMESTAMP least significant bits:
	 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz
	 * Find frequency ratio between effective count rate and the clock:
	 * Effective_Count_Rate / CLK e.g. for 600 MHz clock:
	 * 256/600 = 0.4266666... */

	intgr = ts_freq / fm_clk_freq;
	/* we multiply by 2^16 to keep the fraction of the division
	 * we do not div back, since we write this value as a fraction
	 * see spec */

	frac = (((uint64_t)ts_freq << 16) - ((uint64_t)intgr << 16) * fm_clk_freq)
		/ fm_clk_freq;
	/* we check remainder of the division in order to round up if not int */
	if (((ts_freq << 16) - (intgr << 16)*fm_clk_freq) % fm_clk_freq)
		frac++;

	tmp = (intgr << FPM_TS_INT_SHIFT) | (uint16_t)frac;
	iowrite32be(tmp, &fpm_rg->fmfp_tsc2);

	/* enable timestamp with original clock */
	iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1);
}

uint32_t fman_get_fpm_error_interrupts(struct fman_fpm_regs *fpm_rg)
{
	return ioread32be(&fpm_rg->fm_epi);
}


int fman_set_erratum_10gmac_a004_wa(struct fman_fpm_regs *fpm_rg)
{
	int timeout = 100;

	iowrite32be(0x40000000, &fpm_rg->fmfp_extc);

	while ((ioread32be(&fpm_rg->fmfp_extc) & 0x40000000) && --timeout)
		udelay(10);

	if (!timeout)
		return -EBUSY;
	return 0;
}

void fman_set_ctrl_intr(struct fman_fpm_regs *fpm_rg,
			uint8_t event_reg_id,
			uint32_t enable_events)
{
	iowrite32be(enable_events, &fpm_rg->fmfp_cee[event_reg_id]);
}

uint32_t fman_get_ctrl_intr(struct fman_fpm_regs *fpm_rg, uint8_t event_reg_id)
{
	return ioread32be(&fpm_rg->fmfp_cee[event_reg_id]);
}

void fman_set_num_of_riscs_per_port(struct fman_fpm_regs *fpm_rg,
					uint8_t port_id,
					uint8_t num_fman_ctrls,
					uint32_t or_fman_ctrl)
{
	uint32_t tmp = 0;

	tmp = (uint32_t)(port_id << FPM_PORT_FM_CTL_PORTID_SHIFT);
	/*TODO - maybe to put CTL# according to another criteria*/
	if (num_fman_ctrls == 2)
		tmp = FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1;
	/* order restoration */
	tmp |= (or_fman_ctrl << FPM_PRC_ORA_FM_CTL_SEL_SHIFT) | or_fman_ctrl;

	iowrite32be(tmp, &fpm_rg->fmfp_prc);
}

void fman_set_order_restoration_per_port(struct fman_fpm_regs *fpm_rg,
					uint8_t port_id,
					bool independent_mode,
					bool is_rx_port)
{
	uint32_t tmp = 0;

	tmp = (uint32_t)(port_id << FPM_PORT_FM_CTL_PORTID_SHIFT);
	if (independent_mode) {
		if (is_rx_port)
			tmp |= (FPM_PRT_FM_CTL1 <<
				FPM_PRC_ORA_FM_CTL_SEL_SHIFT) | FPM_PRT_FM_CTL1;
		else
			tmp |= (FPM_PRT_FM_CTL2 <<
				FPM_PRC_ORA_FM_CTL_SEL_SHIFT) | FPM_PRT_FM_CTL2;
	} else {
		tmp |= (FPM_PRT_FM_CTL2|FPM_PRT_FM_CTL1);

		/* order restoration */
		if (port_id % 2)
			tmp |= (FPM_PRT_FM_CTL1 <<
					FPM_PRC_ORA_FM_CTL_SEL_SHIFT);
		else
			tmp |= (FPM_PRT_FM_CTL2 <<
					FPM_PRC_ORA_FM_CTL_SEL_SHIFT);
	}
	iowrite32be(tmp, &fpm_rg->fmfp_prc);
}

uint8_t fman_get_qmi_deq_th(struct fman_qmi_regs *qmi_rg)
{
	return (uint8_t)ioread32be(&qmi_rg->fmqm_gc);
}

uint8_t fman_get_qmi_enq_th(struct fman_qmi_regs *qmi_rg)
{
	return (uint8_t)(ioread32be(&qmi_rg->fmqm_gc) >> 8);
}

void fman_set_qmi_enq_th(struct fman_qmi_regs *qmi_rg, uint8_t val)
{
	uint32_t tmp_reg;

	tmp_reg = ioread32be(&qmi_rg->fmqm_gc);
	tmp_reg &= ~QMI_CFG_ENQ_MASK;
	tmp_reg |= ((uint32_t)val << 8);
	iowrite32be(tmp_reg, &qmi_rg->fmqm_gc);
}

void fman_set_qmi_deq_th(struct fman_qmi_regs *qmi_rg, uint8_t val)
{
	uint32_t tmp_reg;

	tmp_reg = ioread32be(&qmi_rg->fmqm_gc);
	tmp_reg &= ~QMI_CFG_DEQ_MASK;
	tmp_reg |= (uint32_t)val;
	iowrite32be(tmp_reg, &qmi_rg->fmqm_gc);
}

void fman_qmi_disable_dispatch_limit(struct fman_fpm_regs *fpm_rg)
{
	iowrite32be(0, &fpm_rg->fmfp_mxd);
}

void fman_set_liodn_per_port(struct fman_rg *fman_rg, uint8_t port_id,
				uint16_t liodn_base,
				uint16_t liodn_ofst)
{
	uint32_t tmp;

	if ((port_id > 63) || (port_id < 1))
	        return;

	/* set LIODN base for this port */
	tmp = ioread32be(&fman_rg->dma_rg->fmdmplr[port_id / 2]);
	if (port_id % 2) {
		tmp &= ~FM_LIODN_BASE_MASK;
		tmp |= (uint32_t)liodn_base;
	} else {
		tmp &= ~(FM_LIODN_BASE_MASK << DMA_LIODN_SHIFT);
		tmp |= (uint32_t)liodn_base << DMA_LIODN_SHIFT;
	}
	iowrite32be(tmp, &fman_rg->dma_rg->fmdmplr[port_id / 2]);
	iowrite32be((uint32_t)liodn_ofst,
			&fman_rg->bmi_rg->fmbm_spliodn[port_id - 1]);
}

bool fman_is_port_stalled(struct fman_fpm_regs *fpm_rg, uint8_t port_id)
{
	return (bool)!!(ioread32be(&fpm_rg->fmfp_ps[port_id]) & FPM_PS_STALLED);
}

void fman_resume_stalled_port(struct fman_fpm_regs *fpm_rg, uint8_t port_id)
{
	uint32_t	tmp;

	tmp = (uint32_t)((port_id << FPM_PORT_FM_CTL_PORTID_SHIFT) |
				FPM_PRC_REALSE_STALLED);
	iowrite32be(tmp, &fpm_rg->fmfp_prc);
}

int fman_reset_mac(struct fman_fpm_regs *fpm_rg, uint8_t mac_id, bool is_10g)
{
	uint32_t msk, timeout = 100;

	/* Get the relevant bit mask */
	if (is_10g) {
		switch (mac_id) {
		case(0):
			msk = FPM_RSTC_10G0_RESET;
			break;
        case(1):
            msk = FPM_RSTC_10G1_RESET;
            break;
		default:
			return -EINVAL;
		}
	} else {
		switch (mac_id) {
		case(0):
			msk = FPM_RSTC_1G0_RESET;
			break;
		case(1):
			msk = FPM_RSTC_1G1_RESET;
			break;
		case(2):
			msk = FPM_RSTC_1G2_RESET;
			break;
		case(3):
			msk = FPM_RSTC_1G3_RESET;
			break;
		case(4):
			msk = FPM_RSTC_1G4_RESET;
			break;
        case (5):
            msk = FPM_RSTC_1G5_RESET;
            break;
        case (6):
            msk = FPM_RSTC_1G6_RESET;
            break;
        case (7):
            msk = FPM_RSTC_1G7_RESET;
            break;
		default:
			return -EINVAL;
		}
	}
	/* reset */
	iowrite32be(msk, &fpm_rg->fm_rstc);
	while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout)
		udelay(10);

	if (!timeout)
		return -EBUSY;
	return 0;
}

uint16_t fman_get_size_of_fifo(struct fman_bmi_regs *bmi_rg, uint8_t port_id)
{
	uint32_t tmp_reg;

    if ((port_id > 63) || (port_id < 1))
            return 0;

	tmp_reg = ioread32be(&bmi_rg->fmbm_pfs[port_id - 1]);
	return (uint16_t)((tmp_reg & BMI_FIFO_SIZE_MASK) + 1);
}

uint32_t fman_get_total_fifo_size(struct fman_bmi_regs *bmi_rg)
{
	uint32_t reg, res;

	reg = ioread32be(&bmi_rg->fmbm_cfg1);
	res = (reg >> BMI_CFG1_FIFO_SIZE_SHIFT) & 0x3ff;
	return res * FMAN_BMI_FIFO_UNITS;
}

uint16_t fman_get_size_of_extra_fifo(struct fman_bmi_regs *bmi_rg,
					uint8_t port_id)
{
	uint32_t tmp_reg;

    if ((port_id > 63) || (port_id < 1))
            return 0;

	tmp_reg = ioread32be(&bmi_rg->fmbm_pfs[port_id-1]);
	return (uint16_t)((tmp_reg & BMI_EXTRA_FIFO_SIZE_MASK) >>
				BMI_EXTRA_FIFO_SIZE_SHIFT);
}

void fman_set_size_of_fifo(struct fman_bmi_regs *bmi_rg,
				uint8_t port_id,
				uint32_t sz_fifo,
				uint32_t extra_sz_fifo)
{
	uint32_t tmp;

	if ((port_id > 63) || (port_id < 1))
	        return;

	/* calculate reg */
	tmp = (uint32_t)((sz_fifo / FMAN_BMI_FIFO_UNITS - 1) |
		((extra_sz_fifo / FMAN_BMI_FIFO_UNITS) <<
				BMI_EXTRA_FIFO_SIZE_SHIFT));
	iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]);
}

uint8_t fman_get_num_of_tasks(struct fman_bmi_regs *bmi_rg, uint8_t port_id)
{
	uint32_t tmp;

    if ((port_id > 63) || (port_id < 1))
        return 0;

	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
	return (uint8_t)(((tmp & BMI_NUM_OF_TASKS_MASK) >>
				BMI_NUM_OF_TASKS_SHIFT) + 1);
}

uint8_t fman_get_num_extra_tasks(struct fman_bmi_regs *bmi_rg, uint8_t port_id)
{
	uint32_t tmp;

    if ((port_id > 63) || (port_id < 1))
        return 0;

	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
	return (uint8_t)((tmp & BMI_NUM_OF_EXTRA_TASKS_MASK) >>
				BMI_EXTRA_NUM_OF_TASKS_SHIFT);
}

void fman_set_num_of_tasks(struct fman_bmi_regs *bmi_rg,
				uint8_t port_id,
				uint8_t num_tasks,
				uint8_t num_extra_tasks)
{
	uint32_t tmp;

	if ((port_id > 63) || (port_id < 1))
	    return;

	/* calculate reg */
	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
			~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK);
	tmp |= (uint32_t)(((num_tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) |
			(num_extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT));
	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
}

uint8_t fman_get_num_of_dmas(struct fman_bmi_regs *bmi_rg, uint8_t port_id)
{
	uint32_t tmp;

    if ((port_id > 63) || (port_id < 1))
            return 0;

	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
	return (uint8_t)(((tmp & BMI_NUM_OF_DMAS_MASK) >>
			BMI_NUM_OF_DMAS_SHIFT) + 1);
}

uint8_t fman_get_num_extra_dmas(struct fman_bmi_regs *bmi_rg, uint8_t port_id)
{
	uint32_t tmp;

	if ((port_id > 63) || (port_id < 1))
	        return 0;

	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
	return (uint8_t)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >>
			BMI_EXTRA_NUM_OF_DMAS_SHIFT);
}

void fman_set_num_of_open_dmas(struct fman_bmi_regs *bmi_rg,
				uint8_t port_id,
				uint8_t num_open_dmas,
				uint8_t num_extra_open_dmas,
				uint8_t total_num_dmas)
{
	uint32_t tmp = 0;

	if ((port_id > 63) || (port_id < 1))
	    return;

	/* calculate reg */
	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
			~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK);
	tmp |= (uint32_t)(((num_open_dmas-1) << BMI_NUM_OF_DMAS_SHIFT) |
			(num_extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT));
	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);

	/* update total num of DMA's with committed number of open DMAS,
	 * and max uncommitted pool. */
    if (total_num_dmas)
    {
        tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK;
        tmp |= (uint32_t)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT;
        iowrite32be(tmp, &bmi_rg->fmbm_cfg2);
    }
}

void fman_set_vsp_window(struct fman_bmi_regs *bmi_rg,
			    	     uint8_t port_id,
				         uint8_t base_storage_profile,
				         uint8_t log2_num_of_profiles)
{
	uint32_t tmp = 0;
	if ((port_id > 63) || (port_id < 1))
	    return;

    tmp = ioread32be(&bmi_rg->fmbm_spliodn[port_id-1]);
    tmp |= (uint32_t)((uint32_t)base_storage_profile & 0x3f) << 16;
    tmp |= (uint32_t)log2_num_of_profiles << 28;
    iowrite32be(tmp, &bmi_rg->fmbm_spliodn[port_id-1]);
}

void fman_set_congestion_group_pfc_priority(uint32_t *cpg_rg,
                                            uint32_t congestion_group_id,
                                            uint8_t priority_bit_map,
                                            uint32_t reg_num)
{
	uint32_t offset, tmp = 0;

    offset  = (congestion_group_id%4)*8;

    tmp = ioread32be(&cpg_rg[reg_num]);
    tmp &= ~(0xFF<<offset);
    tmp |= (uint32_t)priority_bit_map << offset;

    iowrite32be(tmp,&cpg_rg[reg_num]);
}

/*****************************************************************************/
/*                      API Init unit functions                              */
/*****************************************************************************/
void fman_defconfig(struct fman_cfg *cfg, bool is_master)
{
    memset(cfg, 0, sizeof(struct fman_cfg));

    cfg->catastrophic_err               = DEFAULT_CATASTROPHIC_ERR;
    cfg->dma_err                        = DEFAULT_DMA_ERR;
    cfg->halt_on_external_activ         = DEFAULT_HALT_ON_EXTERNAL_ACTIVATION;
    cfg->halt_on_unrecov_ecc_err        = DEFAULT_HALT_ON_UNRECOVERABLE_ECC_ERROR;
    cfg->en_iram_test_mode              = FALSE;
    cfg->en_muram_test_mode             = FALSE;
    cfg->external_ecc_rams_enable       = DEFAULT_EXTERNAL_ECC_RAMS_ENABLE;

	if (!is_master)
	    return;

    cfg->dma_aid_override               = DEFAULT_AID_OVERRIDE;
    cfg->dma_aid_mode                   = DEFAULT_AID_MODE;
    cfg->dma_comm_qtsh_clr_emer         = DEFAULT_DMA_COMM_Q_LOW;
    cfg->dma_comm_qtsh_asrt_emer        = DEFAULT_DMA_COMM_Q_HIGH;
    cfg->dma_cache_override             = DEFAULT_CACHE_OVERRIDE;
    cfg->dma_cam_num_of_entries         = DEFAULT_DMA_CAM_NUM_OF_ENTRIES;
    cfg->dma_dbg_cnt_mode               = DEFAULT_DMA_DBG_CNT_MODE;
    cfg->dma_en_emergency               = DEFAULT_DMA_EN_EMERGENCY;
    cfg->dma_sos_emergency              = DEFAULT_DMA_SOS_EMERGENCY;
    cfg->dma_watchdog                   = DEFAULT_DMA_WATCHDOG;
    cfg->dma_en_emergency_smoother      = DEFAULT_DMA_EN_EMERGENCY_SMOOTHER;
    cfg->dma_emergency_switch_counter   = DEFAULT_DMA_EMERGENCY_SWITCH_COUNTER;
    cfg->disp_limit_tsh                 = DEFAULT_DISP_LIMIT;
    cfg->prs_disp_tsh                   = DEFAULT_PRS_DISP_TH;
    cfg->plcr_disp_tsh                  = DEFAULT_PLCR_DISP_TH;
    cfg->kg_disp_tsh                    = DEFAULT_KG_DISP_TH;
    cfg->bmi_disp_tsh                   = DEFAULT_BMI_DISP_TH;
    cfg->qmi_enq_disp_tsh               = DEFAULT_QMI_ENQ_DISP_TH;
    cfg->qmi_deq_disp_tsh               = DEFAULT_QMI_DEQ_DISP_TH;
    cfg->fm_ctl1_disp_tsh               = DEFAULT_FM_CTL1_DISP_TH;
    cfg->fm_ctl2_disp_tsh               = DEFAULT_FM_CTL2_DISP_TH;
 
	cfg->pedantic_dma                   = FALSE;
	cfg->tnum_aging_period              = DEFAULT_TNUM_AGING_PERIOD;
	cfg->dma_stop_on_bus_error          = FALSE;
	cfg->qmi_deq_option_support         = FALSE;
}

void fman_regconfig(struct fman_rg *fman_rg, struct fman_cfg *cfg)
{
	uint32_t tmp_reg;

    /* read the values from the registers as they are initialized by the HW with
     * the required values.
     */
    tmp_reg = ioread32be(&fman_rg->bmi_rg->fmbm_cfg1);
    cfg->total_fifo_size =
        (((tmp_reg & BMI_TOTAL_FIFO_SIZE_MASK) >> BMI_CFG1_FIFO_SIZE_SHIFT) + 1) * FMAN_BMI_FIFO_UNITS;

    tmp_reg = ioread32be(&fman_rg->bmi_rg->fmbm_cfg2);
    cfg->total_num_of_tasks =
        (uint8_t)(((tmp_reg & BMI_TOTAL_NUM_OF_TASKS_MASK) >> BMI_CFG2_TASKS_SHIFT) + 1);

    tmp_reg = ioread32be(&fman_rg->dma_rg->fmdmtr);
    cfg->dma_comm_qtsh_asrt_emer = (uint8_t)(tmp_reg >> DMA_THRESH_COMMQ_SHIFT);

    tmp_reg = ioread32be(&fman_rg->dma_rg->fmdmhy);
    cfg->dma_comm_qtsh_clr_emer  = (uint8_t)(tmp_reg >> DMA_THRESH_COMMQ_SHIFT);

    tmp_reg = ioread32be(&fman_rg->dma_rg->fmdmmr);
    cfg->dma_cache_override      = (enum fman_dma_cache_override)((tmp_reg & DMA_MODE_CACHE_OR_MASK) >> DMA_MODE_CACHE_OR_SHIFT);
    cfg->dma_cam_num_of_entries  = (uint8_t)((((tmp_reg & DMA_MODE_CEN_MASK) >> DMA_MODE_CEN_SHIFT) +1)*DMA_CAM_UNITS);
    cfg->dma_aid_override        = (bool)((tmp_reg & DMA_MODE_AID_OR)? TRUE:FALSE);
    cfg->dma_dbg_cnt_mode        = (enum fman_dma_dbg_cnt_mode)((tmp_reg & DMA_MODE_DBG_MASK) >> DMA_MODE_DBG_SHIFT);
    cfg->dma_en_emergency        = (bool)((tmp_reg & DMA_MODE_EB)? TRUE : FALSE);

    tmp_reg = ioread32be(&fman_rg->fpm_rg->fmfp_mxd);
    cfg->disp_limit_tsh          = (uint8_t)((tmp_reg & FPM_DISP_LIMIT_MASK) >> FPM_DISP_LIMIT_SHIFT);

    tmp_reg = ioread32be(&fman_rg->fpm_rg->fmfp_dist1);
    cfg->prs_disp_tsh            = (uint8_t)((tmp_reg & FPM_THR1_PRS_MASK ) >> FPM_THR1_PRS_SHIFT);
    cfg->plcr_disp_tsh           = (uint8_t)((tmp_reg & FPM_THR1_KG_MASK ) >> FPM_THR1_KG_SHIFT);
    cfg->kg_disp_tsh             = (uint8_t)((tmp_reg & FPM_THR1_PLCR_MASK ) >> FPM_THR1_PLCR_SHIFT);
    cfg->bmi_disp_tsh            = (uint8_t)((tmp_reg & FPM_THR1_BMI_MASK ) >> FPM_THR1_BMI_SHIFT);

    tmp_reg = ioread32be(&fman_rg->fpm_rg->fmfp_dist2);
    cfg->qmi_enq_disp_tsh        = (uint8_t)((tmp_reg & FPM_THR2_QMI_ENQ_MASK ) >> FPM_THR2_QMI_ENQ_SHIFT);
    cfg->qmi_deq_disp_tsh        = (uint8_t)((tmp_reg & FPM_THR2_QMI_DEQ_MASK ) >> FPM_THR2_QMI_DEQ_SHIFT);
    cfg->fm_ctl1_disp_tsh        = (uint8_t)((tmp_reg & FPM_THR2_FM_CTL1_MASK ) >> FPM_THR2_FM_CTL1_SHIFT);
    cfg->fm_ctl2_disp_tsh        = (uint8_t)((tmp_reg & FPM_THR2_FM_CTL2_MASK ) >> FPM_THR2_FM_CTL2_SHIFT);

    tmp_reg = ioread32be(&fman_rg->dma_rg->fmdmsetr);
    cfg->dma_sos_emergency       = tmp_reg;

    tmp_reg = ioread32be(&fman_rg->dma_rg->fmdmwcr);
    cfg->dma_watchdog            = tmp_reg/cfg->clk_freq;

    tmp_reg = ioread32be(&fman_rg->dma_rg->fmdmemsr);
    cfg->dma_en_emergency_smoother = (bool)((tmp_reg & DMA_EMSR_EMSTR_MASK)? TRUE : FALSE);
    cfg->dma_emergency_switch_counter = (tmp_reg & DMA_EMSR_EMSTR_MASK);
}

void fman_reset(struct fman_fpm_regs *fpm_rg)
{
	iowrite32be(FPM_RSTC_FM_RESET, &fpm_rg->fm_rstc);
}

/**************************************************************************//**
 @Function      FM_Init

 @Description   Initializes the FM module

 @Param[in]     h_Fm - FM module descriptor

 @Return        E_OK on success; Error code otherwise.
*//***************************************************************************/
int fman_dma_init(struct fman_dma_regs *dma_rg, struct fman_cfg *cfg)
{
	uint32_t    tmp_reg;

	/**********************/
	/* Init DMA Registers */
	/**********************/
	/* clear status reg events */
	/* oren - check!!!  */
	tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC |
			DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC);
	iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg,
			&dma_rg->fmdmsr);

	/* configure mode register */
	tmp_reg = 0;
	tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT;
	if (cfg->dma_aid_override)
		tmp_reg |= DMA_MODE_AID_OR;
	if (cfg->exceptions & FMAN_EX_DMA_BUS_ERROR)
		tmp_reg |= DMA_MODE_BER;
	if ((cfg->exceptions & FMAN_EX_DMA_SYSTEM_WRITE_ECC) |
		(cfg->exceptions & FMAN_EX_DMA_READ_ECC) |
		(cfg->exceptions & FMAN_EX_DMA_FM_WRITE_ECC))
		tmp_reg |= DMA_MODE_ECC;
	if (cfg->dma_stop_on_bus_error)
		tmp_reg |= DMA_MODE_SBER;
	if(cfg->dma_axi_dbg_num_of_beats)
	    tmp_reg |= (uint32_t)(DMA_MODE_AXI_DBG_MASK &
		           ((cfg->dma_axi_dbg_num_of_beats - 1) << DMA_MODE_AXI_DBG_SHIFT));

	if (cfg->dma_en_emergency) {
		tmp_reg |= cfg->dma_emergency_bus_select;
		tmp_reg |= cfg->dma_emergency_level << DMA_MODE_EMER_LVL_SHIFT;
	if (cfg->dma_en_emergency_smoother)
		iowrite32be(cfg->dma_emergency_switch_counter,
				&dma_rg->fmdmemsr);
	}
	tmp_reg |= ((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) <<
			DMA_MODE_CEN_SHIFT;
	tmp_reg |= DMA_MODE_SECURE_PROT;
	tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT;
	tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT;

	if (cfg->pedantic_dma)
		tmp_reg |= DMA_MODE_EMER_READ;

	iowrite32be(tmp_reg, &dma_rg->fmdmmr);

	/* configure thresholds register */
	tmp_reg = ((uint32_t)cfg->dma_comm_qtsh_asrt_emer <<
			DMA_THRESH_COMMQ_SHIFT) |
			((uint32_t)cfg->dma_read_buf_tsh_asrt_emer <<
			DMA_THRESH_READ_INT_BUF_SHIFT) |
			((uint32_t)cfg->dma_write_buf_tsh_asrt_emer);

	iowrite32be(tmp_reg, &dma_rg->fmdmtr);

	/* configure hysteresis register */
	tmp_reg = ((uint32_t)cfg->dma_comm_qtsh_clr_emer <<
		DMA_THRESH_COMMQ_SHIFT) |
		((uint32_t)cfg->dma_read_buf_tsh_clr_emer <<
		DMA_THRESH_READ_INT_BUF_SHIFT) |
		((uint32_t)cfg->dma_write_buf_tsh_clr_emer);

	iowrite32be(tmp_reg, &dma_rg->fmdmhy);

	/* configure emergency threshold */
	iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr);

	/* configure Watchdog */
	iowrite32be((cfg->dma_watchdog * cfg->clk_freq),
			&dma_rg->fmdmwcr);

	iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr);

	return 0;
}

int fman_fpm_init(struct fman_fpm_regs *fpm_rg, struct fman_cfg *cfg)
{
	uint32_t tmp_reg;
	int i;

	/**********************/
	/* Init FPM Registers */
	/**********************/
	tmp_reg = (uint32_t)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT);
	iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd);

	tmp_reg = (((uint32_t)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) |
		((uint32_t)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) |
		((uint32_t)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) |
		((uint32_t)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT));
	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1);

	tmp_reg = (((uint32_t)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) |
		((uint32_t)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) |
		((uint32_t)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) |
		((uint32_t)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT));
	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2);

	/* define exceptions and error behavior */
	tmp_reg = 0;
	/* Clear events */
	tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC |
		FPM_EV_MASK_SINGLE_ECC);
	/* enable interrupts */
	if (cfg->exceptions & FMAN_EX_FPM_STALL_ON_TASKS)
		tmp_reg |= FPM_EV_MASK_STALL_EN;
	if (cfg->exceptions & FMAN_EX_FPM_SINGLE_ECC)
		tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN;
	if (cfg->exceptions & FMAN_EX_FPM_DOUBLE_ECC)
		tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN;
	tmp_reg |= (cfg->catastrophic_err  << FPM_EV_MASK_CAT_ERR_SHIFT);
	tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT);
	if (!cfg->halt_on_external_activ)
		tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT;
	if (!cfg->halt_on_unrecov_ecc_err)
		tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT;
	iowrite32be(tmp_reg, &fpm_rg->fmfp_ee);

	/* clear all fmCtls event registers */
	for (i = 0; i < cfg->num_of_fman_ctrl_evnt_regs; i++)
		iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]);

	/* RAM ECC -  enable and clear events*/
	/* first we need to clear all parser memory,
	 * as it is uninitialized and may cause ECC errors */
	/* event bits */
	tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC);
	/* Rams enable not effected by RCR bit, but by a COP configuration */
	if (cfg->external_ecc_rams_enable)
		tmp_reg |= FPM_RAM_RAMS_ECC_EN_SRC_SEL;

	/* enable test mode */
	if (cfg->en_muram_test_mode)
		tmp_reg |= FPM_RAM_MURAM_TEST_ECC;
	if (cfg->en_iram_test_mode)
		tmp_reg |= FPM_RAM_IRAM_TEST_ECC;
	iowrite32be(tmp_reg, &fpm_rg->fm_rcr);

	tmp_reg = 0;
	if (cfg->exceptions & FMAN_EX_IRAM_ECC) {
		tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN;
		fman_enable_rams_ecc(fpm_rg);
	}
	if (cfg->exceptions & FMAN_EX_NURAM_ECC) {
		tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN;
		fman_enable_rams_ecc(fpm_rg);
	}
	iowrite32be(tmp_reg, &fpm_rg->fm_rie);

	return 0;
}

int fman_bmi_init(struct fman_bmi_regs *bmi_rg, struct fman_cfg *cfg)
{
	uint32_t tmp_reg;

	/**********************/
	/* Init BMI Registers */
	/**********************/

	/* define common resources */
	tmp_reg = cfg->fifo_base_addr;
	tmp_reg = tmp_reg / BMI_FIFO_ALIGN;

	tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) <<
			BMI_CFG1_FIFO_SIZE_SHIFT);
	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1);

	tmp_reg = ((uint32_t)(cfg->total_num_of_tasks - 1) <<
			BMI_CFG2_TASKS_SHIFT);
	/* num of DMA's will be dynamically updated when each port is set */
	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2);

	/* define unmaskable exceptions, enable and clear events */
	tmp_reg = 0;
	iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC |
			BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC |
			BMI_ERR_INTR_EN_STATISTICS_RAM_ECC |
			BMI_ERR_INTR_EN_DISPATCH_RAM_ECC,
			&bmi_rg->fmbm_ievr);

	if (cfg->exceptions & FMAN_EX_BMI_LIST_RAM_ECC)
		tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
	if (cfg->exceptions & FMAN_EX_BMI_PIPELINE_ECC)
		tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
	if (cfg->exceptions & FMAN_EX_BMI_STATISTICS_RAM_ECC)
		tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
	if (cfg->exceptions & FMAN_EX_BMI_DISPATCH_RAM_ECC)
		tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
	iowrite32be(tmp_reg, &bmi_rg->fmbm_ier);

	return 0;
}

int fman_qmi_init(struct fman_qmi_regs *qmi_rg, struct fman_cfg *cfg)
{
	uint32_t tmp_reg;
	uint16_t period_in_fm_clocks;
	uint8_t remainder;
	/**********************/
	/* Init QMI Registers */
	/**********************/
	/* Clear error interrupt events */

	iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF,
			&qmi_rg->fmqm_eie);
	tmp_reg = 0;
	if (cfg->exceptions & FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID)
		tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
	if (cfg->exceptions & FMAN_EX_QMI_DOUBLE_ECC)
		tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC;
	/* enable events */
	iowrite32be(tmp_reg, &qmi_rg->fmqm_eien);

	if (cfg->tnum_aging_period) {
		/* tnum_aging_period is in units of usec, p_FmClockFreq in Mhz */
		period_in_fm_clocks = (uint16_t)
				(cfg->tnum_aging_period * cfg->clk_freq);
		/* period_in_fm_clocks must be a 64 multiply */
		remainder = (uint8_t)(period_in_fm_clocks % 64);
		if (remainder)
			tmp_reg = (uint32_t)((period_in_fm_clocks / 64) + 1);
		else{
			tmp_reg = (uint32_t)(period_in_fm_clocks / 64);
			if (!tmp_reg)
				tmp_reg = 1;
		}
		tmp_reg <<= QMI_TAPC_TAP;
		iowrite32be(tmp_reg, &qmi_rg->fmqm_tapc);
	}
	tmp_reg = 0;
	/* Clear interrupt events */
	iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie);
	if (cfg->exceptions & FMAN_EX_QMI_SINGLE_ECC)
		tmp_reg |= QMI_INTR_EN_SINGLE_ECC;
	/* enable events */
	iowrite32be(tmp_reg, &qmi_rg->fmqm_ien);

	return 0;
}

int fman_enable(struct fman_rg *fman_rg, struct fman_cfg *cfg)
{
	uint32_t cfg_reg = 0;

	/**********************/
	/* Enable all modules */
	/**********************/
	/* clear & enable global counters  - calculate reg and save for later,
	because it's the same reg for QMI enable */
	cfg_reg = QMI_CFG_EN_COUNTERS;
	if (cfg->qmi_deq_option_support)
		cfg_reg |= (uint32_t)(((cfg->qmi_def_tnums_thresh) << 8) |
				(uint32_t)cfg->qmi_def_tnums_thresh);

	iowrite32be(BMI_INIT_START, &fman_rg->bmi_rg->fmbm_init);
	iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN,
			&fman_rg->qmi_rg->fmqm_gc);

	return 0;
}

void fman_free_resources(struct fman_rg *fman_rg)
{
	/* disable BMI and QMI */
	iowrite32be(0, &fman_rg->bmi_rg->fmbm_init);
	iowrite32be(0, &fman_rg->qmi_rg->fmqm_gc);

	/* release BMI resources */
	iowrite32be(0, &fman_rg->bmi_rg->fmbm_cfg2);
	iowrite32be(0, &fman_rg->bmi_rg->fmbm_cfg1);

	/* disable ECC */
	iowrite32be(0, &fman_rg->fpm_rg->fm_rcr);
}

/****************************************************/
/*       API Run-time Control uint functions        */
/****************************************************/
uint32_t fman_get_normal_pending(struct fman_fpm_regs *fpm_rg)
{
	return ioread32be(&fpm_rg->fm_npi);
}

uint32_t fman_get_controller_event(struct fman_fpm_regs *fpm_rg, uint8_t reg_id)
{
	uint32_t event;

	event = ioread32be(&fpm_rg->fmfp_fcev[reg_id]) &
			ioread32be(&fpm_rg->fmfp_cee[reg_id]);
	iowrite32be(event, &fpm_rg->fmfp_cev[reg_id]);

	return event;
}

uint32_t fman_get_error_pending(struct fman_fpm_regs *fpm_rg)
{
	return ioread32be(&fpm_rg->fm_epi);
}

void fman_set_ports_bandwidth(struct fman_bmi_regs *bmi_rg, uint8_t *weights)
{
	int i;
	uint8_t shift;
	uint32_t tmp = 0;

	for (i = 0; i < 64; i++) {
		if (weights[i] > 1) { /* no need to write 1 since it is 0 */
			/* Add this port to tmp_reg */
			/* (each 8 ports result in one register)*/
			shift = (uint8_t)(32 - 4 * ((i % 8) + 1));
			tmp |= ((weights[i] - 1) << shift);
		}
		if (i % 8 == 7) { /* last in this set */
			iowrite32be(tmp, &bmi_rg->fmbm_arb[i / 8]);
			tmp = 0;
		}
	}
}

void fman_enable_rams_ecc(struct fman_fpm_regs *fpm_rg)
{
	uint32_t tmp;

	tmp = ioread32be(&fpm_rg->fm_rcr);
	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
		iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN,
				&fpm_rg->fm_rcr);
	else
		iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN |
				FPM_RAM_IRAM_ECC_EN,
				&fpm_rg->fm_rcr);
}

void fman_disable_rams_ecc(struct fman_fpm_regs *fpm_rg)
{
	uint32_t tmp;

	tmp = ioread32be(&fpm_rg->fm_rcr);
	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
		iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN,
				&fpm_rg->fm_rcr);
	else
		iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN),
				&fpm_rg->fm_rcr);
}

int fman_set_exception(struct fman_rg *fman_rg,
			enum fman_exceptions exception,
			bool enable)
{
	uint32_t tmp;

	switch (exception) {
	case(E_FMAN_EX_DMA_BUS_ERROR):
		tmp = ioread32be(&fman_rg->dma_rg->fmdmmr);
		if (enable)
			tmp |= DMA_MODE_BER;
		else
			tmp &= ~DMA_MODE_BER;
		/* disable bus error */
		iowrite32be(tmp, &fman_rg->dma_rg->fmdmmr);
		break;
	case(E_FMAN_EX_DMA_READ_ECC):
	case(E_FMAN_EX_DMA_SYSTEM_WRITE_ECC):
	case(E_FMAN_EX_DMA_FM_WRITE_ECC):
		tmp = ioread32be(&fman_rg->dma_rg->fmdmmr);
		if (enable)
			tmp |= DMA_MODE_ECC;
		else
			tmp &= ~DMA_MODE_ECC;
		iowrite32be(tmp, &fman_rg->dma_rg->fmdmmr);
		break;
	case(E_FMAN_EX_FPM_STALL_ON_TASKS):
		tmp = ioread32be(&fman_rg->fpm_rg->fmfp_ee);
		if (enable)
			tmp |= FPM_EV_MASK_STALL_EN;
		else
			tmp &= ~FPM_EV_MASK_STALL_EN;
		iowrite32be(tmp, &fman_rg->fpm_rg->fmfp_ee);
		break;
	case(E_FMAN_EX_FPM_SINGLE_ECC):
		tmp = ioread32be(&fman_rg->fpm_rg->fmfp_ee);
		if (enable)
			tmp |= FPM_EV_MASK_SINGLE_ECC_EN;
		else
			tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN;
		iowrite32be(tmp, &fman_rg->fpm_rg->fmfp_ee);
		break;
	case(E_FMAN_EX_FPM_DOUBLE_ECC):
		tmp = ioread32be(&fman_rg->fpm_rg->fmfp_ee);
		if (enable)
			tmp |= FPM_EV_MASK_DOUBLE_ECC_EN;
		else
			tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN;
		iowrite32be(tmp, &fman_rg->fpm_rg->fmfp_ee);
		break;
	case(E_FMAN_EX_QMI_SINGLE_ECC):
		tmp = ioread32be(&fman_rg->qmi_rg->fmqm_ien);
		if (enable)
			tmp |= QMI_INTR_EN_SINGLE_ECC;
		else
			tmp &= ~QMI_INTR_EN_SINGLE_ECC;
		iowrite32be(tmp, &fman_rg->qmi_rg->fmqm_ien);
		break;
	case(E_FMAN_EX_QMI_DOUBLE_ECC):
		tmp = ioread32be(&fman_rg->qmi_rg->fmqm_eien);
		if (enable)
			tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC;
		else
			tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC;
		iowrite32be(tmp, &fman_rg->qmi_rg->fmqm_eien);
		break;
	case(E_FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID):
		tmp = ioread32be(&fman_rg->qmi_rg->fmqm_eien);
		if (enable)
			tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
		else
			tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF;
		iowrite32be(tmp, &fman_rg->qmi_rg->fmqm_eien);
		break;
	case(E_FMAN_EX_BMI_LIST_RAM_ECC):
		tmp = ioread32be(&fman_rg->bmi_rg->fmbm_ier);
		if (enable)
			tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
		else
			tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC;
		iowrite32be(tmp, &fman_rg->bmi_rg->fmbm_ier);
		break;
	case(E_FMAN_EX_BMI_STORAGE_PROFILE_ECC):
		tmp = ioread32be(&fman_rg->bmi_rg->fmbm_ier);
		if (enable)
			tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
		else
			tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
		iowrite32be(tmp, &fman_rg->bmi_rg->fmbm_ier);
		break;
	case(E_FMAN_EX_BMI_STATISTICS_RAM_ECC):
		tmp = ioread32be(&fman_rg->bmi_rg->fmbm_ier);
		if (enable)
			tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
		else
			tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
		iowrite32be(tmp, &fman_rg->bmi_rg->fmbm_ier);
		break;
	case(E_FMAN_EX_BMI_DISPATCH_RAM_ECC):
		tmp = ioread32be(&fman_rg->bmi_rg->fmbm_ier);
		if (enable)
			tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
		else
			tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
		iowrite32be(tmp, &fman_rg->bmi_rg->fmbm_ier);
		break;
	case(E_FMAN_EX_IRAM_ECC):
		tmp = ioread32be(&fman_rg->fpm_rg->fm_rie);
		if (enable) {
			/* enable ECC if not enabled */
			fman_enable_rams_ecc(fman_rg->fpm_rg);
			/* enable ECC interrupts */
			tmp |= FPM_IRAM_ECC_ERR_EX_EN;
		} else {
			/* ECC mechanism may be disabled,
			 * depending on driver status  */
			fman_disable_rams_ecc(fman_rg->fpm_rg);
			tmp &= ~FPM_IRAM_ECC_ERR_EX_EN;
		}
		iowrite32be(tmp, &fman_rg->fpm_rg->fm_rie);
		break;
	case(E_FMAN_EX_MURAM_ECC):
		tmp = ioread32be(&fman_rg->fpm_rg->fm_rie);
		if (enable) {
			/* enable ECC if not enabled */
			fman_enable_rams_ecc(fman_rg->fpm_rg);
			/* enable ECC interrupts */
			tmp |= FPM_MURAM_ECC_ERR_EX_EN;
		} else {
			/* ECC mechanism may be disabled,
			 * depending on driver status  */
			fman_disable_rams_ecc(fman_rg->fpm_rg);
			tmp &= ~FPM_MURAM_ECC_ERR_EX_EN;
		}
		iowrite32be(tmp, &fman_rg->fpm_rg->fm_rie);
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

void fman_get_revision(struct fman_fpm_regs *fpm_rg,
			uint8_t *major,
			uint8_t *minor)
{
	uint32_t tmp;

	tmp = ioread32be(&fpm_rg->fm_ip_rev_1);
	*major = (uint8_t)((tmp & FPM_REV1_MAJOR_MASK) >> FPM_REV1_MAJOR_SHIFT);
	*minor = (uint8_t)((tmp & FPM_REV1_MINOR_MASK) >> FPM_REV1_MINOR_SHIFT);

}

uint32_t fman_get_counter(struct fman_rg *fman_rg,
				enum fman_counters reg_name)
{
	uint32_t ret_val;

	switch (reg_name) {
	case(E_FMAN_COUNTERS_ENQ_TOTAL_FRAME):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_etfc);
		break;
	case(E_FMAN_COUNTERS_DEQ_TOTAL_FRAME):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dtfc);
		break;
	case(E_FMAN_COUNTERS_DEQ_0):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dc0);
		break;
	case(E_FMAN_COUNTERS_DEQ_1):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dc1);
		break;
	case(E_FMAN_COUNTERS_DEQ_2):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dc2);
		break;
	case(E_FMAN_COUNTERS_DEQ_3):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dc3);
		break;
	case(E_FMAN_COUNTERS_DEQ_FROM_DEFAULT):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dfdc);
		break;
	case(E_FMAN_COUNTERS_DEQ_FROM_CONTEXT):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dfcc);
		break;
	case(E_FMAN_COUNTERS_DEQ_FROM_FD):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dffc);
		break;
	case(E_FMAN_COUNTERS_DEQ_CONFIRM):
		ret_val = ioread32be(&fman_rg->qmi_rg->fmqm_dcc);
		break;
	default:
		ret_val = 0;
	}
	return ret_val;
}

int fman_modify_counter(struct fman_rg *fman_rg,
			enum fman_counters reg_name,
			uint32_t val)
{
	/* When applicable (when there is an 'enable counters' bit,
	 * check that counters are enabled */
	switch (reg_name) {
	case(E_FMAN_COUNTERS_ENQ_TOTAL_FRAME):
	case(E_FMAN_COUNTERS_DEQ_TOTAL_FRAME):
	case(E_FMAN_COUNTERS_DEQ_0):
	case(E_FMAN_COUNTERS_DEQ_1):
	case(E_FMAN_COUNTERS_DEQ_2):
	case(E_FMAN_COUNTERS_DEQ_3):
	case(E_FMAN_COUNTERS_DEQ_FROM_DEFAULT):
	case(E_FMAN_COUNTERS_DEQ_FROM_CONTEXT):
	case(E_FMAN_COUNTERS_DEQ_FROM_FD):
	case(E_FMAN_COUNTERS_DEQ_CONFIRM):
		if (!(ioread32be(&fman_rg->qmi_rg->fmqm_gc) &
				QMI_CFG_EN_COUNTERS))
			return -EINVAL;
		break;
	default:
		break;
	}
	/* Set counter */
	switch (reg_name) {
	case(E_FMAN_COUNTERS_ENQ_TOTAL_FRAME):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_etfc);
		break;
	case(E_FMAN_COUNTERS_DEQ_TOTAL_FRAME):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dtfc);
		break;
	case(E_FMAN_COUNTERS_DEQ_0):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dc0);
		break;
	case(E_FMAN_COUNTERS_DEQ_1):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dc1);
		break;
	case(E_FMAN_COUNTERS_DEQ_2):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dc2);
		break;
	case(E_FMAN_COUNTERS_DEQ_3):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dc3);
		break;
	case(E_FMAN_COUNTERS_DEQ_FROM_DEFAULT):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dfdc);
		break;
	case(E_FMAN_COUNTERS_DEQ_FROM_CONTEXT):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dfcc);
		break;
	case(E_FMAN_COUNTERS_DEQ_FROM_FD):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dffc);
		break;
	case(E_FMAN_COUNTERS_DEQ_CONFIRM):
		iowrite32be(val, &fman_rg->qmi_rg->fmqm_dcc);
		break;
	case(E_FMAN_COUNTERS_SEMAPHOR_ENTRY_FULL_REJECT):
		iowrite32be(val, &fman_rg->dma_rg->fmdmsefrc);
		break;
	case(E_FMAN_COUNTERS_SEMAPHOR_QUEUE_FULL_REJECT):
		iowrite32be(val, &fman_rg->dma_rg->fmdmsqfrc);
		break;
	case(E_FMAN_COUNTERS_SEMAPHOR_SYNC_REJECT):
		iowrite32be(val, &fman_rg->dma_rg->fmdmssrc);
		break;
	default:
		break;
	}
	return 0;
}

void fman_set_dma_emergency(struct fman_dma_regs *dma_rg,
				bool is_write,
				bool enable)
{
	uint32_t msk;

	msk = (uint32_t)(is_write ? DMA_MODE_EMER_WRITE : DMA_MODE_EMER_READ);

	if (enable)
		iowrite32be(ioread32be(&dma_rg->fmdmmr) | msk,
				&dma_rg->fmdmmr);
	else /* disable */
		iowrite32be(ioread32be(&dma_rg->fmdmmr) & ~msk,
				&dma_rg->fmdmmr);
}

void fman_set_dma_ext_bus_pri(struct fman_dma_regs *dma_rg, uint32_t pri)
{
	uint32_t tmp;

	tmp = ioread32be(&dma_rg->fmdmmr) |
			(pri << DMA_MODE_BUS_PRI_SHIFT);

	iowrite32be(tmp, &dma_rg->fmdmmr);
}

uint32_t fman_get_dma_status(struct fman_dma_regs *dma_rg)
{
	return ioread32be(&dma_rg->fmdmsr);
}

void fman_force_intr(struct fman_rg *fman_rg,
		enum fman_exceptions exception)
{
	switch (exception) {
	case E_FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
		iowrite32be(QMI_ERR_INTR_EN_DEQ_FROM_DEF,
				&fman_rg->qmi_rg->fmqm_eif);
		break;
	case E_FMAN_EX_QMI_SINGLE_ECC:
		iowrite32be(QMI_INTR_EN_SINGLE_ECC,
				&fman_rg->qmi_rg->fmqm_if);
		break;
	case E_FMAN_EX_QMI_DOUBLE_ECC:
		iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC,
				&fman_rg->qmi_rg->fmqm_eif);
		break;
	case E_FMAN_EX_BMI_LIST_RAM_ECC:
		iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC,
				&fman_rg->bmi_rg->fmbm_ifr);
		break;
	case E_FMAN_EX_BMI_STORAGE_PROFILE_ECC:
		iowrite32be(BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC,
				&fman_rg->bmi_rg->fmbm_ifr);
		break;
	case E_FMAN_EX_BMI_STATISTICS_RAM_ECC:
		iowrite32be(BMI_ERR_INTR_EN_STATISTICS_RAM_ECC,
				&fman_rg->bmi_rg->fmbm_ifr);
		break;
	case E_FMAN_EX_BMI_DISPATCH_RAM_ECC:
		iowrite32be(BMI_ERR_INTR_EN_DISPATCH_RAM_ECC,
				&fman_rg->bmi_rg->fmbm_ifr);
		break;
	default:
		break;
	}
}

bool fman_is_qmi_halt_not_busy_state(struct fman_qmi_regs *qmi_rg)
{
	return (bool)!!(ioread32be(&qmi_rg->fmqm_gs) & QMI_GS_HALT_NOT_BUSY);
}
void fman_resume(struct fman_fpm_regs *fpm_rg)
{
	uint32_t tmp;

	tmp = ioread32be(&fpm_rg->fmfp_ee);
	/* clear tmp_reg event bits in order not to clear standing events */
	tmp &= ~(FPM_EV_MASK_DOUBLE_ECC |
			FPM_EV_MASK_STALL |
			FPM_EV_MASK_SINGLE_ECC);
	tmp |= FPM_EV_MASK_RELEASE_FM;

	iowrite32be(tmp, &fpm_rg->fmfp_ee);
}