summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/80211.tmpl21
-rw-r--r--Documentation/cgroups/memory.txt74
-rw-r--r--Documentation/filesystems/Locking2
3 files changed, 17 insertions, 80 deletions
diff --git a/Documentation/DocBook/80211.tmpl b/Documentation/DocBook/80211.tmpl
index 03641a0..8906648 100644
--- a/Documentation/DocBook/80211.tmpl
+++ b/Documentation/DocBook/80211.tmpl
@@ -268,10 +268,6 @@
!Finclude/net/mac80211.h ieee80211_ops
!Finclude/net/mac80211.h ieee80211_alloc_hw
!Finclude/net/mac80211.h ieee80211_register_hw
-!Finclude/net/mac80211.h ieee80211_get_tx_led_name
-!Finclude/net/mac80211.h ieee80211_get_rx_led_name
-!Finclude/net/mac80211.h ieee80211_get_assoc_led_name
-!Finclude/net/mac80211.h ieee80211_get_radio_led_name
!Finclude/net/mac80211.h ieee80211_unregister_hw
!Finclude/net/mac80211.h ieee80211_free_hw
</chapter>
@@ -382,6 +378,23 @@
</para>
</partintro>
+ <chapter id="led-support">
+ <title>LED support</title>
+ <para>
+ Mac80211 supports various ways of blinking LEDs. Wherever possible,
+ device LEDs should be exposed as LED class devices and hooked up to
+ the appropriate trigger, which will then be triggered appropriately
+ by mac80211.
+ </para>
+!Finclude/net/mac80211.h ieee80211_get_tx_led_name
+!Finclude/net/mac80211.h ieee80211_get_rx_led_name
+!Finclude/net/mac80211.h ieee80211_get_assoc_led_name
+!Finclude/net/mac80211.h ieee80211_get_radio_led_name
+!Finclude/net/mac80211.h ieee80211_tpt_blink
+!Finclude/net/mac80211.h ieee80211_tpt_led_trigger_flags
+!Finclude/net/mac80211.h ieee80211_create_tpt_led_trigger
+ </chapter>
+
<chapter id="hardware-crypto-offload">
<title>Hardware crypto acceleration</title>
!Pinclude/net/mac80211.h Hardware crypto acceleration
diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt
index bac328c..7781857 100644
--- a/Documentation/cgroups/memory.txt
+++ b/Documentation/cgroups/memory.txt
@@ -385,10 +385,6 @@ mapped_file - # of bytes of mapped file (includes tmpfs/shmem)
pgpgin - # of pages paged in (equivalent to # of charging events).
pgpgout - # of pages paged out (equivalent to # of uncharging events).
swap - # of bytes of swap usage
-dirty - # of bytes that are waiting to get written back to the disk.
-writeback - # of bytes that are actively being written back to the disk.
-nfs_unstable - # of bytes sent to the NFS server, but not yet committed to
- the actual storage.
inactive_anon - # of bytes of anonymous memory and swap cache memory on
LRU list.
active_anon - # of bytes of anonymous and swap cache memory on active
@@ -410,9 +406,6 @@ total_mapped_file - sum of all children's "cache"
total_pgpgin - sum of all children's "pgpgin"
total_pgpgout - sum of all children's "pgpgout"
total_swap - sum of all children's "swap"
-total_dirty - sum of all children's "dirty"
-total_writeback - sum of all children's "writeback"
-total_nfs_unstable - sum of all children's "nfs_unstable"
total_inactive_anon - sum of all children's "inactive_anon"
total_active_anon - sum of all children's "active_anon"
total_inactive_file - sum of all children's "inactive_file"
@@ -460,73 +453,6 @@ memory under it will be reclaimed.
You can reset failcnt by writing 0 to failcnt file.
# echo 0 > .../memory.failcnt
-5.5 dirty memory
-
-Control the maximum amount of dirty pages a cgroup can have at any given time.
-
-Limiting dirty memory is like fixing the max amount of dirty (hard to reclaim)
-page cache used by a cgroup. So, in case of multiple cgroup writers, they will
-not be able to consume more than their designated share of dirty pages and will
-be forced to perform write-out if they cross that limit.
-
-The interface is equivalent to the procfs interface: /proc/sys/vm/dirty_*. It
-is possible to configure a limit to trigger both a direct writeback or a
-background writeback performed by per-bdi flusher threads. The root cgroup
-memory.dirty_* control files are read-only and match the contents of
-the /proc/sys/vm/dirty_* files.
-
-Per-cgroup dirty limits can be set using the following files in the cgroupfs:
-
-- memory.dirty_ratio: the amount of dirty memory (expressed as a percentage of
- cgroup memory) at which a process generating dirty pages will itself start
- writing out dirty data.
-
-- memory.dirty_limit_in_bytes: the amount of dirty memory (expressed in bytes)
- in the cgroup at which a process generating dirty pages will start itself
- writing out dirty data. Suffix (k, K, m, M, g, or G) can be used to indicate
- that value is kilo, mega or gigabytes.
-
- Note: memory.dirty_limit_in_bytes is the counterpart of memory.dirty_ratio.
- Only one of them may be specified at a time. When one is written it is
- immediately taken into account to evaluate the dirty memory limits and the
- other appears as 0 when read.
-
-- memory.dirty_background_ratio: the amount of dirty memory of the cgroup
- (expressed as a percentage of cgroup memory) at which background writeback
- kernel threads will start writing out dirty data.
-
-- memory.dirty_background_limit_in_bytes: the amount of dirty memory (expressed
- in bytes) in the cgroup at which background writeback kernel threads will
- start writing out dirty data. Suffix (k, K, m, M, g, or G) can be used to
- indicate that value is kilo, mega or gigabytes.
-
- Note: memory.dirty_background_limit_in_bytes is the counterpart of
- memory.dirty_background_ratio. Only one of them may be specified at a time.
- When one is written it is immediately taken into account to evaluate the dirty
- memory limits and the other appears as 0 when read.
-
-A cgroup may contain more dirty memory than its dirty limit. This is possible
-because of the principle that the first cgroup to touch a page is charged for
-it. Subsequent page counting events (dirty, writeback, nfs_unstable) are also
-counted to the originally charged cgroup.
-
-Example: If page is allocated by a cgroup A task, then the page is charged to
-cgroup A. If the page is later dirtied by a task in cgroup B, then the cgroup A
-dirty count will be incremented. If cgroup A is over its dirty limit but cgroup
-B is not, then dirtying a cgroup A page from a cgroup B task may push cgroup A
-over its dirty limit without throttling the dirtying cgroup B task.
-
-When use_hierarchy=0, each cgroup has dirty memory usage and limits.
-System-wide dirty limits are also consulted. Dirty memory consumption is
-checked against both system-wide and per-cgroup dirty limits.
-
-The current implementation does not enforce per-cgroup dirty limits when
-use_hierarchy=1. System-wide dirty limits are used for processes in such
-cgroups. Attempts to read memory.dirty_* files return the system-wide
-values. Writes to the memory.dirty_* files return error. An enhanced
-implementation is needed to check the chain of parents to ensure that no
-dirty limit is exceeded.
-
6. Hierarchy support
The memory controller supports a deep hierarchy and hierarchical accounting.
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index 977d891..ef9349a 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -343,7 +343,6 @@ prototypes:
int (*fl_grant)(struct file_lock *, struct file_lock *, int);
void (*fl_release_private)(struct file_lock *);
void (*fl_break)(struct file_lock *); /* break_lease callback */
- int (*fl_mylease)(struct file_lock *, struct file_lock *);
int (*fl_change)(struct file_lock **, int);
locking rules:
@@ -353,7 +352,6 @@ fl_notify: yes no
fl_grant: no no
fl_release_private: maybe no
fl_break: yes no
-fl_mylease: yes no
fl_change yes no
--------------------------- buffer_head -----------------------------------