diff options
author | Ingo Molnar <mingo@elte.hu> | 2005-09-10 07:25:56 (GMT) |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2005-09-10 17:06:21 (GMT) |
commit | fb1c8f93d869b34cacb8b8932e2b83d96a19d720 (patch) | |
tree | a006d078aa02e421a7dc4793c335308204859d36 /include/asm-ia64/spinlock.h | |
parent | 4327edf6b8a7ac7dce144313947995538842d8fd (diff) | |
download | linux-fb1c8f93d869b34cacb8b8932e2b83d96a19d720.tar.xz |
[PATCH] spinlock consolidation
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code. It does the following
things:
- consolidates and enhances the spinlock/rwlock debugging code
- simplifies the asm/spinlock.h files
- encapsulates the raw spinlock type and moves generic spinlock
features (such as ->break_lock) into the generic code.
- cleans up the spinlock code hierarchy to get rid of the spaghetti.
Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c. (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)
Also, i've enhanced the rwlock debugging facility, it will now track
write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.
The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:
include/asm-i386/spinlock_types.h | 16
include/asm-x86_64/spinlock_types.h | 16
I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:
SMP | UP
----------------------------|-----------------------------------
asm/spinlock_types_smp.h | linux/spinlock_types_up.h
linux/spinlock_types.h | linux/spinlock_types.h
asm/spinlock_smp.h | linux/spinlock_up.h
linux/spinlock_api_smp.h | linux/spinlock_api_up.h
linux/spinlock.h | linux/spinlock.h
/*
* here's the role of the various spinlock/rwlock related include files:
*
* on SMP builds:
*
* asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
* initializers
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel
* implementations, mostly inline assembly code
*
* (also included on UP-debug builds:)
*
* linux/spinlock_api_smp.h:
* contains the prototypes for the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*
* on UP builds:
*
* linux/spinlock_type_up.h:
* contains the generic, simplified UP spinlock type.
* (which is an empty structure on non-debug builds)
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* linux/spinlock_up.h:
* contains the __raw_spin_*()/etc. version of UP
* builds. (which are NOPs on non-debug, non-preempt
* builds)
*
* (included on UP-non-debug builds:)
*
* linux/spinlock_api_up.h:
* builds the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*/
All SMP and UP architectures are converted by this patch.
arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.
From: Grant Grundler <grundler@parisc-linux.org>
Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
Builds 32-bit SMP kernel (not booted or tested). I did not try to build
non-SMP kernels. That should be trivial to fix up later if necessary.
I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids
some ugly nesting of linux/*.h and asm/*.h files. Those particular locks
are well tested and contained entirely inside arch specific code. I do NOT
expect any new issues to arise with them.
If someone does ever need to use debug/metrics with them, then they will
need to unravel this hairball between spinlocks, atomic ops, and bit ops
that exist only because parisc has exactly one atomic instruction: LDCW
(load and clear word).
From: "Luck, Tony" <tony.luck@intel.com>
ia64 fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/asm-ia64/spinlock.h')
-rw-r--r-- | include/asm-ia64/spinlock.h | 69 |
1 files changed, 26 insertions, 43 deletions
diff --git a/include/asm-ia64/spinlock.h b/include/asm-ia64/spinlock.h index d2430aa..5b78611 100644 --- a/include/asm-ia64/spinlock.h +++ b/include/asm-ia64/spinlock.h @@ -17,28 +17,20 @@ #include <asm/intrinsics.h> #include <asm/system.h> -typedef struct { - volatile unsigned int lock; -#ifdef CONFIG_PREEMPT - unsigned int break_lock; -#endif -} spinlock_t; - -#define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 } -#define spin_lock_init(x) ((x)->lock = 0) +#define __raw_spin_lock_init(x) ((x)->lock = 0) #ifdef ASM_SUPPORTED /* * Try to get the lock. If we fail to get the lock, make a non-standard call to * ia64_spinlock_contention(). We do not use a normal call because that would force all - * callers of spin_lock() to be non-leaf routines. Instead, ia64_spinlock_contention() is - * carefully coded to touch only those registers that spin_lock() marks "clobbered". + * callers of __raw_spin_lock() to be non-leaf routines. Instead, ia64_spinlock_contention() is + * carefully coded to touch only those registers that __raw_spin_lock() marks "clobbered". */ #define IA64_SPINLOCK_CLOBBERS "ar.ccv", "ar.pfs", "p14", "p15", "r27", "r28", "r29", "r30", "b6", "memory" static inline void -_raw_spin_lock_flags (spinlock_t *lock, unsigned long flags) +__raw_spin_lock_flags (raw_spinlock_t *lock, unsigned long flags) { register volatile unsigned int *ptr asm ("r31") = &lock->lock; @@ -94,17 +86,17 @@ _raw_spin_lock_flags (spinlock_t *lock, unsigned long flags) #endif } -#define _raw_spin_lock(lock) _raw_spin_lock_flags(lock, 0) +#define __raw_spin_lock(lock) __raw_spin_lock_flags(lock, 0) /* Unlock by doing an ordered store and releasing the cacheline with nta */ -static inline void _raw_spin_unlock(spinlock_t *x) { +static inline void __raw_spin_unlock(raw_spinlock_t *x) { barrier(); asm volatile ("st4.rel.nta [%0] = r0\n\t" :: "r"(x)); } #else /* !ASM_SUPPORTED */ -#define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock) -# define _raw_spin_lock(x) \ +#define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock) +# define __raw_spin_lock(x) \ do { \ __u32 *ia64_spinlock_ptr = (__u32 *) (x); \ __u64 ia64_spinlock_val; \ @@ -117,29 +109,20 @@ do { \ } while (ia64_spinlock_val); \ } \ } while (0) -#define _raw_spin_unlock(x) do { barrier(); ((spinlock_t *) x)->lock = 0; } while (0) +#define __raw_spin_unlock(x) do { barrier(); ((raw_spinlock_t *) x)->lock = 0; } while (0) #endif /* !ASM_SUPPORTED */ -#define spin_is_locked(x) ((x)->lock != 0) -#define _raw_spin_trylock(x) (cmpxchg_acq(&(x)->lock, 0, 1) == 0) -#define spin_unlock_wait(x) do { barrier(); } while ((x)->lock) - -typedef struct { - volatile unsigned int read_counter : 24; - volatile unsigned int write_lock : 8; -#ifdef CONFIG_PREEMPT - unsigned int break_lock; -#endif -} rwlock_t; -#define RW_LOCK_UNLOCKED (rwlock_t) { 0, 0 } +#define __raw_spin_is_locked(x) ((x)->lock != 0) +#define __raw_spin_trylock(x) (cmpxchg_acq(&(x)->lock, 0, 1) == 0) +#define __raw_spin_unlock_wait(lock) \ + do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0) -#define rwlock_init(x) do { *(x) = RW_LOCK_UNLOCKED; } while(0) -#define read_can_lock(rw) (*(volatile int *)(rw) >= 0) -#define write_can_lock(rw) (*(volatile int *)(rw) == 0) +#define __raw_read_can_lock(rw) (*(volatile int *)(rw) >= 0) +#define __raw_write_can_lock(rw) (*(volatile int *)(rw) == 0) -#define _raw_read_lock(rw) \ +#define __raw_read_lock(rw) \ do { \ - rwlock_t *__read_lock_ptr = (rw); \ + raw_rwlock_t *__read_lock_ptr = (rw); \ \ while (unlikely(ia64_fetchadd(1, (int *) __read_lock_ptr, acq) < 0)) { \ ia64_fetchadd(-1, (int *) __read_lock_ptr, rel); \ @@ -148,14 +131,14 @@ do { \ } \ } while (0) -#define _raw_read_unlock(rw) \ +#define __raw_read_unlock(rw) \ do { \ - rwlock_t *__read_lock_ptr = (rw); \ + raw_rwlock_t *__read_lock_ptr = (rw); \ ia64_fetchadd(-1, (int *) __read_lock_ptr, rel); \ } while (0) #ifdef ASM_SUPPORTED -#define _raw_write_lock(rw) \ +#define __raw_write_lock(rw) \ do { \ __asm__ __volatile__ ( \ "mov ar.ccv = r0\n" \ @@ -170,7 +153,7 @@ do { \ :: "r"(rw) : "ar.ccv", "p7", "r2", "r29", "memory"); \ } while(0) -#define _raw_write_trylock(rw) \ +#define __raw_write_trylock(rw) \ ({ \ register long result; \ \ @@ -182,7 +165,7 @@ do { \ (result == 0); \ }) -static inline void _raw_write_unlock(rwlock_t *x) +static inline void __raw_write_unlock(raw_rwlock_t *x) { u8 *y = (u8 *)x; barrier(); @@ -191,7 +174,7 @@ static inline void _raw_write_unlock(rwlock_t *x) #else /* !ASM_SUPPORTED */ -#define _raw_write_lock(l) \ +#define __raw_write_lock(l) \ ({ \ __u64 ia64_val, ia64_set_val = ia64_dep_mi(-1, 0, 31, 1); \ __u32 *ia64_write_lock_ptr = (__u32 *) (l); \ @@ -202,7 +185,7 @@ static inline void _raw_write_unlock(rwlock_t *x) } while (ia64_val); \ }) -#define _raw_write_trylock(rw) \ +#define __raw_write_trylock(rw) \ ({ \ __u64 ia64_val; \ __u64 ia64_set_val = ia64_dep_mi(-1, 0, 31,1); \ @@ -210,7 +193,7 @@ static inline void _raw_write_unlock(rwlock_t *x) (ia64_val == 0); \ }) -static inline void _raw_write_unlock(rwlock_t *x) +static inline void __raw_write_unlock(raw_rwlock_t *x) { barrier(); x->write_lock = 0; @@ -218,6 +201,6 @@ static inline void _raw_write_unlock(rwlock_t *x) #endif /* !ASM_SUPPORTED */ -#define _raw_read_trylock(lock) generic_raw_read_trylock(lock) +#define __raw_read_trylock(lock) generic__raw_read_trylock(lock) #endif /* _ASM_IA64_SPINLOCK_H */ |