summaryrefslogtreecommitdiff
path: root/arch/ia64/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ia64/kernel')
-rw-r--r--arch/ia64/kernel/Makefile52
-rw-r--r--arch/ia64/kernel/acpi-ext.c100
-rw-r--r--arch/ia64/kernel/acpi.c841
-rw-r--r--arch/ia64/kernel/asm-offsets.c239
-rw-r--r--arch/ia64/kernel/brl_emu.c234
-rw-r--r--arch/ia64/kernel/cyclone.c109
-rw-r--r--arch/ia64/kernel/domain.c382
-rw-r--r--arch/ia64/kernel/efi.c832
-rw-r--r--arch/ia64/kernel/efi_stub.S86
-rw-r--r--arch/ia64/kernel/entry.S1587
-rw-r--r--arch/ia64/kernel/entry.h82
-rw-r--r--arch/ia64/kernel/fsys.S884
-rw-r--r--arch/ia64/kernel/gate-data.S3
-rw-r--r--arch/ia64/kernel/gate.S372
-rw-r--r--arch/ia64/kernel/gate.lds.S95
-rw-r--r--arch/ia64/kernel/head.S996
-rw-r--r--arch/ia64/kernel/ia64_ksyms.c127
-rw-r--r--arch/ia64/kernel/init_task.c46
-rw-r--r--arch/ia64/kernel/iosapic.c827
-rw-r--r--arch/ia64/kernel/irq.c238
-rw-r--r--arch/ia64/kernel/irq_ia64.c278
-rw-r--r--arch/ia64/kernel/irq_lsapic.c37
-rw-r--r--arch/ia64/kernel/ivt.S1619
-rw-r--r--arch/ia64/kernel/machvec.c70
-rw-r--r--arch/ia64/kernel/mca.c1470
-rw-r--r--arch/ia64/kernel/mca_asm.S928
-rw-r--r--arch/ia64/kernel/mca_drv.c639
-rw-r--r--arch/ia64/kernel/mca_drv.h113
-rw-r--r--arch/ia64/kernel/mca_drv_asm.S45
-rw-r--r--arch/ia64/kernel/minstate.h251
-rw-r--r--arch/ia64/kernel/module.c952
-rw-r--r--arch/ia64/kernel/pal.S302
-rw-r--r--arch/ia64/kernel/palinfo.c1023
-rw-r--r--arch/ia64/kernel/patch.c189
-rw-r--r--arch/ia64/kernel/perfmon.c6676
-rw-r--r--arch/ia64/kernel/perfmon_default_smpl.c306
-rw-r--r--arch/ia64/kernel/perfmon_generic.h45
-rw-r--r--arch/ia64/kernel/perfmon_itanium.h115
-rw-r--r--arch/ia64/kernel/perfmon_mckinley.h187
-rw-r--r--arch/ia64/kernel/process.c800
-rw-r--r--arch/ia64/kernel/ptrace.c1627
-rw-r--r--arch/ia64/kernel/sal.c302
-rw-r--r--arch/ia64/kernel/salinfo.c629
-rw-r--r--arch/ia64/kernel/semaphore.c165
-rw-r--r--arch/ia64/kernel/setup.c723
-rw-r--r--arch/ia64/kernel/sigframe.h25
-rw-r--r--arch/ia64/kernel/signal.c691
-rw-r--r--arch/ia64/kernel/smp.c376
-rw-r--r--arch/ia64/kernel/smpboot.c692
-rw-r--r--arch/ia64/kernel/sys_ia64.c298
-rw-r--r--arch/ia64/kernel/time.c255
-rw-r--r--arch/ia64/kernel/topology.c92
-rw-r--r--arch/ia64/kernel/traps.c609
-rw-r--r--arch/ia64/kernel/unaligned.c1521
-rw-r--r--arch/ia64/kernel/unwind.c2306
-rw-r--r--arch/ia64/kernel/unwind_decoder.c459
-rw-r--r--arch/ia64/kernel/unwind_i.h164
-rw-r--r--arch/ia64/kernel/vmlinux.lds.S251
58 files changed, 35362 insertions, 0 deletions
diff --git a/arch/ia64/kernel/Makefile b/arch/ia64/kernel/Makefile
new file mode 100644
index 0000000..c1a02bb
--- /dev/null
+++ b/arch/ia64/kernel/Makefile
@@ -0,0 +1,52 @@
+#
+# Makefile for the linux kernel.
+#
+
+extra-y := head.o init_task.o vmlinux.lds
+
+obj-y := acpi.o entry.o efi.o efi_stub.o gate-data.o fsys.o ia64_ksyms.o irq.o irq_ia64.o \
+ irq_lsapic.o ivt.o machvec.o pal.o patch.o process.o perfmon.o ptrace.o sal.o \
+ salinfo.o semaphore.o setup.o signal.o sys_ia64.o time.o traps.o unaligned.o \
+ unwind.o mca.o mca_asm.o topology.o
+
+obj-$(CONFIG_IA64_BRL_EMU) += brl_emu.o
+obj-$(CONFIG_IA64_GENERIC) += acpi-ext.o
+obj-$(CONFIG_IA64_HP_ZX1) += acpi-ext.o
+obj-$(CONFIG_IA64_HP_ZX1_SWIOTLB) += acpi-ext.o
+obj-$(CONFIG_IA64_PALINFO) += palinfo.o
+obj-$(CONFIG_IOSAPIC) += iosapic.o
+obj-$(CONFIG_MODULES) += module.o
+obj-$(CONFIG_SMP) += smp.o smpboot.o domain.o
+obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o
+obj-$(CONFIG_IA64_CYCLONE) += cyclone.o
+obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o
+mca_recovery-y += mca_drv.o mca_drv_asm.o
+
+# The gate DSO image is built using a special linker script.
+targets += gate.so gate-syms.o
+
+extra-y += gate.so gate-syms.o gate.lds gate.o
+
+# fp_emulate() expects f2-f5,f16-f31 to contain the user-level state.
+CFLAGS_traps.o += -mfixed-range=f2-f5,f16-f31
+
+CPPFLAGS_gate.lds := -P -C -U$(ARCH)
+
+quiet_cmd_gate = GATE $@
+ cmd_gate = $(CC) -nostdlib $(GATECFLAGS_$(@F)) -Wl,-T,$(filter-out FORCE,$^) -o $@
+
+GATECFLAGS_gate.so = -shared -s -Wl,-soname=linux-gate.so.1
+$(obj)/gate.so: $(obj)/gate.lds $(obj)/gate.o FORCE
+ $(call if_changed,gate)
+
+$(obj)/built-in.o: $(obj)/gate-syms.o
+$(obj)/built-in.o: ld_flags += -R $(obj)/gate-syms.o
+
+GATECFLAGS_gate-syms.o = -r
+$(obj)/gate-syms.o: $(obj)/gate.lds $(obj)/gate.o FORCE
+ $(call if_changed,gate)
+
+# gate-data.o contains the gate DSO image as data in section .data.gate.
+# We must build gate.so before we can assemble it.
+# Note: kbuild does not track this dependency due to usage of .incbin
+$(obj)/gate-data.o: $(obj)/gate.so
diff --git a/arch/ia64/kernel/acpi-ext.c b/arch/ia64/kernel/acpi-ext.c
new file mode 100644
index 0000000..2623df5
--- /dev/null
+++ b/arch/ia64/kernel/acpi-ext.c
@@ -0,0 +1,100 @@
+/*
+ * arch/ia64/kernel/acpi-ext.c
+ *
+ * Copyright (C) 2003 Hewlett-Packard
+ * Copyright (C) Alex Williamson
+ * Copyright (C) Bjorn Helgaas
+ *
+ * Vendor specific extensions to ACPI.
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/acpi.h>
+#include <linux/efi.h>
+
+#include <asm/acpi-ext.h>
+
+struct acpi_vendor_descriptor {
+ u8 guid_id;
+ efi_guid_t guid;
+};
+
+struct acpi_vendor_info {
+ struct acpi_vendor_descriptor *descriptor;
+ u8 *data;
+ u32 length;
+};
+
+acpi_status
+acpi_vendor_resource_match(struct acpi_resource *resource, void *context)
+{
+ struct acpi_vendor_info *info = (struct acpi_vendor_info *) context;
+ struct acpi_resource_vendor *vendor;
+ struct acpi_vendor_descriptor *descriptor;
+ u32 length;
+
+ if (resource->id != ACPI_RSTYPE_VENDOR)
+ return AE_OK;
+
+ vendor = (struct acpi_resource_vendor *) &resource->data;
+ descriptor = (struct acpi_vendor_descriptor *) vendor->reserved;
+ if (vendor->length <= sizeof(*info->descriptor) ||
+ descriptor->guid_id != info->descriptor->guid_id ||
+ efi_guidcmp(descriptor->guid, info->descriptor->guid))
+ return AE_OK;
+
+ length = vendor->length - sizeof(struct acpi_vendor_descriptor);
+ info->data = acpi_os_allocate(length);
+ if (!info->data)
+ return AE_NO_MEMORY;
+
+ memcpy(info->data, vendor->reserved + sizeof(struct acpi_vendor_descriptor), length);
+ info->length = length;
+ return AE_CTRL_TERMINATE;
+}
+
+acpi_status
+acpi_find_vendor_resource(acpi_handle obj, struct acpi_vendor_descriptor *id,
+ u8 **data, u32 *length)
+{
+ struct acpi_vendor_info info;
+
+ info.descriptor = id;
+ info.data = NULL;
+
+ acpi_walk_resources(obj, METHOD_NAME__CRS, acpi_vendor_resource_match, &info);
+ if (!info.data)
+ return AE_NOT_FOUND;
+
+ *data = info.data;
+ *length = info.length;
+ return AE_OK;
+}
+
+struct acpi_vendor_descriptor hp_ccsr_descriptor = {
+ .guid_id = 2,
+ .guid = EFI_GUID(0x69e9adf9, 0x924f, 0xab5f, 0xf6, 0x4a, 0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad)
+};
+
+acpi_status
+hp_acpi_csr_space(acpi_handle obj, u64 *csr_base, u64 *csr_length)
+{
+ acpi_status status;
+ u8 *data;
+ u32 length;
+
+ status = acpi_find_vendor_resource(obj, &hp_ccsr_descriptor, &data, &length);
+
+ if (ACPI_FAILURE(status) || length != 16)
+ return AE_NOT_FOUND;
+
+ memcpy(csr_base, data, sizeof(*csr_base));
+ memcpy(csr_length, data + 8, sizeof(*csr_length));
+ acpi_os_free(data);
+
+ return AE_OK;
+}
+
+EXPORT_SYMBOL(hp_acpi_csr_space);
diff --git a/arch/ia64/kernel/acpi.c b/arch/ia64/kernel/acpi.c
new file mode 100644
index 0000000..a8e99c5
--- /dev/null
+++ b/arch/ia64/kernel/acpi.c
@@ -0,0 +1,841 @@
+/*
+ * acpi.c - Architecture-Specific Low-Level ACPI Support
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999,2000 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 2000, 2002-2003 Hewlett-Packard Co.
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Copyright (C) 2000 Intel Corp.
+ * Copyright (C) 2000,2001 J.I. Lee <jung-ik.lee@intel.com>
+ * Copyright (C) 2001 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
+ * Copyright (C) 2001 Jenna Hall <jenna.s.hall@intel.com>
+ * Copyright (C) 2001 Takayoshi Kochi <t-kochi@bq.jp.nec.com>
+ * Copyright (C) 2002 Erich Focht <efocht@ess.nec.de>
+ *
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/smp.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/irq.h>
+#include <linux/acpi.h>
+#include <linux/efi.h>
+#include <linux/mmzone.h>
+#include <linux/nodemask.h>
+#include <asm/io.h>
+#include <asm/iosapic.h>
+#include <asm/machvec.h>
+#include <asm/page.h>
+#include <asm/system.h>
+#include <asm/numa.h>
+#include <asm/sal.h>
+#include <asm/cyclone.h>
+
+#define BAD_MADT_ENTRY(entry, end) ( \
+ (!entry) || (unsigned long)entry + sizeof(*entry) > end || \
+ ((acpi_table_entry_header *)entry)->length != sizeof(*entry))
+
+#define PREFIX "ACPI: "
+
+void (*pm_idle) (void);
+EXPORT_SYMBOL(pm_idle);
+void (*pm_power_off) (void);
+EXPORT_SYMBOL(pm_power_off);
+
+unsigned char acpi_kbd_controller_present = 1;
+unsigned char acpi_legacy_devices;
+
+#define MAX_SAPICS 256
+u16 ia64_acpiid_to_sapicid[MAX_SAPICS] =
+ { [0 ... MAX_SAPICS - 1] = -1 };
+EXPORT_SYMBOL(ia64_acpiid_to_sapicid);
+
+const char *
+acpi_get_sysname (void)
+{
+#ifdef CONFIG_IA64_GENERIC
+ unsigned long rsdp_phys;
+ struct acpi20_table_rsdp *rsdp;
+ struct acpi_table_xsdt *xsdt;
+ struct acpi_table_header *hdr;
+
+ rsdp_phys = acpi_find_rsdp();
+ if (!rsdp_phys) {
+ printk(KERN_ERR "ACPI 2.0 RSDP not found, default to \"dig\"\n");
+ return "dig";
+ }
+
+ rsdp = (struct acpi20_table_rsdp *) __va(rsdp_phys);
+ if (strncmp(rsdp->signature, RSDP_SIG, sizeof(RSDP_SIG) - 1)) {
+ printk(KERN_ERR "ACPI 2.0 RSDP signature incorrect, default to \"dig\"\n");
+ return "dig";
+ }
+
+ xsdt = (struct acpi_table_xsdt *) __va(rsdp->xsdt_address);
+ hdr = &xsdt->header;
+ if (strncmp(hdr->signature, XSDT_SIG, sizeof(XSDT_SIG) - 1)) {
+ printk(KERN_ERR "ACPI 2.0 XSDT signature incorrect, default to \"dig\"\n");
+ return "dig";
+ }
+
+ if (!strcmp(hdr->oem_id, "HP")) {
+ return "hpzx1";
+ }
+ else if (!strcmp(hdr->oem_id, "SGI")) {
+ return "sn2";
+ }
+
+ return "dig";
+#else
+# if defined (CONFIG_IA64_HP_SIM)
+ return "hpsim";
+# elif defined (CONFIG_IA64_HP_ZX1)
+ return "hpzx1";
+# elif defined (CONFIG_IA64_HP_ZX1_SWIOTLB)
+ return "hpzx1_swiotlb";
+# elif defined (CONFIG_IA64_SGI_SN2)
+ return "sn2";
+# elif defined (CONFIG_IA64_DIG)
+ return "dig";
+# else
+# error Unknown platform. Fix acpi.c.
+# endif
+#endif
+}
+
+#ifdef CONFIG_ACPI_BOOT
+
+#define ACPI_MAX_PLATFORM_INTERRUPTS 256
+
+/* Array to record platform interrupt vectors for generic interrupt routing. */
+int platform_intr_list[ACPI_MAX_PLATFORM_INTERRUPTS] = {
+ [0 ... ACPI_MAX_PLATFORM_INTERRUPTS - 1] = -1
+};
+
+enum acpi_irq_model_id acpi_irq_model = ACPI_IRQ_MODEL_IOSAPIC;
+
+/*
+ * Interrupt routing API for device drivers. Provides interrupt vector for
+ * a generic platform event. Currently only CPEI is implemented.
+ */
+int
+acpi_request_vector (u32 int_type)
+{
+ int vector = -1;
+
+ if (int_type < ACPI_MAX_PLATFORM_INTERRUPTS) {
+ /* corrected platform error interrupt */
+ vector = platform_intr_list[int_type];
+ } else
+ printk(KERN_ERR "acpi_request_vector(): invalid interrupt type\n");
+ return vector;
+}
+
+char *
+__acpi_map_table (unsigned long phys_addr, unsigned long size)
+{
+ return __va(phys_addr);
+}
+
+/* --------------------------------------------------------------------------
+ Boot-time Table Parsing
+ -------------------------------------------------------------------------- */
+
+static int total_cpus __initdata;
+static int available_cpus __initdata;
+struct acpi_table_madt * acpi_madt __initdata;
+static u8 has_8259;
+
+
+static int __init
+acpi_parse_lapic_addr_ovr (
+ acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_lapic_addr_ovr *lapic;
+
+ lapic = (struct acpi_table_lapic_addr_ovr *) header;
+
+ if (BAD_MADT_ENTRY(lapic, end))
+ return -EINVAL;
+
+ if (lapic->address) {
+ iounmap(ipi_base_addr);
+ ipi_base_addr = ioremap(lapic->address, 0);
+ }
+ return 0;
+}
+
+
+static int __init
+acpi_parse_lsapic (acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_lsapic *lsapic;
+
+ lsapic = (struct acpi_table_lsapic *) header;
+
+ if (BAD_MADT_ENTRY(lsapic, end))
+ return -EINVAL;
+
+ if (lsapic->flags.enabled) {
+#ifdef CONFIG_SMP
+ smp_boot_data.cpu_phys_id[available_cpus] = (lsapic->id << 8) | lsapic->eid;
+#endif
+ ia64_acpiid_to_sapicid[lsapic->acpi_id] = (lsapic->id << 8) | lsapic->eid;
+ ++available_cpus;
+ }
+
+ total_cpus++;
+ return 0;
+}
+
+
+static int __init
+acpi_parse_lapic_nmi (acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_lapic_nmi *lacpi_nmi;
+
+ lacpi_nmi = (struct acpi_table_lapic_nmi*) header;
+
+ if (BAD_MADT_ENTRY(lacpi_nmi, end))
+ return -EINVAL;
+
+ /* TBD: Support lapic_nmi entries */
+ return 0;
+}
+
+
+static int __init
+acpi_parse_iosapic (acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_iosapic *iosapic;
+
+ iosapic = (struct acpi_table_iosapic *) header;
+
+ if (BAD_MADT_ENTRY(iosapic, end))
+ return -EINVAL;
+
+ iosapic_init(iosapic->address, iosapic->global_irq_base);
+
+ return 0;
+}
+
+
+static int __init
+acpi_parse_plat_int_src (
+ acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_plat_int_src *plintsrc;
+ int vector;
+
+ plintsrc = (struct acpi_table_plat_int_src *) header;
+
+ if (BAD_MADT_ENTRY(plintsrc, end))
+ return -EINVAL;
+
+ /*
+ * Get vector assignment for this interrupt, set attributes,
+ * and program the IOSAPIC routing table.
+ */
+ vector = iosapic_register_platform_intr(plintsrc->type,
+ plintsrc->global_irq,
+ plintsrc->iosapic_vector,
+ plintsrc->eid,
+ plintsrc->id,
+ (plintsrc->flags.polarity == 1) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW,
+ (plintsrc->flags.trigger == 1) ? IOSAPIC_EDGE : IOSAPIC_LEVEL);
+
+ platform_intr_list[plintsrc->type] = vector;
+ return 0;
+}
+
+
+static int __init
+acpi_parse_int_src_ovr (
+ acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_int_src_ovr *p;
+
+ p = (struct acpi_table_int_src_ovr *) header;
+
+ if (BAD_MADT_ENTRY(p, end))
+ return -EINVAL;
+
+ iosapic_override_isa_irq(p->bus_irq, p->global_irq,
+ (p->flags.polarity == 1) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW,
+ (p->flags.trigger == 1) ? IOSAPIC_EDGE : IOSAPIC_LEVEL);
+ return 0;
+}
+
+
+static int __init
+acpi_parse_nmi_src (acpi_table_entry_header *header, const unsigned long end)
+{
+ struct acpi_table_nmi_src *nmi_src;
+
+ nmi_src = (struct acpi_table_nmi_src*) header;
+
+ if (BAD_MADT_ENTRY(nmi_src, end))
+ return -EINVAL;
+
+ /* TBD: Support nimsrc entries */
+ return 0;
+}
+
+static void __init
+acpi_madt_oem_check (char *oem_id, char *oem_table_id)
+{
+ if (!strncmp(oem_id, "IBM", 3) &&
+ (!strncmp(oem_table_id, "SERMOW", 6))) {
+
+ /*
+ * Unfortunately ITC_DRIFT is not yet part of the
+ * official SAL spec, so the ITC_DRIFT bit is not
+ * set by the BIOS on this hardware.
+ */
+ sal_platform_features |= IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT;
+
+ cyclone_setup();
+ }
+}
+
+static int __init
+acpi_parse_madt (unsigned long phys_addr, unsigned long size)
+{
+ if (!phys_addr || !size)
+ return -EINVAL;
+
+ acpi_madt = (struct acpi_table_madt *) __va(phys_addr);
+
+ /* remember the value for reference after free_initmem() */
+#ifdef CONFIG_ITANIUM
+ has_8259 = 1; /* Firmware on old Itanium systems is broken */
+#else
+ has_8259 = acpi_madt->flags.pcat_compat;
+#endif
+ iosapic_system_init(has_8259);
+
+ /* Get base address of IPI Message Block */
+
+ if (acpi_madt->lapic_address)
+ ipi_base_addr = ioremap(acpi_madt->lapic_address, 0);
+
+ printk(KERN_INFO PREFIX "Local APIC address %p\n", ipi_base_addr);
+
+ acpi_madt_oem_check(acpi_madt->header.oem_id,
+ acpi_madt->header.oem_table_id);
+
+ return 0;
+}
+
+
+#ifdef CONFIG_ACPI_NUMA
+
+#undef SLIT_DEBUG
+
+#define PXM_FLAG_LEN ((MAX_PXM_DOMAINS + 1)/32)
+
+static int __initdata srat_num_cpus; /* number of cpus */
+static u32 __devinitdata pxm_flag[PXM_FLAG_LEN];
+#define pxm_bit_set(bit) (set_bit(bit,(void *)pxm_flag))
+#define pxm_bit_test(bit) (test_bit(bit,(void *)pxm_flag))
+/* maps to convert between proximity domain and logical node ID */
+int __devinitdata pxm_to_nid_map[MAX_PXM_DOMAINS];
+int __initdata nid_to_pxm_map[MAX_NUMNODES];
+static struct acpi_table_slit __initdata *slit_table;
+
+/*
+ * ACPI 2.0 SLIT (System Locality Information Table)
+ * http://devresource.hp.com/devresource/Docs/TechPapers/IA64/slit.pdf
+ */
+void __init
+acpi_numa_slit_init (struct acpi_table_slit *slit)
+{
+ u32 len;
+
+ len = sizeof(struct acpi_table_header) + 8
+ + slit->localities * slit->localities;
+ if (slit->header.length != len) {
+ printk(KERN_ERR "ACPI 2.0 SLIT: size mismatch: %d expected, %d actual\n",
+ len, slit->header.length);
+ memset(numa_slit, 10, sizeof(numa_slit));
+ return;
+ }
+ slit_table = slit;
+}
+
+void __init
+acpi_numa_processor_affinity_init (struct acpi_table_processor_affinity *pa)
+{
+ /* record this node in proximity bitmap */
+ pxm_bit_set(pa->proximity_domain);
+
+ node_cpuid[srat_num_cpus].phys_id = (pa->apic_id << 8) | (pa->lsapic_eid);
+ /* nid should be overridden as logical node id later */
+ node_cpuid[srat_num_cpus].nid = pa->proximity_domain;
+ srat_num_cpus++;
+}
+
+void __init
+acpi_numa_memory_affinity_init (struct acpi_table_memory_affinity *ma)
+{
+ unsigned long paddr, size;
+ u8 pxm;
+ struct node_memblk_s *p, *q, *pend;
+
+ pxm = ma->proximity_domain;
+
+ /* fill node memory chunk structure */
+ paddr = ma->base_addr_hi;
+ paddr = (paddr << 32) | ma->base_addr_lo;
+ size = ma->length_hi;
+ size = (size << 32) | ma->length_lo;
+
+ /* Ignore disabled entries */
+ if (!ma->flags.enabled)
+ return;
+
+ /* record this node in proximity bitmap */
+ pxm_bit_set(pxm);
+
+ /* Insertion sort based on base address */
+ pend = &node_memblk[num_node_memblks];
+ for (p = &node_memblk[0]; p < pend; p++) {
+ if (paddr < p->start_paddr)
+ break;
+ }
+ if (p < pend) {
+ for (q = pend - 1; q >= p; q--)
+ *(q + 1) = *q;
+ }
+ p->start_paddr = paddr;
+ p->size = size;
+ p->nid = pxm;
+ num_node_memblks++;
+}
+
+void __init
+acpi_numa_arch_fixup (void)
+{
+ int i, j, node_from, node_to;
+
+ /* If there's no SRAT, fix the phys_id and mark node 0 online */
+ if (srat_num_cpus == 0) {
+ node_set_online(0);
+ node_cpuid[0].phys_id = hard_smp_processor_id();
+ return;
+ }
+
+ /*
+ * MCD - This can probably be dropped now. No need for pxm ID to node ID
+ * mapping with sparse node numbering iff MAX_PXM_DOMAINS <= MAX_NUMNODES.
+ */
+ /* calculate total number of nodes in system from PXM bitmap */
+ memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map));
+ memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map));
+ nodes_clear(node_online_map);
+ for (i = 0; i < MAX_PXM_DOMAINS; i++) {
+ if (pxm_bit_test(i)) {
+ int nid = num_online_nodes();
+ pxm_to_nid_map[i] = nid;
+ nid_to_pxm_map[nid] = i;
+ node_set_online(nid);
+ }
+ }
+
+ /* set logical node id in memory chunk structure */
+ for (i = 0; i < num_node_memblks; i++)
+ node_memblk[i].nid = pxm_to_nid_map[node_memblk[i].nid];
+
+ /* assign memory bank numbers for each chunk on each node */
+ for_each_online_node(i) {
+ int bank;
+
+ bank = 0;
+ for (j = 0; j < num_node_memblks; j++)
+ if (node_memblk[j].nid == i)
+ node_memblk[j].bank = bank++;
+ }
+
+ /* set logical node id in cpu structure */
+ for (i = 0; i < srat_num_cpus; i++)
+ node_cpuid[i].nid = pxm_to_nid_map[node_cpuid[i].nid];
+
+ printk(KERN_INFO "Number of logical nodes in system = %d\n", num_online_nodes());
+ printk(KERN_INFO "Number of memory chunks in system = %d\n", num_node_memblks);
+
+ if (!slit_table) return;
+ memset(numa_slit, -1, sizeof(numa_slit));
+ for (i=0; i<slit_table->localities; i++) {
+ if (!pxm_bit_test(i))
+ continue;
+ node_from = pxm_to_nid_map[i];
+ for (j=0; j<slit_table->localities; j++) {
+ if (!pxm_bit_test(j))
+ continue;
+ node_to = pxm_to_nid_map[j];
+ node_distance(node_from, node_to) =
+ slit_table->entry[i*slit_table->localities + j];
+ }
+ }
+
+#ifdef SLIT_DEBUG
+ printk("ACPI 2.0 SLIT locality table:\n");
+ for_each_online_node(i) {
+ for_each_online_node(j)
+ printk("%03d ", node_distance(i,j));
+ printk("\n");
+ }
+#endif
+}
+#endif /* CONFIG_ACPI_NUMA */
+
+unsigned int
+acpi_register_gsi (u32 gsi, int edge_level, int active_high_low)
+{
+ if (has_8259 && gsi < 16)
+ return isa_irq_to_vector(gsi);
+
+ return iosapic_register_intr(gsi,
+ (active_high_low == ACPI_ACTIVE_HIGH) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW,
+ (edge_level == ACPI_EDGE_SENSITIVE) ? IOSAPIC_EDGE : IOSAPIC_LEVEL);
+}
+EXPORT_SYMBOL(acpi_register_gsi);
+
+#ifdef CONFIG_ACPI_DEALLOCATE_IRQ
+void
+acpi_unregister_gsi (u32 gsi)
+{
+ iosapic_unregister_intr(gsi);
+}
+EXPORT_SYMBOL(acpi_unregister_gsi);
+#endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
+
+static int __init
+acpi_parse_fadt (unsigned long phys_addr, unsigned long size)
+{
+ struct acpi_table_header *fadt_header;
+ struct fadt_descriptor_rev2 *fadt;
+
+ if (!phys_addr || !size)
+ return -EINVAL;
+
+ fadt_header = (struct acpi_table_header *) __va(phys_addr);
+ if (fadt_header->revision != 3)
+ return -ENODEV; /* Only deal with ACPI 2.0 FADT */
+
+ fadt = (struct fadt_descriptor_rev2 *) fadt_header;
+
+ if (!(fadt->iapc_boot_arch & BAF_8042_KEYBOARD_CONTROLLER))
+ acpi_kbd_controller_present = 0;
+
+ if (fadt->iapc_boot_arch & BAF_LEGACY_DEVICES)
+ acpi_legacy_devices = 1;
+
+ acpi_register_gsi(fadt->sci_int, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW);
+ return 0;
+}
+
+
+unsigned long __init
+acpi_find_rsdp (void)
+{
+ unsigned long rsdp_phys = 0;
+
+ if (efi.acpi20)
+ rsdp_phys = __pa(efi.acpi20);
+ else if (efi.acpi)
+ printk(KERN_WARNING PREFIX "v1.0/r0.71 tables no longer supported\n");
+ return rsdp_phys;
+}
+
+
+int __init
+acpi_boot_init (void)
+{
+
+ /*
+ * MADT
+ * ----
+ * Parse the Multiple APIC Description Table (MADT), if exists.
+ * Note that this table provides platform SMP configuration
+ * information -- the successor to MPS tables.
+ */
+
+ if (acpi_table_parse(ACPI_APIC, acpi_parse_madt) < 1) {
+ printk(KERN_ERR PREFIX "Can't find MADT\n");
+ goto skip_madt;
+ }
+
+ /* Local APIC */
+
+ if (acpi_table_parse_madt(ACPI_MADT_LAPIC_ADDR_OVR, acpi_parse_lapic_addr_ovr, 0) < 0)
+ printk(KERN_ERR PREFIX "Error parsing LAPIC address override entry\n");
+
+ if (acpi_table_parse_madt(ACPI_MADT_LSAPIC, acpi_parse_lsapic, NR_CPUS) < 1)
+ printk(KERN_ERR PREFIX "Error parsing MADT - no LAPIC entries\n");
+
+ if (acpi_table_parse_madt(ACPI_MADT_LAPIC_NMI, acpi_parse_lapic_nmi, 0) < 0)
+ printk(KERN_ERR PREFIX "Error parsing LAPIC NMI entry\n");
+
+ /* I/O APIC */
+
+ if (acpi_table_parse_madt(ACPI_MADT_IOSAPIC, acpi_parse_iosapic, NR_IOSAPICS) < 1)
+ printk(KERN_ERR PREFIX "Error parsing MADT - no IOSAPIC entries\n");
+
+ /* System-Level Interrupt Routing */
+
+ if (acpi_table_parse_madt(ACPI_MADT_PLAT_INT_SRC, acpi_parse_plat_int_src, ACPI_MAX_PLATFORM_INTERRUPTS) < 0)
+ printk(KERN_ERR PREFIX "Error parsing platform interrupt source entry\n");
+
+ if (acpi_table_parse_madt(ACPI_MADT_INT_SRC_OVR, acpi_parse_int_src_ovr, 0) < 0)
+ printk(KERN_ERR PREFIX "Error parsing interrupt source overrides entry\n");
+
+ if (acpi_table_parse_madt(ACPI_MADT_NMI_SRC, acpi_parse_nmi_src, 0) < 0)
+ printk(KERN_ERR PREFIX "Error parsing NMI SRC entry\n");
+ skip_madt:
+
+ /*
+ * FADT says whether a legacy keyboard controller is present.
+ * The FADT also contains an SCI_INT line, by which the system
+ * gets interrupts such as power and sleep buttons. If it's not
+ * on a Legacy interrupt, it needs to be setup.
+ */
+ if (acpi_table_parse(ACPI_FADT, acpi_parse_fadt) < 1)
+ printk(KERN_ERR PREFIX "Can't find FADT\n");
+
+#ifdef CONFIG_SMP
+ if (available_cpus == 0) {
+ printk(KERN_INFO "ACPI: Found 0 CPUS; assuming 1\n");
+ printk(KERN_INFO "CPU 0 (0x%04x)", hard_smp_processor_id());
+ smp_boot_data.cpu_phys_id[available_cpus] = hard_smp_processor_id();
+ available_cpus = 1; /* We've got at least one of these, no? */
+ }
+ smp_boot_data.cpu_count = available_cpus;
+
+ smp_build_cpu_map();
+# ifdef CONFIG_ACPI_NUMA
+ if (srat_num_cpus == 0) {
+ int cpu, i = 1;
+ for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++)
+ if (smp_boot_data.cpu_phys_id[cpu] != hard_smp_processor_id())
+ node_cpuid[i++].phys_id = smp_boot_data.cpu_phys_id[cpu];
+ }
+ build_cpu_to_node_map();
+# endif
+#endif
+ /* Make boot-up look pretty */
+ printk(KERN_INFO "%d CPUs available, %d CPUs total\n", available_cpus, total_cpus);
+ return 0;
+}
+
+int
+acpi_gsi_to_irq (u32 gsi, unsigned int *irq)
+{
+ int vector;
+
+ if (has_8259 && gsi < 16)
+ *irq = isa_irq_to_vector(gsi);
+ else {
+ vector = gsi_to_vector(gsi);
+ if (vector == -1)
+ return -1;
+
+ *irq = vector;
+ }
+ return 0;
+}
+
+/*
+ * ACPI based hotplug CPU support
+ */
+#ifdef CONFIG_ACPI_HOTPLUG_CPU
+static
+int
+acpi_map_cpu2node(acpi_handle handle, int cpu, long physid)
+{
+#ifdef CONFIG_ACPI_NUMA
+ int pxm_id;
+
+ pxm_id = acpi_get_pxm(handle);
+
+ /*
+ * Assuming that the container driver would have set the proximity
+ * domain and would have initialized pxm_to_nid_map[pxm_id] && pxm_flag
+ */
+ node_cpuid[cpu].nid = (pxm_id < 0) ? 0:
+ pxm_to_nid_map[pxm_id];
+
+ node_cpuid[cpu].phys_id = physid;
+#endif
+ return(0);
+}
+
+
+int
+acpi_map_lsapic(acpi_handle handle, int *pcpu)
+{
+ struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
+ union acpi_object *obj;
+ struct acpi_table_lsapic *lsapic;
+ cpumask_t tmp_map;
+ long physid;
+ int cpu;
+
+ if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer)))
+ return -EINVAL;
+
+ if (!buffer.length || !buffer.pointer)
+ return -EINVAL;
+
+ obj = buffer.pointer;
+ if (obj->type != ACPI_TYPE_BUFFER ||
+ obj->buffer.length < sizeof(*lsapic)) {
+ acpi_os_free(buffer.pointer);
+ return -EINVAL;
+ }
+
+ lsapic = (struct acpi_table_lsapic *)obj->buffer.pointer;
+
+ if ((lsapic->header.type != ACPI_MADT_LSAPIC) ||
+ (!lsapic->flags.enabled)) {
+ acpi_os_free(buffer.pointer);
+ return -EINVAL;
+ }
+
+ physid = ((lsapic->id <<8) | (lsapic->eid));
+
+ acpi_os_free(buffer.pointer);
+ buffer.length = ACPI_ALLOCATE_BUFFER;
+ buffer.pointer = NULL;
+
+ cpus_complement(tmp_map, cpu_present_map);
+ cpu = first_cpu(tmp_map);
+ if(cpu >= NR_CPUS)
+ return -EINVAL;
+
+ acpi_map_cpu2node(handle, cpu, physid);
+
+ cpu_set(cpu, cpu_present_map);
+ ia64_cpu_to_sapicid[cpu] = physid;
+ ia64_acpiid_to_sapicid[lsapic->acpi_id] = ia64_cpu_to_sapicid[cpu];
+
+ *pcpu = cpu;
+ return(0);
+}
+EXPORT_SYMBOL(acpi_map_lsapic);
+
+
+int
+acpi_unmap_lsapic(int cpu)
+{
+ int i;
+
+ for (i=0; i<MAX_SAPICS; i++) {
+ if (ia64_acpiid_to_sapicid[i] == ia64_cpu_to_sapicid[cpu]) {
+ ia64_acpiid_to_sapicid[i] = -1;
+ break;
+ }
+ }
+ ia64_cpu_to_sapicid[cpu] = -1;
+ cpu_clear(cpu,cpu_present_map);
+
+#ifdef CONFIG_ACPI_NUMA
+ /* NUMA specific cleanup's */
+#endif
+
+ return(0);
+}
+EXPORT_SYMBOL(acpi_unmap_lsapic);
+#endif /* CONFIG_ACPI_HOTPLUG_CPU */
+
+
+#ifdef CONFIG_ACPI_NUMA
+acpi_status __init
+acpi_map_iosapic (acpi_handle handle, u32 depth, void *context, void **ret)
+{
+ struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
+ union acpi_object *obj;
+ struct acpi_table_iosapic *iosapic;
+ unsigned int gsi_base;
+ int node;
+
+ /* Only care about objects w/ a method that returns the MADT */
+ if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer)))
+ return AE_OK;
+
+ if (!buffer.length || !buffer.pointer)
+ return AE_OK;
+
+ obj = buffer.pointer;
+ if (obj->type != ACPI_TYPE_BUFFER ||
+ obj->buffer.length < sizeof(*iosapic)) {
+ acpi_os_free(buffer.pointer);
+ return AE_OK;
+ }
+
+ iosapic = (struct acpi_table_iosapic *)obj->buffer.pointer;
+
+ if (iosapic->header.type != ACPI_MADT_IOSAPIC) {
+ acpi_os_free(buffer.pointer);
+ return AE_OK;
+ }
+
+ gsi_base = iosapic->global_irq_base;
+
+ acpi_os_free(buffer.pointer);
+ buffer.length = ACPI_ALLOCATE_BUFFER;
+ buffer.pointer = NULL;
+
+ /*
+ * OK, it's an IOSAPIC MADT entry, look for a _PXM method to tell
+ * us which node to associate this with.
+ */
+ if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PXM", NULL, &buffer)))
+ return AE_OK;
+
+ if (!buffer.length || !buffer.pointer)
+ return AE_OK;
+
+ obj = buffer.pointer;
+
+ if (obj->type != ACPI_TYPE_INTEGER ||
+ obj->integer.value >= MAX_PXM_DOMAINS) {
+ acpi_os_free(buffer.pointer);
+ return AE_OK;
+ }
+
+ node = pxm_to_nid_map[obj->integer.value];
+ acpi_os_free(buffer.pointer);
+
+ if (node >= MAX_NUMNODES || !node_online(node) ||
+ cpus_empty(node_to_cpumask(node)))
+ return AE_OK;
+
+ /* We know a gsi to node mapping! */
+ map_iosapic_to_node(gsi_base, node);
+ return AE_OK;
+}
+#endif /* CONFIG_NUMA */
+#endif /* CONFIG_ACPI_BOOT */
diff --git a/arch/ia64/kernel/asm-offsets.c b/arch/ia64/kernel/asm-offsets.c
new file mode 100644
index 0000000..7d1ae29
--- /dev/null
+++ b/arch/ia64/kernel/asm-offsets.c
@@ -0,0 +1,239 @@
+/*
+ * Generate definitions needed by assembly language modules.
+ * This code generates raw asm output which is post-processed
+ * to extract and format the required data.
+ */
+
+#include <linux/config.h>
+
+#include <linux/sched.h>
+
+#include <asm-ia64/processor.h>
+#include <asm-ia64/ptrace.h>
+#include <asm-ia64/siginfo.h>
+#include <asm-ia64/sigcontext.h>
+#include <asm-ia64/mca.h>
+
+#include "../kernel/sigframe.h"
+
+#define DEFINE(sym, val) \
+ asm volatile("\n->" #sym " %0 " #val : : "i" (val))
+
+#define BLANK() asm volatile("\n->" : : )
+
+void foo(void)
+{
+ DEFINE(IA64_TASK_SIZE, sizeof (struct task_struct));
+ DEFINE(IA64_THREAD_INFO_SIZE, sizeof (struct thread_info));
+ DEFINE(IA64_PT_REGS_SIZE, sizeof (struct pt_regs));
+ DEFINE(IA64_SWITCH_STACK_SIZE, sizeof (struct switch_stack));
+ DEFINE(IA64_SIGINFO_SIZE, sizeof (struct siginfo));
+ DEFINE(IA64_CPU_SIZE, sizeof (struct cpuinfo_ia64));
+ DEFINE(SIGFRAME_SIZE, sizeof (struct sigframe));
+ DEFINE(UNW_FRAME_INFO_SIZE, sizeof (struct unw_frame_info));
+
+ BLANK();
+
+ DEFINE(TI_FLAGS, offsetof(struct thread_info, flags));
+ DEFINE(TI_PRE_COUNT, offsetof(struct thread_info, preempt_count));
+
+ BLANK();
+
+ DEFINE(IA64_TASK_BLOCKED_OFFSET,offsetof (struct task_struct, blocked));
+ DEFINE(IA64_TASK_CLEAR_CHILD_TID_OFFSET,offsetof (struct task_struct, clear_child_tid));
+ DEFINE(IA64_TASK_GROUP_LEADER_OFFSET, offsetof (struct task_struct, group_leader));
+ DEFINE(IA64_TASK_PENDING_OFFSET,offsetof (struct task_struct, pending));
+ DEFINE(IA64_TASK_PID_OFFSET, offsetof (struct task_struct, pid));
+ DEFINE(IA64_TASK_REAL_PARENT_OFFSET, offsetof (struct task_struct, real_parent));
+ DEFINE(IA64_TASK_SIGHAND_OFFSET,offsetof (struct task_struct, sighand));
+ DEFINE(IA64_TASK_SIGNAL_OFFSET,offsetof (struct task_struct, signal));
+ DEFINE(IA64_TASK_TGID_OFFSET, offsetof (struct task_struct, tgid));
+ DEFINE(IA64_TASK_THREAD_KSP_OFFSET, offsetof (struct task_struct, thread.ksp));
+ DEFINE(IA64_TASK_THREAD_ON_USTACK_OFFSET, offsetof (struct task_struct, thread.on_ustack));
+
+ BLANK();
+
+ DEFINE(IA64_SIGHAND_SIGLOCK_OFFSET,offsetof (struct sighand_struct, siglock));
+
+ BLANK();
+
+ DEFINE(IA64_SIGNAL_GROUP_STOP_COUNT_OFFSET,offsetof (struct signal_struct,
+ group_stop_count));
+ DEFINE(IA64_SIGNAL_SHARED_PENDING_OFFSET,offsetof (struct signal_struct, shared_pending));
+
+ BLANK();
+
+ DEFINE(IA64_PT_REGS_B6_OFFSET, offsetof (struct pt_regs, b6));
+ DEFINE(IA64_PT_REGS_B7_OFFSET, offsetof (struct pt_regs, b7));
+ DEFINE(IA64_PT_REGS_AR_CSD_OFFSET, offsetof (struct pt_regs, ar_csd));
+ DEFINE(IA64_PT_REGS_AR_SSD_OFFSET, offsetof (struct pt_regs, ar_ssd));
+ DEFINE(IA64_PT_REGS_R8_OFFSET, offsetof (struct pt_regs, r8));
+ DEFINE(IA64_PT_REGS_R9_OFFSET, offsetof (struct pt_regs, r9));
+ DEFINE(IA64_PT_REGS_R10_OFFSET, offsetof (struct pt_regs, r10));
+ DEFINE(IA64_PT_REGS_R11_OFFSET, offsetof (struct pt_regs, r11));
+ DEFINE(IA64_PT_REGS_CR_IPSR_OFFSET, offsetof (struct pt_regs, cr_ipsr));
+ DEFINE(IA64_PT_REGS_CR_IIP_OFFSET, offsetof (struct pt_regs, cr_iip));
+ DEFINE(IA64_PT_REGS_CR_IFS_OFFSET, offsetof (struct pt_regs, cr_ifs));
+ DEFINE(IA64_PT_REGS_AR_UNAT_OFFSET, offsetof (struct pt_regs, ar_unat));
+ DEFINE(IA64_PT_REGS_AR_PFS_OFFSET, offsetof (struct pt_regs, ar_pfs));
+ DEFINE(IA64_PT_REGS_AR_RSC_OFFSET, offsetof (struct pt_regs, ar_rsc));
+ DEFINE(IA64_PT_REGS_AR_RNAT_OFFSET, offsetof (struct pt_regs, ar_rnat));
+
+ DEFINE(IA64_PT_REGS_AR_BSPSTORE_OFFSET, offsetof (struct pt_regs, ar_bspstore));
+ DEFINE(IA64_PT_REGS_PR_OFFSET, offsetof (struct pt_regs, pr));
+ DEFINE(IA64_PT_REGS_B0_OFFSET, offsetof (struct pt_regs, b0));
+ DEFINE(IA64_PT_REGS_LOADRS_OFFSET, offsetof (struct pt_regs, loadrs));
+ DEFINE(IA64_PT_REGS_R1_OFFSET, offsetof (struct pt_regs, r1));
+ DEFINE(IA64_PT_REGS_R12_OFFSET, offsetof (struct pt_regs, r12));
+ DEFINE(IA64_PT_REGS_R13_OFFSET, offsetof (struct pt_regs, r13));
+ DEFINE(IA64_PT_REGS_AR_FPSR_OFFSET, offsetof (struct pt_regs, ar_fpsr));
+ DEFINE(IA64_PT_REGS_R15_OFFSET, offsetof (struct pt_regs, r15));
+ DEFINE(IA64_PT_REGS_R14_OFFSET, offsetof (struct pt_regs, r14));
+ DEFINE(IA64_PT_REGS_R2_OFFSET, offsetof (struct pt_regs, r2));
+ DEFINE(IA64_PT_REGS_R3_OFFSET, offsetof (struct pt_regs, r3));
+ DEFINE(IA64_PT_REGS_R16_OFFSET, offsetof (struct pt_regs, r16));
+ DEFINE(IA64_PT_REGS_R17_OFFSET, offsetof (struct pt_regs, r17));
+ DEFINE(IA64_PT_REGS_R18_OFFSET, offsetof (struct pt_regs, r18));
+ DEFINE(IA64_PT_REGS_R19_OFFSET, offsetof (struct pt_regs, r19));
+ DEFINE(IA64_PT_REGS_R20_OFFSET, offsetof (struct pt_regs, r20));
+ DEFINE(IA64_PT_REGS_R21_OFFSET, offsetof (struct pt_regs, r21));
+ DEFINE(IA64_PT_REGS_R22_OFFSET, offsetof (struct pt_regs, r22));
+ DEFINE(IA64_PT_REGS_R23_OFFSET, offsetof (struct pt_regs, r23));
+ DEFINE(IA64_PT_REGS_R24_OFFSET, offsetof (struct pt_regs, r24));
+ DEFINE(IA64_PT_REGS_R25_OFFSET, offsetof (struct pt_regs, r25));
+ DEFINE(IA64_PT_REGS_R26_OFFSET, offsetof (struct pt_regs, r26));
+ DEFINE(IA64_PT_REGS_R27_OFFSET, offsetof (struct pt_regs, r27));
+ DEFINE(IA64_PT_REGS_R28_OFFSET, offsetof (struct pt_regs, r28));
+ DEFINE(IA64_PT_REGS_R29_OFFSET, offsetof (struct pt_regs, r29));
+ DEFINE(IA64_PT_REGS_R30_OFFSET, offsetof (struct pt_regs, r30));
+ DEFINE(IA64_PT_REGS_R31_OFFSET, offsetof (struct pt_regs, r31));
+ DEFINE(IA64_PT_REGS_AR_CCV_OFFSET, offsetof (struct pt_regs, ar_ccv));
+ DEFINE(IA64_PT_REGS_F6_OFFSET, offsetof (struct pt_regs, f6));
+ DEFINE(IA64_PT_REGS_F7_OFFSET, offsetof (struct pt_regs, f7));
+ DEFINE(IA64_PT_REGS_F8_OFFSET, offsetof (struct pt_regs, f8));
+ DEFINE(IA64_PT_REGS_F9_OFFSET, offsetof (struct pt_regs, f9));
+ DEFINE(IA64_PT_REGS_F10_OFFSET, offsetof (struct pt_regs, f10));
+ DEFINE(IA64_PT_REGS_F11_OFFSET, offsetof (struct pt_regs, f11));
+
+ BLANK();
+
+ DEFINE(IA64_SWITCH_STACK_CALLER_UNAT_OFFSET, offsetof (struct switch_stack, caller_unat));
+ DEFINE(IA64_SWITCH_STACK_AR_FPSR_OFFSET, offsetof (struct switch_stack, ar_fpsr));
+ DEFINE(IA64_SWITCH_STACK_F2_OFFSET, offsetof (struct switch_stack, f2));
+ DEFINE(IA64_SWITCH_STACK_F3_OFFSET, offsetof (struct switch_stack, f3));
+ DEFINE(IA64_SWITCH_STACK_F4_OFFSET, offsetof (struct switch_stack, f4));
+ DEFINE(IA64_SWITCH_STACK_F5_OFFSET, offsetof (struct switch_stack, f5));
+ DEFINE(IA64_SWITCH_STACK_F12_OFFSET, offsetof (struct switch_stack, f12));
+ DEFINE(IA64_SWITCH_STACK_F13_OFFSET, offsetof (struct switch_stack, f13));
+ DEFINE(IA64_SWITCH_STACK_F14_OFFSET, offsetof (struct switch_stack, f14));
+ DEFINE(IA64_SWITCH_STACK_F15_OFFSET, offsetof (struct switch_stack, f15));
+ DEFINE(IA64_SWITCH_STACK_F16_OFFSET, offsetof (struct switch_stack, f16));
+ DEFINE(IA64_SWITCH_STACK_F17_OFFSET, offsetof (struct switch_stack, f17));
+ DEFINE(IA64_SWITCH_STACK_F18_OFFSET, offsetof (struct switch_stack, f18));
+ DEFINE(IA64_SWITCH_STACK_F19_OFFSET, offsetof (struct switch_stack, f19));
+ DEFINE(IA64_SWITCH_STACK_F20_OFFSET, offsetof (struct switch_stack, f20));
+ DEFINE(IA64_SWITCH_STACK_F21_OFFSET, offsetof (struct switch_stack, f21));
+ DEFINE(IA64_SWITCH_STACK_F22_OFFSET, offsetof (struct switch_stack, f22));
+ DEFINE(IA64_SWITCH_STACK_F23_OFFSET, offsetof (struct switch_stack, f23));
+ DEFINE(IA64_SWITCH_STACK_F24_OFFSET, offsetof (struct switch_stack, f24));
+ DEFINE(IA64_SWITCH_STACK_F25_OFFSET, offsetof (struct switch_stack, f25));
+ DEFINE(IA64_SWITCH_STACK_F26_OFFSET, offsetof (struct switch_stack, f26));
+ DEFINE(IA64_SWITCH_STACK_F27_OFFSET, offsetof (struct switch_stack, f27));
+ DEFINE(IA64_SWITCH_STACK_F28_OFFSET, offsetof (struct switch_stack, f28));
+ DEFINE(IA64_SWITCH_STACK_F29_OFFSET, offsetof (struct switch_stack, f29));
+ DEFINE(IA64_SWITCH_STACK_F30_OFFSET, offsetof (struct switch_stack, f30));
+ DEFINE(IA64_SWITCH_STACK_F31_OFFSET, offsetof (struct switch_stack, f31));
+ DEFINE(IA64_SWITCH_STACK_R4_OFFSET, offsetof (struct switch_stack, r4));
+ DEFINE(IA64_SWITCH_STACK_R5_OFFSET, offsetof (struct switch_stack, r5));
+ DEFINE(IA64_SWITCH_STACK_R6_OFFSET, offsetof (struct switch_stack, r6));
+ DEFINE(IA64_SWITCH_STACK_R7_OFFSET, offsetof (struct switch_stack, r7));
+ DEFINE(IA64_SWITCH_STACK_B0_OFFSET, offsetof (struct switch_stack, b0));
+ DEFINE(IA64_SWITCH_STACK_B1_OFFSET, offsetof (struct switch_stack, b1));
+ DEFINE(IA64_SWITCH_STACK_B2_OFFSET, offsetof (struct switch_stack, b2));
+ DEFINE(IA64_SWITCH_STACK_B3_OFFSET, offsetof (struct switch_stack, b3));
+ DEFINE(IA64_SWITCH_STACK_B4_OFFSET, offsetof (struct switch_stack, b4));
+ DEFINE(IA64_SWITCH_STACK_B5_OFFSET, offsetof (struct switch_stack, b5));
+ DEFINE(IA64_SWITCH_STACK_AR_PFS_OFFSET, offsetof (struct switch_stack, ar_pfs));
+ DEFINE(IA64_SWITCH_STACK_AR_LC_OFFSET, offsetof (struct switch_stack, ar_lc));
+ DEFINE(IA64_SWITCH_STACK_AR_UNAT_OFFSET, offsetof (struct switch_stack, ar_unat));
+ DEFINE(IA64_SWITCH_STACK_AR_RNAT_OFFSET, offsetof (struct switch_stack, ar_rnat));
+ DEFINE(IA64_SWITCH_STACK_AR_BSPSTORE_OFFSET, offsetof (struct switch_stack, ar_bspstore));
+ DEFINE(IA64_SWITCH_STACK_PR_OFFSET, offsetof (struct switch_stack, pr));
+
+ BLANK();
+
+ DEFINE(IA64_SIGCONTEXT_IP_OFFSET, offsetof (struct sigcontext, sc_ip));
+ DEFINE(IA64_SIGCONTEXT_AR_BSP_OFFSET, offsetof (struct sigcontext, sc_ar_bsp));
+ DEFINE(IA64_SIGCONTEXT_AR_FPSR_OFFSET, offsetof (struct sigcontext, sc_ar_fpsr));
+ DEFINE(IA64_SIGCONTEXT_AR_RNAT_OFFSET, offsetof (struct sigcontext, sc_ar_rnat));
+ DEFINE(IA64_SIGCONTEXT_AR_UNAT_OFFSET, offsetof (struct sigcontext, sc_ar_unat));
+ DEFINE(IA64_SIGCONTEXT_B0_OFFSET, offsetof (struct sigcontext, sc_br[0]));
+ DEFINE(IA64_SIGCONTEXT_CFM_OFFSET, offsetof (struct sigcontext, sc_cfm));
+ DEFINE(IA64_SIGCONTEXT_FLAGS_OFFSET, offsetof (struct sigcontext, sc_flags));
+ DEFINE(IA64_SIGCONTEXT_FR6_OFFSET, offsetof (struct sigcontext, sc_fr[6]));
+ DEFINE(IA64_SIGCONTEXT_PR_OFFSET, offsetof (struct sigcontext, sc_pr));
+ DEFINE(IA64_SIGCONTEXT_R12_OFFSET, offsetof (struct sigcontext, sc_gr[12]));
+ DEFINE(IA64_SIGCONTEXT_RBS_BASE_OFFSET,offsetof (struct sigcontext, sc_rbs_base));
+ DEFINE(IA64_SIGCONTEXT_LOADRS_OFFSET, offsetof (struct sigcontext, sc_loadrs));
+
+ BLANK();
+
+ DEFINE(IA64_SIGPENDING_SIGNAL_OFFSET, offsetof (struct sigpending, signal));
+
+ BLANK();
+
+ DEFINE(IA64_SIGFRAME_ARG0_OFFSET, offsetof (struct sigframe, arg0));
+ DEFINE(IA64_SIGFRAME_ARG1_OFFSET, offsetof (struct sigframe, arg1));
+ DEFINE(IA64_SIGFRAME_ARG2_OFFSET, offsetof (struct sigframe, arg2));
+ DEFINE(IA64_SIGFRAME_HANDLER_OFFSET, offsetof (struct sigframe, handler));
+ DEFINE(IA64_SIGFRAME_SIGCONTEXT_OFFSET, offsetof (struct sigframe, sc));
+ BLANK();
+ /* for assembly files which can't include sched.h: */
+ DEFINE(IA64_CLONE_VFORK, CLONE_VFORK);
+ DEFINE(IA64_CLONE_VM, CLONE_VM);
+
+ BLANK();
+ DEFINE(IA64_CPUINFO_NSEC_PER_CYC_OFFSET,
+ offsetof (struct cpuinfo_ia64, nsec_per_cyc));
+ DEFINE(IA64_CPUINFO_PTCE_BASE_OFFSET,
+ offsetof (struct cpuinfo_ia64, ptce_base));
+ DEFINE(IA64_CPUINFO_PTCE_COUNT_OFFSET,
+ offsetof (struct cpuinfo_ia64, ptce_count));
+ DEFINE(IA64_CPUINFO_PTCE_STRIDE_OFFSET,
+ offsetof (struct cpuinfo_ia64, ptce_stride));
+ BLANK();
+ DEFINE(IA64_TIMESPEC_TV_NSEC_OFFSET,
+ offsetof (struct timespec, tv_nsec));
+
+ DEFINE(CLONE_SETTLS_BIT, 19);
+#if CLONE_SETTLS != (1<<19)
+# error "CLONE_SETTLS_BIT incorrect, please fix"
+#endif
+
+ BLANK();
+ DEFINE(IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET,
+ offsetof (struct ia64_mca_cpu, proc_state_dump));
+ DEFINE(IA64_MCA_CPU_STACK_OFFSET,
+ offsetof (struct ia64_mca_cpu, stack));
+ DEFINE(IA64_MCA_CPU_STACKFRAME_OFFSET,
+ offsetof (struct ia64_mca_cpu, stackframe));
+ DEFINE(IA64_MCA_CPU_RBSTORE_OFFSET,
+ offsetof (struct ia64_mca_cpu, rbstore));
+ DEFINE(IA64_MCA_CPU_INIT_STACK_OFFSET,
+ offsetof (struct ia64_mca_cpu, init_stack));
+ BLANK();
+ /* used by fsys_gettimeofday in arch/ia64/kernel/fsys.S */
+ DEFINE(IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET, offsetof (struct time_interpolator, addr));
+ DEFINE(IA64_TIME_INTERPOLATOR_SOURCE_OFFSET, offsetof (struct time_interpolator, source));
+ DEFINE(IA64_TIME_INTERPOLATOR_SHIFT_OFFSET, offsetof (struct time_interpolator, shift));
+ DEFINE(IA64_TIME_INTERPOLATOR_NSEC_OFFSET, offsetof (struct time_interpolator, nsec_per_cyc));
+ DEFINE(IA64_TIME_INTERPOLATOR_OFFSET_OFFSET, offsetof (struct time_interpolator, offset));
+ DEFINE(IA64_TIME_INTERPOLATOR_LAST_CYCLE_OFFSET, offsetof (struct time_interpolator, last_cycle));
+ DEFINE(IA64_TIME_INTERPOLATOR_LAST_COUNTER_OFFSET, offsetof (struct time_interpolator, last_counter));
+ DEFINE(IA64_TIME_INTERPOLATOR_JITTER_OFFSET, offsetof (struct time_interpolator, jitter));
+ DEFINE(IA64_TIME_INTERPOLATOR_MASK_OFFSET, offsetof (struct time_interpolator, mask));
+ DEFINE(IA64_TIME_SOURCE_CPU, TIME_SOURCE_CPU);
+ DEFINE(IA64_TIME_SOURCE_MMIO64, TIME_SOURCE_MMIO64);
+ DEFINE(IA64_TIME_SOURCE_MMIO32, TIME_SOURCE_MMIO32);
+ DEFINE(IA64_TIMESPEC_TV_NSEC_OFFSET, offsetof (struct timespec, tv_nsec));
+}
diff --git a/arch/ia64/kernel/brl_emu.c b/arch/ia64/kernel/brl_emu.c
new file mode 100644
index 0000000..0b286ca
--- /dev/null
+++ b/arch/ia64/kernel/brl_emu.c
@@ -0,0 +1,234 @@
+/*
+ * Emulation of the "brl" instruction for IA64 processors that
+ * don't support it in hardware.
+ * Author: Stephan Zeisset, Intel Corp. <Stephan.Zeisset@intel.com>
+ *
+ * 02/22/02 D. Mosberger Clear si_flgs, si_isr, and si_imm to avoid
+ * leaking kernel bits.
+ */
+
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <asm/uaccess.h>
+#include <asm/processor.h>
+
+extern char ia64_set_b1, ia64_set_b2, ia64_set_b3, ia64_set_b4, ia64_set_b5;
+
+struct illegal_op_return {
+ unsigned long fkt, arg1, arg2, arg3;
+};
+
+/*
+ * The unimplemented bits of a virtual address must be set
+ * to the value of the most significant implemented bit.
+ * unimpl_va_mask includes all unimplemented bits and
+ * the most significant implemented bit, so the result
+ * of an and operation with the mask must be all 0's
+ * or all 1's for the address to be valid.
+ */
+#define unimplemented_virtual_address(va) ( \
+ ((va) & local_cpu_data->unimpl_va_mask) != 0 && \
+ ((va) & local_cpu_data->unimpl_va_mask) != local_cpu_data->unimpl_va_mask \
+)
+
+/*
+ * The unimplemented bits of a physical address must be 0.
+ * unimpl_pa_mask includes all unimplemented bits, so the result
+ * of an and operation with the mask must be all 0's for the
+ * address to be valid.
+ */
+#define unimplemented_physical_address(pa) ( \
+ ((pa) & local_cpu_data->unimpl_pa_mask) != 0 \
+)
+
+/*
+ * Handle an illegal operation fault that was caused by an
+ * unimplemented "brl" instruction.
+ * If we are not successful (e.g because the illegal operation
+ * wasn't caused by a "brl" after all), we return -1.
+ * If we are successful, we return either 0 or the address
+ * of a "fixup" function for manipulating preserved register
+ * state.
+ */
+
+struct illegal_op_return
+ia64_emulate_brl (struct pt_regs *regs, unsigned long ar_ec)
+{
+ unsigned long bundle[2];
+ unsigned long opcode, btype, qp, offset, cpl;
+ unsigned long next_ip;
+ struct siginfo siginfo;
+ struct illegal_op_return rv;
+ long tmp_taken, unimplemented_address;
+
+ rv.fkt = (unsigned long) -1;
+
+ /*
+ * Decode the instruction bundle.
+ */
+
+ if (copy_from_user(bundle, (void *) (regs->cr_iip), sizeof(bundle)))
+ return rv;
+
+ next_ip = (unsigned long) regs->cr_iip + 16;
+
+ /* "brl" must be in slot 2. */
+ if (ia64_psr(regs)->ri != 1) return rv;
+
+ /* Must be "mlx" template */
+ if ((bundle[0] & 0x1e) != 0x4) return rv;
+
+ opcode = (bundle[1] >> 60);
+ btype = ((bundle[1] >> 29) & 0x7);
+ qp = ((bundle[1] >> 23) & 0x3f);
+ offset = ((bundle[1] & 0x0800000000000000L) << 4)
+ | ((bundle[1] & 0x00fffff000000000L) >> 32)
+ | ((bundle[1] & 0x00000000007fffffL) << 40)
+ | ((bundle[0] & 0xffff000000000000L) >> 24);
+
+ tmp_taken = regs->pr & (1L << qp);
+
+ switch(opcode) {
+
+ case 0xC:
+ /*
+ * Long Branch.
+ */
+ if (btype != 0) return rv;
+ rv.fkt = 0;
+ if (!(tmp_taken)) {
+ /*
+ * Qualifying predicate is 0.
+ * Skip instruction.
+ */
+ regs->cr_iip = next_ip;
+ ia64_psr(regs)->ri = 0;
+ return rv;
+ }
+ break;
+
+ case 0xD:
+ /*
+ * Long Call.
+ */
+ rv.fkt = 0;
+ if (!(tmp_taken)) {
+ /*
+ * Qualifying predicate is 0.
+ * Skip instruction.
+ */
+ regs->cr_iip = next_ip;
+ ia64_psr(regs)->ri = 0;
+ return rv;
+ }
+
+ /*
+ * BR[btype] = IP+16
+ */
+ switch(btype) {
+ case 0:
+ regs->b0 = next_ip;
+ break;
+ case 1:
+ rv.fkt = (unsigned long) &ia64_set_b1;
+ break;
+ case 2:
+ rv.fkt = (unsigned long) &ia64_set_b2;
+ break;
+ case 3:
+ rv.fkt = (unsigned long) &ia64_set_b3;
+ break;
+ case 4:
+ rv.fkt = (unsigned long) &ia64_set_b4;
+ break;
+ case 5:
+ rv.fkt = (unsigned long) &ia64_set_b5;
+ break;
+ case 6:
+ regs->b6 = next_ip;
+ break;
+ case 7:
+ regs->b7 = next_ip;
+ break;
+ }
+ rv.arg1 = next_ip;
+
+ /*
+ * AR[PFS].pfm = CFM
+ * AR[PFS].pec = AR[EC]
+ * AR[PFS].ppl = PSR.cpl
+ */
+ cpl = ia64_psr(regs)->cpl;
+ regs->ar_pfs = ((regs->cr_ifs & 0x3fffffffff)
+ | (ar_ec << 52) | (cpl << 62));
+
+ /*
+ * CFM.sof -= CFM.sol
+ * CFM.sol = 0
+ * CFM.sor = 0
+ * CFM.rrb.gr = 0
+ * CFM.rrb.fr = 0
+ * CFM.rrb.pr = 0
+ */
+ regs->cr_ifs = ((regs->cr_ifs & 0xffffffc00000007f)
+ - ((regs->cr_ifs >> 7) & 0x7f));
+
+ break;
+
+ default:
+ /*
+ * Unknown opcode.
+ */
+ return rv;
+
+ }
+
+ regs->cr_iip += offset;
+ ia64_psr(regs)->ri = 0;
+
+ if (ia64_psr(regs)->it == 0)
+ unimplemented_address = unimplemented_physical_address(regs->cr_iip);
+ else
+ unimplemented_address = unimplemented_virtual_address(regs->cr_iip);
+
+ if (unimplemented_address) {
+ /*
+ * The target address contains unimplemented bits.
+ */
+ printk(KERN_DEBUG "Woah! Unimplemented Instruction Address Trap!\n");
+ siginfo.si_signo = SIGILL;
+ siginfo.si_errno = 0;
+ siginfo.si_flags = 0;
+ siginfo.si_isr = 0;
+ siginfo.si_imm = 0;
+ siginfo.si_code = ILL_BADIADDR;
+ force_sig_info(SIGILL, &siginfo, current);
+ } else if (ia64_psr(regs)->tb) {
+ /*
+ * Branch Tracing is enabled.
+ * Force a taken branch signal.
+ */
+ siginfo.si_signo = SIGTRAP;
+ siginfo.si_errno = 0;
+ siginfo.si_code = TRAP_BRANCH;
+ siginfo.si_flags = 0;
+ siginfo.si_isr = 0;
+ siginfo.si_addr = 0;
+ siginfo.si_imm = 0;
+ force_sig_info(SIGTRAP, &siginfo, current);
+ } else if (ia64_psr(regs)->ss) {
+ /*
+ * Single Step is enabled.
+ * Force a trace signal.
+ */
+ siginfo.si_signo = SIGTRAP;
+ siginfo.si_errno = 0;
+ siginfo.si_code = TRAP_TRACE;
+ siginfo.si_flags = 0;
+ siginfo.si_isr = 0;
+ siginfo.si_addr = 0;
+ siginfo.si_imm = 0;
+ force_sig_info(SIGTRAP, &siginfo, current);
+ }
+ return rv;
+}
diff --git a/arch/ia64/kernel/cyclone.c b/arch/ia64/kernel/cyclone.c
new file mode 100644
index 0000000..768c7e4
--- /dev/null
+++ b/arch/ia64/kernel/cyclone.c
@@ -0,0 +1,109 @@
+#include <linux/module.h>
+#include <linux/smp.h>
+#include <linux/time.h>
+#include <linux/errno.h>
+#include <asm/io.h>
+
+/* IBM Summit (EXA) Cyclone counter code*/
+#define CYCLONE_CBAR_ADDR 0xFEB00CD0
+#define CYCLONE_PMCC_OFFSET 0x51A0
+#define CYCLONE_MPMC_OFFSET 0x51D0
+#define CYCLONE_MPCS_OFFSET 0x51A8
+#define CYCLONE_TIMER_FREQ 100000000
+
+int use_cyclone;
+void __init cyclone_setup(void)
+{
+ use_cyclone = 1;
+}
+
+
+struct time_interpolator cyclone_interpolator = {
+ .source = TIME_SOURCE_MMIO64,
+ .shift = 16,
+ .frequency = CYCLONE_TIMER_FREQ,
+ .drift = -100,
+ .mask = (1LL << 40) - 1
+};
+
+int __init init_cyclone_clock(void)
+{
+ u64* reg;
+ u64 base; /* saved cyclone base address */
+ u64 offset; /* offset from pageaddr to cyclone_timer register */
+ int i;
+ u32* volatile cyclone_timer; /* Cyclone MPMC0 register */
+
+ if (!use_cyclone)
+ return -ENODEV;
+
+ printk(KERN_INFO "Summit chipset: Starting Cyclone Counter.\n");
+
+ /* find base address */
+ offset = (CYCLONE_CBAR_ADDR);
+ reg = (u64*)ioremap_nocache(offset, sizeof(u64));
+ if(!reg){
+ printk(KERN_ERR "Summit chipset: Could not find valid CBAR register.\n");
+ use_cyclone = 0;
+ return -ENODEV;
+ }
+ base = readq(reg);
+ if(!base){
+ printk(KERN_ERR "Summit chipset: Could not find valid CBAR value.\n");
+ use_cyclone = 0;
+ return -ENODEV;
+ }
+ iounmap(reg);
+
+ /* setup PMCC */
+ offset = (base + CYCLONE_PMCC_OFFSET);
+ reg = (u64*)ioremap_nocache(offset, sizeof(u64));
+ if(!reg){
+ printk(KERN_ERR "Summit chipset: Could not find valid PMCC register.\n");
+ use_cyclone = 0;
+ return -ENODEV;
+ }
+ writel(0x00000001,reg);
+ iounmap(reg);
+
+ /* setup MPCS */
+ offset = (base + CYCLONE_MPCS_OFFSET);
+ reg = (u64*)ioremap_nocache(offset, sizeof(u64));
+ if(!reg){
+ printk(KERN_ERR "Summit chipset: Could not find valid MPCS register.\n");
+ use_cyclone = 0;
+ return -ENODEV;
+ }
+ writel(0x00000001,reg);
+ iounmap(reg);
+
+ /* map in cyclone_timer */
+ offset = (base + CYCLONE_MPMC_OFFSET);
+ cyclone_timer = (u32*)ioremap_nocache(offset, sizeof(u32));
+ if(!cyclone_timer){
+ printk(KERN_ERR "Summit chipset: Could not find valid MPMC register.\n");
+ use_cyclone = 0;
+ return -ENODEV;
+ }
+
+ /*quick test to make sure its ticking*/
+ for(i=0; i<3; i++){
+ u32 old = readl(cyclone_timer);
+ int stall = 100;
+ while(stall--) barrier();
+ if(readl(cyclone_timer) == old){
+ printk(KERN_ERR "Summit chipset: Counter not counting! DISABLED\n");
+ iounmap(cyclone_timer);
+ cyclone_timer = 0;
+ use_cyclone = 0;
+ return -ENODEV;
+ }
+ }
+ /* initialize last tick */
+ cyclone_interpolator.addr = cyclone_timer;
+ register_time_interpolator(&cyclone_interpolator);
+
+ return 0;
+}
+
+__initcall(init_cyclone_clock);
diff --git a/arch/ia64/kernel/domain.c b/arch/ia64/kernel/domain.c
new file mode 100644
index 0000000..fe532c9
--- /dev/null
+++ b/arch/ia64/kernel/domain.c
@@ -0,0 +1,382 @@
+/*
+ * arch/ia64/kernel/domain.c
+ * Architecture specific sched-domains builder.
+ *
+ * Copyright (C) 2004 Jesse Barnes
+ * Copyright (C) 2004 Silicon Graphics, Inc.
+ */
+
+#include <linux/sched.h>
+#include <linux/percpu.h>
+#include <linux/slab.h>
+#include <linux/cpumask.h>
+#include <linux/init.h>
+#include <linux/topology.h>
+#include <linux/nodemask.h>
+
+#define SD_NODES_PER_DOMAIN 6
+
+#ifdef CONFIG_NUMA
+/**
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
+ *
+ * Find the next node to include in a given scheduling domain. Simply
+ * finds the closest node not already in the @used_nodes map.
+ *
+ * Should use nodemask_t.
+ */
+static int __devinit find_next_best_node(int node, unsigned long *used_nodes)
+{
+ int i, n, val, min_val, best_node = 0;
+
+ min_val = INT_MAX;
+
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ /* Start at @node */
+ n = (node + i) % MAX_NUMNODES;
+
+ if (!nr_cpus_node(n))
+ continue;
+
+ /* Skip already used nodes */
+ if (test_bit(n, used_nodes))
+ continue;
+
+ /* Simple min distance search */
+ val = node_distance(node, n);
+
+ if (val < min_val) {
+ min_val = val;
+ best_node = n;
+ }
+ }
+
+ set_bit(best_node, used_nodes);
+ return best_node;
+}
+
+/**
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @size: number of nodes to include in this span
+ *
+ * Given a node, construct a good cpumask for its sched_domain to span. It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
+ */
+static cpumask_t __devinit sched_domain_node_span(int node)
+{
+ int i;
+ cpumask_t span, nodemask;
+ DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
+
+ cpus_clear(span);
+ bitmap_zero(used_nodes, MAX_NUMNODES);
+
+ nodemask = node_to_cpumask(node);
+ cpus_or(span, span, nodemask);
+ set_bit(node, used_nodes);
+
+ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
+ int next_node = find_next_best_node(node, used_nodes);
+ nodemask = node_to_cpumask(next_node);
+ cpus_or(span, span, nodemask);
+ }
+
+ return span;
+}
+#endif
+
+/*
+ * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
+ * can switch it on easily if needed.
+ */
+#ifdef CONFIG_SCHED_SMT
+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
+static struct sched_group sched_group_cpus[NR_CPUS];
+static int __devinit cpu_to_cpu_group(int cpu)
+{
+ return cpu;
+}
+#endif
+
+static DEFINE_PER_CPU(struct sched_domain, phys_domains);
+static struct sched_group sched_group_phys[NR_CPUS];
+static int __devinit cpu_to_phys_group(int cpu)
+{
+#ifdef CONFIG_SCHED_SMT
+ return first_cpu(cpu_sibling_map[cpu]);
+#else
+ return cpu;
+#endif
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * The init_sched_build_groups can't handle what we want to do with node
+ * groups, so roll our own. Now each node has its own list of groups which
+ * gets dynamically allocated.
+ */
+static DEFINE_PER_CPU(struct sched_domain, node_domains);
+static struct sched_group *sched_group_nodes[MAX_NUMNODES];
+
+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
+static struct sched_group sched_group_allnodes[MAX_NUMNODES];
+
+static int __devinit cpu_to_allnodes_group(int cpu)
+{
+ return cpu_to_node(cpu);
+}
+#endif
+
+/*
+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
+ */
+void __devinit arch_init_sched_domains(void)
+{
+ int i;
+ cpumask_t cpu_default_map;
+
+ /*
+ * Setup mask for cpus without special case scheduling requirements.
+ * For now this just excludes isolated cpus, but could be used to
+ * exclude other special cases in the future.
+ */
+ cpus_complement(cpu_default_map, cpu_isolated_map);
+ cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
+
+ /*
+ * Set up domains. Isolated domains just stay on the dummy domain.
+ */
+ for_each_cpu_mask(i, cpu_default_map) {
+ int group;
+ struct sched_domain *sd = NULL, *p;
+ cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
+
+ cpus_and(nodemask, nodemask, cpu_default_map);
+
+#ifdef CONFIG_NUMA
+ if (num_online_cpus()
+ > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+ sd = &per_cpu(allnodes_domains, i);
+ *sd = SD_ALLNODES_INIT;
+ sd->span = cpu_default_map;
+ group = cpu_to_allnodes_group(i);
+ sd->groups = &sched_group_allnodes[group];
+ p = sd;
+ } else
+ p = NULL;
+
+ sd = &per_cpu(node_domains, i);
+ *sd = SD_NODE_INIT;
+ sd->span = sched_domain_node_span(cpu_to_node(i));
+ sd->parent = p;
+ cpus_and(sd->span, sd->span, cpu_default_map);
+#endif
+
+ p = sd;
+ sd = &per_cpu(phys_domains, i);
+ group = cpu_to_phys_group(i);
+ *sd = SD_CPU_INIT;
+ sd->span = nodemask;
+ sd->parent = p;
+ sd->groups = &sched_group_phys[group];
+
+#ifdef CONFIG_SCHED_SMT
+ p = sd;
+ sd = &per_cpu(cpu_domains, i);
+ group = cpu_to_cpu_group(i);
+ *sd = SD_SIBLING_INIT;
+ sd->span = cpu_sibling_map[i];
+ cpus_and(sd->span, sd->span, cpu_default_map);
+ sd->parent = p;
+ sd->groups = &sched_group_cpus[group];
+#endif
+ }
+
+#ifdef CONFIG_SCHED_SMT
+ /* Set up CPU (sibling) groups */
+ for_each_cpu_mask(i, cpu_default_map) {
+ cpumask_t this_sibling_map = cpu_sibling_map[i];
+ cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
+ if (i != first_cpu(this_sibling_map))
+ continue;
+
+ init_sched_build_groups(sched_group_cpus, this_sibling_map,
+ &cpu_to_cpu_group);
+ }
+#endif
+
+ /* Set up physical groups */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ cpumask_t nodemask = node_to_cpumask(i);
+
+ cpus_and(nodemask, nodemask, cpu_default_map);
+ if (cpus_empty(nodemask))
+ continue;
+
+ init_sched_build_groups(sched_group_phys, nodemask,
+ &cpu_to_phys_group);
+ }
+
+#ifdef CONFIG_NUMA
+ init_sched_build_groups(sched_group_allnodes, cpu_default_map,
+ &cpu_to_allnodes_group);
+
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ /* Set up node groups */
+ struct sched_group *sg, *prev;
+ cpumask_t nodemask = node_to_cpumask(i);
+ cpumask_t domainspan;
+ cpumask_t covered = CPU_MASK_NONE;
+ int j;
+
+ cpus_and(nodemask, nodemask, cpu_default_map);
+ if (cpus_empty(nodemask))
+ continue;
+
+ domainspan = sched_domain_node_span(i);
+ cpus_and(domainspan, domainspan, cpu_default_map);
+
+ sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+ sched_group_nodes[i] = sg;
+ for_each_cpu_mask(j, nodemask) {
+ struct sched_domain *sd;
+ sd = &per_cpu(node_domains, j);
+ sd->groups = sg;
+ if (sd->groups == NULL) {
+ /* Turn off balancing if we have no groups */
+ sd->flags = 0;
+ }
+ }
+ if (!sg) {
+ printk(KERN_WARNING
+ "Can not alloc domain group for node %d\n", i);
+ continue;
+ }
+ sg->cpu_power = 0;
+ sg->cpumask = nodemask;
+ cpus_or(covered, covered, nodemask);
+ prev = sg;
+
+ for (j = 0; j < MAX_NUMNODES; j++) {
+ cpumask_t tmp, notcovered;
+ int n = (i + j) % MAX_NUMNODES;
+
+ cpus_complement(notcovered, covered);
+ cpus_and(tmp, notcovered, cpu_default_map);
+ cpus_and(tmp, tmp, domainspan);
+ if (cpus_empty(tmp))
+ break;
+
+ nodemask = node_to_cpumask(n);
+ cpus_and(tmp, tmp, nodemask);
+ if (cpus_empty(tmp))
+ continue;
+
+ sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+ if (!sg) {
+ printk(KERN_WARNING
+ "Can not alloc domain group for node %d\n", j);
+ break;
+ }
+ sg->cpu_power = 0;
+ sg->cpumask = tmp;
+ cpus_or(covered, covered, tmp);
+ prev->next = sg;
+ prev = sg;
+ }
+ prev->next = sched_group_nodes[i];
+ }
+#endif
+
+ /* Calculate CPU power for physical packages and nodes */
+ for_each_cpu_mask(i, cpu_default_map) {
+ int power;
+ struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+ sd = &per_cpu(cpu_domains, i);
+ power = SCHED_LOAD_SCALE;
+ sd->groups->cpu_power = power;
+#endif
+
+ sd = &per_cpu(phys_domains, i);
+ power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+ (cpus_weight(sd->groups->cpumask)-1) / 10;
+ sd->groups->cpu_power = power;
+
+#ifdef CONFIG_NUMA
+ sd = &per_cpu(allnodes_domains, i);
+ if (sd->groups) {
+ power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+ (cpus_weight(sd->groups->cpumask)-1) / 10;
+ sd->groups->cpu_power = power;
+ }
+#endif
+ }
+
+#ifdef CONFIG_NUMA
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ struct sched_group *sg = sched_group_nodes[i];
+ int j;
+
+ if (sg == NULL)
+ continue;
+next_sg:
+ for_each_cpu_mask(j, sg->cpumask) {
+ struct sched_domain *sd;
+ int power;
+
+ sd = &per_cpu(phys_domains, j);
+ if (j != first_cpu(sd->groups->cpumask)) {
+ /*
+ * Only add "power" once for each
+ * physical package.
+ */
+ continue;
+ }
+ power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+ (cpus_weight(sd->groups->cpumask)-1) / 10;
+
+ sg->cpu_power += power;
+ }
+ sg = sg->next;
+ if (sg != sched_group_nodes[i])
+ goto next_sg;
+ }
+#endif
+
+ /* Attach the domains */
+ for_each_online_cpu(i) {
+ struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+ sd = &per_cpu(cpu_domains, i);
+#else
+ sd = &per_cpu(phys_domains, i);
+#endif
+ cpu_attach_domain(sd, i);
+ }
+}
+
+void __devinit arch_destroy_sched_domains(void)
+{
+#ifdef CONFIG_NUMA
+ int i;
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ struct sched_group *oldsg, *sg = sched_group_nodes[i];
+ if (sg == NULL)
+ continue;
+ sg = sg->next;
+next_sg:
+ oldsg = sg;
+ sg = sg->next;
+ kfree(oldsg);
+ if (oldsg != sched_group_nodes[i])
+ goto next_sg;
+ sched_group_nodes[i] = NULL;
+ }
+#endif
+}
+
diff --git a/arch/ia64/kernel/efi.c b/arch/ia64/kernel/efi.c
new file mode 100644
index 0000000..4a3b1aa
--- /dev/null
+++ b/arch/ia64/kernel/efi.c
@@ -0,0 +1,832 @@
+/*
+ * Extensible Firmware Interface
+ *
+ * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999-2003 Hewlett-Packard Co.
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Stephane Eranian <eranian@hpl.hp.com>
+ *
+ * All EFI Runtime Services are not implemented yet as EFI only
+ * supports physical mode addressing on SoftSDV. This is to be fixed
+ * in a future version. --drummond 1999-07-20
+ *
+ * Implemented EFI runtime services and virtual mode calls. --davidm
+ *
+ * Goutham Rao: <goutham.rao@intel.com>
+ * Skip non-WB memory and ignore empty memory ranges.
+ */
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/time.h>
+#include <linux/efi.h>
+
+#include <asm/io.h>
+#include <asm/kregs.h>
+#include <asm/meminit.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/mca.h>
+
+#define EFI_DEBUG 0
+
+extern efi_status_t efi_call_phys (void *, ...);
+
+struct efi efi;
+EXPORT_SYMBOL(efi);
+static efi_runtime_services_t *runtime;
+static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
+
+#define efi_call_virt(f, args...) (*(f))(args)
+
+#define STUB_GET_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_time_cap_t *atc = NULL; \
+ efi_status_t ret; \
+ \
+ if (tc) \
+ atc = adjust_arg(tc); \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_SET_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_set_time (efi_time_t *tm) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
+ adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_time_t *atm = NULL; \
+ efi_status_t ret; \
+ \
+ if (tm) \
+ atm = adjust_arg(tm); \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
+ enabled, atm); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_VARIABLE(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
+ unsigned long *data_size, void *data) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ u32 *aattr = NULL; \
+ efi_status_t ret; \
+ \
+ if (attr) \
+ aattr = adjust_arg(attr); \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
+ adjust_arg(name), adjust_arg(vendor), aattr, \
+ adjust_arg(data_size), adjust_arg(data)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
+ adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_SET_VARIABLE(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
+ unsigned long data_size, void *data) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
+ adjust_arg(name), adjust_arg(vendor), attr, data_size, \
+ adjust_arg(data)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_next_high_mono_count (u32 *count) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
+ __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
+static void \
+prefix##_reset_system (int reset_type, efi_status_t status, \
+ unsigned long data_size, efi_char16_t *data) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_char16_t *adata = NULL; \
+ \
+ if (data) \
+ adata = adjust_arg(data); \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
+ reset_type, status, data_size, adata); \
+ /* should not return, but just in case... */ \
+ ia64_load_scratch_fpregs(fr); \
+}
+
+#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
+
+STUB_GET_TIME(phys, phys_ptr)
+STUB_SET_TIME(phys, phys_ptr)
+STUB_GET_WAKEUP_TIME(phys, phys_ptr)
+STUB_SET_WAKEUP_TIME(phys, phys_ptr)
+STUB_GET_VARIABLE(phys, phys_ptr)
+STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
+STUB_SET_VARIABLE(phys, phys_ptr)
+STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
+STUB_RESET_SYSTEM(phys, phys_ptr)
+
+#define id(arg) arg
+
+STUB_GET_TIME(virt, id)
+STUB_SET_TIME(virt, id)
+STUB_GET_WAKEUP_TIME(virt, id)
+STUB_SET_WAKEUP_TIME(virt, id)
+STUB_GET_VARIABLE(virt, id)
+STUB_GET_NEXT_VARIABLE(virt, id)
+STUB_SET_VARIABLE(virt, id)
+STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
+STUB_RESET_SYSTEM(virt, id)
+
+void
+efi_gettimeofday (struct timespec *ts)
+{
+ efi_time_t tm;
+
+ memset(ts, 0, sizeof(ts));
+ if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
+ return;
+
+ ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
+ ts->tv_nsec = tm.nanosecond;
+}
+
+static int
+is_available_memory (efi_memory_desc_t *md)
+{
+ if (!(md->attribute & EFI_MEMORY_WB))
+ return 0;
+
+ switch (md->type) {
+ case EFI_LOADER_CODE:
+ case EFI_LOADER_DATA:
+ case EFI_BOOT_SERVICES_CODE:
+ case EFI_BOOT_SERVICES_DATA:
+ case EFI_CONVENTIONAL_MEMORY:
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers
+ * memory that is normally available to the kernel, issue a warning that some memory
+ * is being ignored.
+ */
+static void
+trim_bottom (efi_memory_desc_t *md, u64 start_addr)
+{
+ u64 num_skipped_pages;
+
+ if (md->phys_addr >= start_addr || !md->num_pages)
+ return;
+
+ num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
+ if (num_skipped_pages > md->num_pages)
+ num_skipped_pages = md->num_pages;
+
+ if (is_available_memory(md))
+ printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
+ "at 0x%lx\n", __FUNCTION__,
+ (num_skipped_pages << EFI_PAGE_SHIFT) >> 10,
+ md->phys_addr, start_addr - IA64_GRANULE_SIZE);
+ /*
+ * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory
+ * descriptor list to become unsorted. In such a case, md->num_pages will be
+ * zero, so the Right Thing will happen.
+ */
+ md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT;
+ md->num_pages -= num_skipped_pages;
+}
+
+static void
+trim_top (efi_memory_desc_t *md, u64 end_addr)
+{
+ u64 num_dropped_pages, md_end_addr;
+
+ md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
+
+ if (md_end_addr <= end_addr || !md->num_pages)
+ return;
+
+ num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT;
+ if (num_dropped_pages > md->num_pages)
+ num_dropped_pages = md->num_pages;
+
+ if (is_available_memory(md))
+ printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
+ "at 0x%lx\n", __FUNCTION__,
+ (num_dropped_pages << EFI_PAGE_SHIFT) >> 10,
+ md->phys_addr, end_addr);
+ md->num_pages -= num_dropped_pages;
+}
+
+/*
+ * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
+ * has memory that is available for OS use.
+ */
+void
+efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
+{
+ int prev_valid = 0;
+ struct range {
+ u64 start;
+ u64 end;
+ } prev, curr;
+ void *efi_map_start, *efi_map_end, *p, *q;
+ efi_memory_desc_t *md, *check_md;
+ u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0;
+ unsigned long total_mem = 0;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+
+ /* skip over non-WB memory descriptors; that's all we're interested in... */
+ if (!(md->attribute & EFI_MEMORY_WB))
+ continue;
+
+ /*
+ * granule_addr is the base of md's first granule.
+ * [granule_addr - first_non_wb_addr) is guaranteed to
+ * be contiguous WB memory.
+ */
+ granule_addr = GRANULEROUNDDOWN(md->phys_addr);
+ first_non_wb_addr = max(first_non_wb_addr, granule_addr);
+
+ if (first_non_wb_addr < md->phys_addr) {
+ trim_bottom(md, granule_addr + IA64_GRANULE_SIZE);
+ granule_addr = GRANULEROUNDDOWN(md->phys_addr);
+ first_non_wb_addr = max(first_non_wb_addr, granule_addr);
+ }
+
+ for (q = p; q < efi_map_end; q += efi_desc_size) {
+ check_md = q;
+
+ if ((check_md->attribute & EFI_MEMORY_WB) &&
+ (check_md->phys_addr == first_non_wb_addr))
+ first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT;
+ else
+ break; /* non-WB or hole */
+ }
+
+ last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr);
+ if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT))
+ trim_top(md, last_granule_addr);
+
+ if (is_available_memory(md)) {
+ if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) {
+ if (md->phys_addr >= max_addr)
+ continue;
+ md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
+ first_non_wb_addr = max_addr;
+ }
+
+ if (total_mem >= mem_limit)
+ continue;
+
+ if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) {
+ unsigned long limit_addr = md->phys_addr;
+
+ limit_addr += mem_limit - total_mem;
+ limit_addr = GRANULEROUNDDOWN(limit_addr);
+
+ if (md->phys_addr > limit_addr)
+ continue;
+
+ md->num_pages = (limit_addr - md->phys_addr) >>
+ EFI_PAGE_SHIFT;
+ first_non_wb_addr = max_addr = md->phys_addr +
+ (md->num_pages << EFI_PAGE_SHIFT);
+ }
+ total_mem += (md->num_pages << EFI_PAGE_SHIFT);
+
+ if (md->num_pages == 0)
+ continue;
+
+ curr.start = PAGE_OFFSET + md->phys_addr;
+ curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
+
+ if (!prev_valid) {
+ prev = curr;
+ prev_valid = 1;
+ } else {
+ if (curr.start < prev.start)
+ printk(KERN_ERR "Oops: EFI memory table not ordered!\n");
+
+ if (prev.end == curr.start) {
+ /* merge two consecutive memory ranges */
+ prev.end = curr.end;
+ } else {
+ start = PAGE_ALIGN(prev.start);
+ end = prev.end & PAGE_MASK;
+ if ((end > start) && (*callback)(start, end, arg) < 0)
+ return;
+ prev = curr;
+ }
+ }
+ }
+ }
+ if (prev_valid) {
+ start = PAGE_ALIGN(prev.start);
+ end = prev.end & PAGE_MASK;
+ if (end > start)
+ (*callback)(start, end, arg);
+ }
+}
+
+/*
+ * Look for the PAL_CODE region reported by EFI and maps it using an
+ * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
+ * Abstraction Layer chapter 11 in ADAG
+ */
+
+void *
+efi_get_pal_addr (void)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+ int pal_code_count = 0;
+ u64 vaddr, mask;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->type != EFI_PAL_CODE)
+ continue;
+
+ if (++pal_code_count > 1) {
+ printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
+ md->phys_addr);
+ continue;
+ }
+ /*
+ * The only ITLB entry in region 7 that is used is the one installed by
+ * __start(). That entry covers a 64MB range.
+ */
+ mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
+ vaddr = PAGE_OFFSET + md->phys_addr;
+
+ /*
+ * We must check that the PAL mapping won't overlap with the kernel
+ * mapping.
+ *
+ * PAL code is guaranteed to be aligned on a power of 2 between 4k and
+ * 256KB and that only one ITR is needed to map it. This implies that the
+ * PAL code is always aligned on its size, i.e., the closest matching page
+ * size supported by the TLB. Therefore PAL code is guaranteed never to
+ * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
+ * now the following test is enough to determine whether or not we need a
+ * dedicated ITR for the PAL code.
+ */
+ if ((vaddr & mask) == (KERNEL_START & mask)) {
+ printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
+ __FUNCTION__);
+ continue;
+ }
+
+ if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
+ panic("Woah! PAL code size bigger than a granule!");
+
+#if EFI_DEBUG
+ mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
+
+ printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
+ smp_processor_id(), md->phys_addr,
+ md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
+ vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
+#endif
+ return __va(md->phys_addr);
+ }
+ printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
+ __FUNCTION__);
+ return NULL;
+}
+
+void
+efi_map_pal_code (void)
+{
+ void *pal_vaddr = efi_get_pal_addr ();
+ u64 psr;
+
+ if (!pal_vaddr)
+ return;
+
+ /*
+ * Cannot write to CRx with PSR.ic=1
+ */
+ psr = ia64_clear_ic();
+ ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
+ pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
+ IA64_GRANULE_SHIFT);
+ ia64_set_psr(psr); /* restore psr */
+ ia64_srlz_i();
+}
+
+void __init
+efi_init (void)
+{
+ void *efi_map_start, *efi_map_end;
+ efi_config_table_t *config_tables;
+ efi_char16_t *c16;
+ u64 efi_desc_size;
+ char *cp, *end, vendor[100] = "unknown";
+ extern char saved_command_line[];
+ int i;
+
+ /* it's too early to be able to use the standard kernel command line support... */
+ for (cp = saved_command_line; *cp; ) {
+ if (memcmp(cp, "mem=", 4) == 0) {
+ cp += 4;
+ mem_limit = memparse(cp, &end);
+ if (end != cp)
+ break;
+ cp = end;
+ } else if (memcmp(cp, "max_addr=", 9) == 0) {
+ cp += 9;
+ max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
+ if (end != cp)
+ break;
+ cp = end;
+ } else {
+ while (*cp != ' ' && *cp)
+ ++cp;
+ while (*cp == ' ')
+ ++cp;
+ }
+ }
+ if (max_addr != ~0UL)
+ printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
+
+ efi.systab = __va(ia64_boot_param->efi_systab);
+
+ /*
+ * Verify the EFI Table
+ */
+ if (efi.systab == NULL)
+ panic("Woah! Can't find EFI system table.\n");
+ if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+ panic("Woah! EFI system table signature incorrect\n");
+ if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
+ printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
+ "got %d.%02d, expected %d.%02d\n",
+ efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
+ EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
+
+ config_tables = __va(efi.systab->tables);
+
+ /* Show what we know for posterity */
+ c16 = __va(efi.systab->fw_vendor);
+ if (c16) {
+ for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
+ vendor[i] = *c16++;
+ vendor[i] = '\0';
+ }
+
+ printk(KERN_INFO "EFI v%u.%.02u by %s:",
+ efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
+
+ for (i = 0; i < (int) efi.systab->nr_tables; i++) {
+ if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
+ efi.mps = __va(config_tables[i].table);
+ printk(" MPS=0x%lx", config_tables[i].table);
+ } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
+ efi.acpi20 = __va(config_tables[i].table);
+ printk(" ACPI 2.0=0x%lx", config_tables[i].table);
+ } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
+ efi.acpi = __va(config_tables[i].table);
+ printk(" ACPI=0x%lx", config_tables[i].table);
+ } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
+ efi.smbios = __va(config_tables[i].table);
+ printk(" SMBIOS=0x%lx", config_tables[i].table);
+ } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
+ efi.sal_systab = __va(config_tables[i].table);
+ printk(" SALsystab=0x%lx", config_tables[i].table);
+ } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
+ efi.hcdp = __va(config_tables[i].table);
+ printk(" HCDP=0x%lx", config_tables[i].table);
+ }
+ }
+ printk("\n");
+
+ runtime = __va(efi.systab->runtime);
+ efi.get_time = phys_get_time;
+ efi.set_time = phys_set_time;
+ efi.get_wakeup_time = phys_get_wakeup_time;
+ efi.set_wakeup_time = phys_set_wakeup_time;
+ efi.get_variable = phys_get_variable;
+ efi.get_next_variable = phys_get_next_variable;
+ efi.set_variable = phys_set_variable;
+ efi.get_next_high_mono_count = phys_get_next_high_mono_count;
+ efi.reset_system = phys_reset_system;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+#if EFI_DEBUG
+ /* print EFI memory map: */
+ {
+ efi_memory_desc_t *md;
+ void *p;
+
+ for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
+ md = p;
+ printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
+ i, md->type, md->attribute, md->phys_addr,
+ md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
+ md->num_pages >> (20 - EFI_PAGE_SHIFT));
+ }
+ }
+#endif
+
+ efi_map_pal_code();
+ efi_enter_virtual_mode();
+}
+
+void
+efi_enter_virtual_mode (void)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ efi_status_t status;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->attribute & EFI_MEMORY_RUNTIME) {
+ /*
+ * Some descriptors have multiple bits set, so the order of
+ * the tests is relevant.
+ */
+ if (md->attribute & EFI_MEMORY_WB) {
+ md->virt_addr = (u64) __va(md->phys_addr);
+ } else if (md->attribute & EFI_MEMORY_UC) {
+ md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+ } else if (md->attribute & EFI_MEMORY_WC) {
+#if 0
+ md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
+ | _PAGE_D
+ | _PAGE_MA_WC
+ | _PAGE_PL_0
+ | _PAGE_AR_RW));
+#else
+ printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
+ md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+#endif
+ } else if (md->attribute & EFI_MEMORY_WT) {
+#if 0
+ md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
+ | _PAGE_D | _PAGE_MA_WT
+ | _PAGE_PL_0
+ | _PAGE_AR_RW));
+#else
+ printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
+ md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+#endif
+ }
+ }
+ }
+
+ status = efi_call_phys(__va(runtime->set_virtual_address_map),
+ ia64_boot_param->efi_memmap_size,
+ efi_desc_size, ia64_boot_param->efi_memdesc_version,
+ ia64_boot_param->efi_memmap);
+ if (status != EFI_SUCCESS) {
+ printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
+ "(status=%lu)\n", status);
+ return;
+ }
+
+ /*
+ * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
+ */
+ efi.get_time = virt_get_time;
+ efi.set_time = virt_set_time;
+ efi.get_wakeup_time = virt_get_wakeup_time;
+ efi.set_wakeup_time = virt_set_wakeup_time;
+ efi.get_variable = virt_get_variable;
+ efi.get_next_variable = virt_get_next_variable;
+ efi.set_variable = virt_set_variable;
+ efi.get_next_high_mono_count = virt_get_next_high_mono_count;
+ efi.reset_system = virt_reset_system;
+}
+
+/*
+ * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
+ * this type, other I/O port ranges should be described via ACPI.
+ */
+u64
+efi_get_iobase (void)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
+ if (md->attribute & EFI_MEMORY_UC)
+ return md->phys_addr;
+ }
+ }
+ return 0;
+}
+
+u32
+efi_mem_type (unsigned long phys_addr)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+
+ if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
+ return md->type;
+ }
+ return 0;
+}
+
+u64
+efi_mem_attributes (unsigned long phys_addr)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+
+ if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
+ return md->attribute;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(efi_mem_attributes);
+
+int
+valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+
+ if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
+ if (!(md->attribute & EFI_MEMORY_WB))
+ return 0;
+
+ if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
+ *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+int __init
+efi_uart_console_only(void)
+{
+ efi_status_t status;
+ char *s, name[] = "ConOut";
+ efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
+ efi_char16_t *utf16, name_utf16[32];
+ unsigned char data[1024];
+ unsigned long size = sizeof(data);
+ struct efi_generic_dev_path *hdr, *end_addr;
+ int uart = 0;
+
+ /* Convert to UTF-16 */
+ utf16 = name_utf16;
+ s = name;
+ while (*s)
+ *utf16++ = *s++ & 0x7f;
+ *utf16 = 0;
+
+ status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
+ if (status != EFI_SUCCESS) {
+ printk(KERN_ERR "No EFI %s variable?\n", name);
+ return 0;
+ }
+
+ hdr = (struct efi_generic_dev_path *) data;
+ end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
+ while (hdr < end_addr) {
+ if (hdr->type == EFI_DEV_MSG &&
+ hdr->sub_type == EFI_DEV_MSG_UART)
+ uart = 1;
+ else if (hdr->type == EFI_DEV_END_PATH ||
+ hdr->type == EFI_DEV_END_PATH2) {
+ if (!uart)
+ return 0;
+ if (hdr->sub_type == EFI_DEV_END_ENTIRE)
+ return 1;
+ uart = 0;
+ }
+ hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
+ }
+ printk(KERN_ERR "Malformed %s value\n", name);
+ return 0;
+}
diff --git a/arch/ia64/kernel/efi_stub.S b/arch/ia64/kernel/efi_stub.S
new file mode 100644
index 0000000..5a7fe70
--- /dev/null
+++ b/arch/ia64/kernel/efi_stub.S
@@ -0,0 +1,86 @@
+/*
+ * EFI call stub.
+ *
+ * Copyright (C) 1999-2001 Hewlett-Packard Co
+ * David Mosberger <davidm@hpl.hp.com>
+ *
+ * This stub allows us to make EFI calls in physical mode with interrupts
+ * turned off. We need this because we can't call SetVirtualMap() until
+ * the kernel has booted far enough to allow allocation of struct vma_struct
+ * entries (which we would need to map stuff with memory attributes other
+ * than uncached or writeback...). Since the GetTime() service gets called
+ * earlier than that, we need to be able to make physical mode EFI calls from
+ * the kernel.
+ */
+
+/*
+ * PSR settings as per SAL spec (Chapter 8 in the "IA-64 System
+ * Abstraction Layer Specification", revision 2.6e). Note that
+ * psr.dfl and psr.dfh MUST be cleared, despite what this manual says.
+ * Otherwise, SAL dies whenever it's trying to do an IA-32 BIOS call
+ * (the br.ia instruction fails unless psr.dfl and psr.dfh are
+ * cleared). Fortunately, SAL promises not to touch the floating
+ * point regs, so at least we don't have to save f2-f127.
+ */
+#define PSR_BITS_TO_CLEAR \
+ (IA64_PSR_I | IA64_PSR_IT | IA64_PSR_DT | IA64_PSR_RT | \
+ IA64_PSR_DD | IA64_PSR_SS | IA64_PSR_RI | IA64_PSR_ED | \
+ IA64_PSR_DFL | IA64_PSR_DFH)
+
+#define PSR_BITS_TO_SET \
+ (IA64_PSR_BN)
+
+#include <asm/processor.h>
+#include <asm/asmmacro.h>
+
+/*
+ * Inputs:
+ * in0 = address of function descriptor of EFI routine to call
+ * in1..in7 = arguments to routine
+ *
+ * Outputs:
+ * r8 = EFI_STATUS returned by called function
+ */
+
+GLOBAL_ENTRY(efi_call_phys)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc loc1=ar.pfs,8,7,7,0
+ ld8 r2=[in0],8 // load EFI function's entry point
+ mov loc0=rp
+ .body
+ ;;
+ mov loc2=gp // save global pointer
+ mov loc4=ar.rsc // save RSE configuration
+ mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ ;;
+ ld8 gp=[in0] // load EFI function's global pointer
+ movl r16=PSR_BITS_TO_CLEAR
+ mov loc3=psr // save processor status word
+ movl r17=PSR_BITS_TO_SET
+ ;;
+ or loc3=loc3,r17
+ mov b6=r2
+ ;;
+ andcm r16=loc3,r16 // get psr with IT, DT, and RT bits cleared
+ br.call.sptk.many rp=ia64_switch_mode_phys
+.ret0: mov out4=in5
+ mov out0=in1
+ mov out1=in2
+ mov out2=in3
+ mov out3=in4
+ mov out5=in6
+ mov out6=in7
+ mov loc5=r19
+ mov loc6=r20
+ br.call.sptk.many rp=b6 // call the EFI function
+.ret1: mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ mov r16=loc3
+ mov r19=loc5
+ mov r20=loc6
+ br.call.sptk.many rp=ia64_switch_mode_virt // return to virtual mode
+.ret2: mov ar.rsc=loc4 // restore RSE configuration
+ mov ar.pfs=loc1
+ mov rp=loc0
+ mov gp=loc2
+ br.ret.sptk.many rp
+END(efi_call_phys)
diff --git a/arch/ia64/kernel/entry.S b/arch/ia64/kernel/entry.S
new file mode 100644
index 0000000..0272c01
--- /dev/null
+++ b/arch/ia64/kernel/entry.S
@@ -0,0 +1,1587 @@
+/*
+ * ia64/kernel/entry.S
+ *
+ * Kernel entry points.
+ *
+ * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Copyright (C) 1999, 2002-2003
+ * Asit Mallick <Asit.K.Mallick@intel.com>
+ * Don Dugger <Don.Dugger@intel.com>
+ * Suresh Siddha <suresh.b.siddha@intel.com>
+ * Fenghua Yu <fenghua.yu@intel.com>
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ */
+/*
+ * ia64_switch_to now places correct virtual mapping in in TR2 for
+ * kernel stack. This allows us to handle interrupts without changing
+ * to physical mode.
+ *
+ * Jonathan Nicklin <nicklin@missioncriticallinux.com>
+ * Patrick O'Rourke <orourke@missioncriticallinux.com>
+ * 11/07/2000
+ */
+/*
+ * Global (preserved) predicate usage on syscall entry/exit path:
+ *
+ * pKStk: See entry.h.
+ * pUStk: See entry.h.
+ * pSys: See entry.h.
+ * pNonSys: !pSys
+ */
+
+#include <linux/config.h>
+
+#include <asm/asmmacro.h>
+#include <asm/cache.h>
+#include <asm/errno.h>
+#include <asm/kregs.h>
+#include <asm/offsets.h>
+#include <asm/pgtable.h>
+#include <asm/percpu.h>
+#include <asm/processor.h>
+#include <asm/thread_info.h>
+#include <asm/unistd.h>
+
+#include "minstate.h"
+
+ /*
+ * execve() is special because in case of success, we need to
+ * setup a null register window frame.
+ */
+ENTRY(ia64_execve)
+ /*
+ * Allocate 8 input registers since ptrace() may clobber them
+ */
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc loc1=ar.pfs,8,2,4,0
+ mov loc0=rp
+ .body
+ mov out0=in0 // filename
+ ;; // stop bit between alloc and call
+ mov out1=in1 // argv
+ mov out2=in2 // envp
+ add out3=16,sp // regs
+ br.call.sptk.many rp=sys_execve
+.ret0:
+#ifdef CONFIG_IA32_SUPPORT
+ /*
+ * Check if we're returning to ia32 mode. If so, we need to restore ia32 registers
+ * from pt_regs.
+ */
+ adds r16=PT(CR_IPSR)+16,sp
+ ;;
+ ld8 r16=[r16]
+#endif
+ cmp4.ge p6,p7=r8,r0
+ mov ar.pfs=loc1 // restore ar.pfs
+ sxt4 r8=r8 // return 64-bit result
+ ;;
+ stf.spill [sp]=f0
+(p6) cmp.ne pKStk,pUStk=r0,r0 // a successful execve() lands us in user-mode...
+ mov rp=loc0
+(p6) mov ar.pfs=r0 // clear ar.pfs on success
+(p7) br.ret.sptk.many rp
+
+ /*
+ * In theory, we'd have to zap this state only to prevent leaking of
+ * security sensitive state (e.g., if current->mm->dumpable is zero). However,
+ * this executes in less than 20 cycles even on Itanium, so it's not worth
+ * optimizing for...).
+ */
+ mov ar.unat=0; mov ar.lc=0
+ mov r4=0; mov f2=f0; mov b1=r0
+ mov r5=0; mov f3=f0; mov b2=r0
+ mov r6=0; mov f4=f0; mov b3=r0
+ mov r7=0; mov f5=f0; mov b4=r0
+ ldf.fill f12=[sp]; mov f13=f0; mov b5=r0
+ ldf.fill f14=[sp]; ldf.fill f15=[sp]; mov f16=f0
+ ldf.fill f17=[sp]; ldf.fill f18=[sp]; mov f19=f0
+ ldf.fill f20=[sp]; ldf.fill f21=[sp]; mov f22=f0
+ ldf.fill f23=[sp]; ldf.fill f24=[sp]; mov f25=f0
+ ldf.fill f26=[sp]; ldf.fill f27=[sp]; mov f28=f0
+ ldf.fill f29=[sp]; ldf.fill f30=[sp]; mov f31=f0
+#ifdef CONFIG_IA32_SUPPORT
+ tbit.nz p6,p0=r16, IA64_PSR_IS_BIT
+ movl loc0=ia64_ret_from_ia32_execve
+ ;;
+(p6) mov rp=loc0
+#endif
+ br.ret.sptk.many rp
+END(ia64_execve)
+
+/*
+ * sys_clone2(u64 flags, u64 ustack_base, u64 ustack_size, u64 parent_tidptr, u64 child_tidptr,
+ * u64 tls)
+ */
+GLOBAL_ENTRY(sys_clone2)
+ /*
+ * Allocate 8 input registers since ptrace() may clobber them
+ */
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc r16=ar.pfs,8,2,6,0
+ DO_SAVE_SWITCH_STACK
+ adds r2=PT(R16)+IA64_SWITCH_STACK_SIZE+16,sp
+ mov loc0=rp
+ mov loc1=r16 // save ar.pfs across do_fork
+ .body
+ mov out1=in1
+ mov out3=in2
+ tbit.nz p6,p0=in0,CLONE_SETTLS_BIT
+ mov out4=in3 // parent_tidptr: valid only w/CLONE_PARENT_SETTID
+ ;;
+(p6) st8 [r2]=in5 // store TLS in r16 for copy_thread()
+ mov out5=in4 // child_tidptr: valid only w/CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID
+ adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = &regs
+ mov out0=in0 // out0 = clone_flags
+ br.call.sptk.many rp=do_fork
+.ret1: .restore sp
+ adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
+ mov ar.pfs=loc1
+ mov rp=loc0
+ br.ret.sptk.many rp
+END(sys_clone2)
+
+/*
+ * sys_clone(u64 flags, u64 ustack_base, u64 parent_tidptr, u64 child_tidptr, u64 tls)
+ * Deprecated. Use sys_clone2() instead.
+ */
+GLOBAL_ENTRY(sys_clone)
+ /*
+ * Allocate 8 input registers since ptrace() may clobber them
+ */
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc r16=ar.pfs,8,2,6,0
+ DO_SAVE_SWITCH_STACK
+ adds r2=PT(R16)+IA64_SWITCH_STACK_SIZE+16,sp
+ mov loc0=rp
+ mov loc1=r16 // save ar.pfs across do_fork
+ .body
+ mov out1=in1
+ mov out3=16 // stacksize (compensates for 16-byte scratch area)
+ tbit.nz p6,p0=in0,CLONE_SETTLS_BIT
+ mov out4=in2 // parent_tidptr: valid only w/CLONE_PARENT_SETTID
+ ;;
+(p6) st8 [r2]=in4 // store TLS in r13 (tp)
+ mov out5=in3 // child_tidptr: valid only w/CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID
+ adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = &regs
+ mov out0=in0 // out0 = clone_flags
+ br.call.sptk.many rp=do_fork
+.ret2: .restore sp
+ adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
+ mov ar.pfs=loc1
+ mov rp=loc0
+ br.ret.sptk.many rp
+END(sys_clone)
+
+/*
+ * prev_task <- ia64_switch_to(struct task_struct *next)
+ * With Ingo's new scheduler, interrupts are disabled when this routine gets
+ * called. The code starting at .map relies on this. The rest of the code
+ * doesn't care about the interrupt masking status.
+ */
+GLOBAL_ENTRY(ia64_switch_to)
+ .prologue
+ alloc r16=ar.pfs,1,0,0,0
+ DO_SAVE_SWITCH_STACK
+ .body
+
+ adds r22=IA64_TASK_THREAD_KSP_OFFSET,r13
+ movl r25=init_task
+ mov r27=IA64_KR(CURRENT_STACK)
+ adds r21=IA64_TASK_THREAD_KSP_OFFSET,in0
+ dep r20=0,in0,61,3 // physical address of "next"
+ ;;
+ st8 [r22]=sp // save kernel stack pointer of old task
+ shr.u r26=r20,IA64_GRANULE_SHIFT
+ cmp.eq p7,p6=r25,in0
+ ;;
+ /*
+ * If we've already mapped this task's page, we can skip doing it again.
+ */
+(p6) cmp.eq p7,p6=r26,r27
+(p6) br.cond.dpnt .map
+ ;;
+.done:
+(p6) ssm psr.ic // if we had to map, reenable the psr.ic bit FIRST!!!
+ ;;
+(p6) srlz.d
+ ld8 sp=[r21] // load kernel stack pointer of new task
+ mov IA64_KR(CURRENT)=in0 // update "current" application register
+ mov r8=r13 // return pointer to previously running task
+ mov r13=in0 // set "current" pointer
+ ;;
+ DO_LOAD_SWITCH_STACK
+
+#ifdef CONFIG_SMP
+ sync.i // ensure "fc"s done by this CPU are visible on other CPUs
+#endif
+ br.ret.sptk.many rp // boogie on out in new context
+
+.map:
+ rsm psr.ic // interrupts (psr.i) are already disabled here
+ movl r25=PAGE_KERNEL
+ ;;
+ srlz.d
+ or r23=r25,r20 // construct PA | page properties
+ mov r25=IA64_GRANULE_SHIFT<<2
+ ;;
+ mov cr.itir=r25
+ mov cr.ifa=in0 // VA of next task...
+ ;;
+ mov r25=IA64_TR_CURRENT_STACK
+ mov IA64_KR(CURRENT_STACK)=r26 // remember last page we mapped...
+ ;;
+ itr.d dtr[r25]=r23 // wire in new mapping...
+ br.cond.sptk .done
+END(ia64_switch_to)
+
+/*
+ * Note that interrupts are enabled during save_switch_stack and load_switch_stack. This
+ * means that we may get an interrupt with "sp" pointing to the new kernel stack while
+ * ar.bspstore is still pointing to the old kernel backing store area. Since ar.rsc,
+ * ar.rnat, ar.bsp, and ar.bspstore are all preserved by interrupts, this is not a
+ * problem. Also, we don't need to specify unwind information for preserved registers
+ * that are not modified in save_switch_stack as the right unwind information is already
+ * specified at the call-site of save_switch_stack.
+ */
+
+/*
+ * save_switch_stack:
+ * - r16 holds ar.pfs
+ * - b7 holds address to return to
+ * - rp (b0) holds return address to save
+ */
+GLOBAL_ENTRY(save_switch_stack)
+ .prologue
+ .altrp b7
+ flushrs // flush dirty regs to backing store (must be first in insn group)
+ .save @priunat,r17
+ mov r17=ar.unat // preserve caller's
+ .body
+#ifdef CONFIG_ITANIUM
+ adds r2=16+128,sp
+ adds r3=16+64,sp
+ adds r14=SW(R4)+16,sp
+ ;;
+ st8.spill [r14]=r4,16 // spill r4
+ lfetch.fault.excl.nt1 [r3],128
+ ;;
+ lfetch.fault.excl.nt1 [r2],128
+ lfetch.fault.excl.nt1 [r3],128
+ ;;
+ lfetch.fault.excl [r2]
+ lfetch.fault.excl [r3]
+ adds r15=SW(R5)+16,sp
+#else
+ add r2=16+3*128,sp
+ add r3=16,sp
+ add r14=SW(R4)+16,sp
+ ;;
+ st8.spill [r14]=r4,SW(R6)-SW(R4) // spill r4 and prefetch offset 0x1c0
+ lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x010
+ ;;
+ lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x090
+ lfetch.fault.excl.nt1 [r2],128 // prefetch offset 0x190
+ ;;
+ lfetch.fault.excl.nt1 [r3] // prefetch offset 0x110
+ lfetch.fault.excl.nt1 [r2] // prefetch offset 0x210
+ adds r15=SW(R5)+16,sp
+#endif
+ ;;
+ st8.spill [r15]=r5,SW(R7)-SW(R5) // spill r5
+ mov.m ar.rsc=0 // put RSE in mode: enforced lazy, little endian, pl 0
+ add r2=SW(F2)+16,sp // r2 = &sw->f2
+ ;;
+ st8.spill [r14]=r6,SW(B0)-SW(R6) // spill r6
+ mov.m r18=ar.fpsr // preserve fpsr
+ add r3=SW(F3)+16,sp // r3 = &sw->f3
+ ;;
+ stf.spill [r2]=f2,32
+ mov.m r19=ar.rnat
+ mov r21=b0
+
+ stf.spill [r3]=f3,32
+ st8.spill [r15]=r7,SW(B2)-SW(R7) // spill r7
+ mov r22=b1
+ ;;
+ // since we're done with the spills, read and save ar.unat:
+ mov.m r29=ar.unat
+ mov.m r20=ar.bspstore
+ mov r23=b2
+ stf.spill [r2]=f4,32
+ stf.spill [r3]=f5,32
+ mov r24=b3
+ ;;
+ st8 [r14]=r21,SW(B1)-SW(B0) // save b0
+ st8 [r15]=r23,SW(B3)-SW(B2) // save b2
+ mov r25=b4
+ mov r26=b5
+ ;;
+ st8 [r14]=r22,SW(B4)-SW(B1) // save b1
+ st8 [r15]=r24,SW(AR_PFS)-SW(B3) // save b3
+ mov r21=ar.lc // I-unit
+ stf.spill [r2]=f12,32
+ stf.spill [r3]=f13,32
+ ;;
+ st8 [r14]=r25,SW(B5)-SW(B4) // save b4
+ st8 [r15]=r16,SW(AR_LC)-SW(AR_PFS) // save ar.pfs
+ stf.spill [r2]=f14,32
+ stf.spill [r3]=f15,32
+ ;;
+ st8 [r14]=r26 // save b5
+ st8 [r15]=r21 // save ar.lc
+ stf.spill [r2]=f16,32
+ stf.spill [r3]=f17,32
+ ;;
+ stf.spill [r2]=f18,32
+ stf.spill [r3]=f19,32
+ ;;
+ stf.spill [r2]=f20,32
+ stf.spill [r3]=f21,32
+ ;;
+ stf.spill [r2]=f22,32
+ stf.spill [r3]=f23,32
+ ;;
+ stf.spill [r2]=f24,32
+ stf.spill [r3]=f25,32
+ ;;
+ stf.spill [r2]=f26,32
+ stf.spill [r3]=f27,32
+ ;;
+ stf.spill [r2]=f28,32
+ stf.spill [r3]=f29,32
+ ;;
+ stf.spill [r2]=f30,SW(AR_UNAT)-SW(F30)
+ stf.spill [r3]=f31,SW(PR)-SW(F31)
+ add r14=SW(CALLER_UNAT)+16,sp
+ ;;
+ st8 [r2]=r29,SW(AR_RNAT)-SW(AR_UNAT) // save ar.unat
+ st8 [r14]=r17,SW(AR_FPSR)-SW(CALLER_UNAT) // save caller_unat
+ mov r21=pr
+ ;;
+ st8 [r2]=r19,SW(AR_BSPSTORE)-SW(AR_RNAT) // save ar.rnat
+ st8 [r3]=r21 // save predicate registers
+ ;;
+ st8 [r2]=r20 // save ar.bspstore
+ st8 [r14]=r18 // save fpsr
+ mov ar.rsc=3 // put RSE back into eager mode, pl 0
+ br.cond.sptk.many b7
+END(save_switch_stack)
+
+/*
+ * load_switch_stack:
+ * - "invala" MUST be done at call site (normally in DO_LOAD_SWITCH_STACK)
+ * - b7 holds address to return to
+ * - must not touch r8-r11
+ */
+ENTRY(load_switch_stack)
+ .prologue
+ .altrp b7
+
+ .body
+ lfetch.fault.nt1 [sp]
+ adds r2=SW(AR_BSPSTORE)+16,sp
+ adds r3=SW(AR_UNAT)+16,sp
+ mov ar.rsc=0 // put RSE into enforced lazy mode
+ adds r14=SW(CALLER_UNAT)+16,sp
+ adds r15=SW(AR_FPSR)+16,sp
+ ;;
+ ld8 r27=[r2],(SW(B0)-SW(AR_BSPSTORE)) // bspstore
+ ld8 r29=[r3],(SW(B1)-SW(AR_UNAT)) // unat
+ ;;
+ ld8 r21=[r2],16 // restore b0
+ ld8 r22=[r3],16 // restore b1
+ ;;
+ ld8 r23=[r2],16 // restore b2
+ ld8 r24=[r3],16 // restore b3
+ ;;
+ ld8 r25=[r2],16 // restore b4
+ ld8 r26=[r3],16 // restore b5
+ ;;
+ ld8 r16=[r2],(SW(PR)-SW(AR_PFS)) // ar.pfs
+ ld8 r17=[r3],(SW(AR_RNAT)-SW(AR_LC)) // ar.lc
+ ;;
+ ld8 r28=[r2] // restore pr
+ ld8 r30=[r3] // restore rnat
+ ;;
+ ld8 r18=[r14],16 // restore caller's unat
+ ld8 r19=[r15],24 // restore fpsr
+ ;;
+ ldf.fill f2=[r14],32
+ ldf.fill f3=[r15],32
+ ;;
+ ldf.fill f4=[r14],32
+ ldf.fill f5=[r15],32
+ ;;
+ ldf.fill f12=[r14],32
+ ldf.fill f13=[r15],32
+ ;;
+ ldf.fill f14=[r14],32
+ ldf.fill f15=[r15],32
+ ;;
+ ldf.fill f16=[r14],32
+ ldf.fill f17=[r15],32
+ ;;
+ ldf.fill f18=[r14],32
+ ldf.fill f19=[r15],32
+ mov b0=r21
+ ;;
+ ldf.fill f20=[r14],32
+ ldf.fill f21=[r15],32
+ mov b1=r22
+ ;;
+ ldf.fill f22=[r14],32
+ ldf.fill f23=[r15],32
+ mov b2=r23
+ ;;
+ mov ar.bspstore=r27
+ mov ar.unat=r29 // establish unat holding the NaT bits for r4-r7
+ mov b3=r24
+ ;;
+ ldf.fill f24=[r14],32
+ ldf.fill f25=[r15],32
+ mov b4=r25
+ ;;
+ ldf.fill f26=[r14],32
+ ldf.fill f27=[r15],32
+ mov b5=r26
+ ;;
+ ldf.fill f28=[r14],32
+ ldf.fill f29=[r15],32
+ mov ar.pfs=r16
+ ;;
+ ldf.fill f30=[r14],32
+ ldf.fill f31=[r15],24
+ mov ar.lc=r17
+ ;;
+ ld8.fill r4=[r14],16
+ ld8.fill r5=[r15],16
+ mov pr=r28,-1
+ ;;
+ ld8.fill r6=[r14],16
+ ld8.fill r7=[r15],16
+
+ mov ar.unat=r18 // restore caller's unat
+ mov ar.rnat=r30 // must restore after bspstore but before rsc!
+ mov ar.fpsr=r19 // restore fpsr
+ mov ar.rsc=3 // put RSE back into eager mode, pl 0
+ br.cond.sptk.many b7
+END(load_switch_stack)
+
+GLOBAL_ENTRY(__ia64_syscall)
+ .regstk 6,0,0,0
+ mov r15=in5 // put syscall number in place
+ break __BREAK_SYSCALL
+ movl r2=errno
+ cmp.eq p6,p7=-1,r10
+ ;;
+(p6) st4 [r2]=r8
+(p6) mov r8=-1
+ br.ret.sptk.many rp
+END(__ia64_syscall)
+
+GLOBAL_ENTRY(execve)
+ mov r15=__NR_execve // put syscall number in place
+ break __BREAK_SYSCALL
+ br.ret.sptk.many rp
+END(execve)
+
+GLOBAL_ENTRY(clone)
+ mov r15=__NR_clone // put syscall number in place
+ break __BREAK_SYSCALL
+ br.ret.sptk.many rp
+END(clone)
+
+ /*
+ * Invoke a system call, but do some tracing before and after the call.
+ * We MUST preserve the current register frame throughout this routine
+ * because some system calls (such as ia64_execve) directly
+ * manipulate ar.pfs.
+ */
+GLOBAL_ENTRY(ia64_trace_syscall)
+ PT_REGS_UNWIND_INFO(0)
+ /*
+ * We need to preserve the scratch registers f6-f11 in case the system
+ * call is sigreturn.
+ */
+ adds r16=PT(F6)+16,sp
+ adds r17=PT(F7)+16,sp
+ ;;
+ stf.spill [r16]=f6,32
+ stf.spill [r17]=f7,32
+ ;;
+ stf.spill [r16]=f8,32
+ stf.spill [r17]=f9,32
+ ;;
+ stf.spill [r16]=f10
+ stf.spill [r17]=f11
+ br.call.sptk.many rp=syscall_trace_enter // give parent a chance to catch syscall args
+ adds r16=PT(F6)+16,sp
+ adds r17=PT(F7)+16,sp
+ ;;
+ ldf.fill f6=[r16],32
+ ldf.fill f7=[r17],32
+ ;;
+ ldf.fill f8=[r16],32
+ ldf.fill f9=[r17],32
+ ;;
+ ldf.fill f10=[r16]
+ ldf.fill f11=[r17]
+ // the syscall number may have changed, so re-load it and re-calculate the
+ // syscall entry-point:
+ adds r15=PT(R15)+16,sp // r15 = &pt_regs.r15 (syscall #)
+ ;;
+ ld8 r15=[r15]
+ mov r3=NR_syscalls - 1
+ ;;
+ adds r15=-1024,r15
+ movl r16=sys_call_table
+ ;;
+ shladd r20=r15,3,r16 // r20 = sys_call_table + 8*(syscall-1024)
+ cmp.leu p6,p7=r15,r3
+ ;;
+(p6) ld8 r20=[r20] // load address of syscall entry point
+(p7) movl r20=sys_ni_syscall
+ ;;
+ mov b6=r20
+ br.call.sptk.many rp=b6 // do the syscall
+.strace_check_retval:
+ cmp.lt p6,p0=r8,r0 // syscall failed?
+ adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
+ adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
+ mov r10=0
+(p6) br.cond.sptk strace_error // syscall failed ->
+ ;; // avoid RAW on r10
+.strace_save_retval:
+.mem.offset 0,0; st8.spill [r2]=r8 // store return value in slot for r8
+.mem.offset 8,0; st8.spill [r3]=r10 // clear error indication in slot for r10
+ br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value
+.ret3: br.cond.sptk .work_pending_syscall_end
+
+strace_error:
+ ld8 r3=[r2] // load pt_regs.r8
+ sub r9=0,r8 // negate return value to get errno value
+ ;;
+ cmp.ne p6,p0=r3,r0 // is pt_regs.r8!=0?
+ adds r3=16,r2 // r3=&pt_regs.r10
+ ;;
+(p6) mov r10=-1
+(p6) mov r8=r9
+ br.cond.sptk .strace_save_retval
+END(ia64_trace_syscall)
+
+ /*
+ * When traced and returning from sigreturn, we invoke syscall_trace but then
+ * go straight to ia64_leave_kernel rather than ia64_leave_syscall.
+ */
+GLOBAL_ENTRY(ia64_strace_leave_kernel)
+ PT_REGS_UNWIND_INFO(0)
+{ /*
+ * Some versions of gas generate bad unwind info if the first instruction of a
+ * procedure doesn't go into the first slot of a bundle. This is a workaround.
+ */
+ nop.m 0
+ nop.i 0
+ br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value
+}
+.ret4: br.cond.sptk ia64_leave_kernel
+END(ia64_strace_leave_kernel)
+
+GLOBAL_ENTRY(ia64_ret_from_clone)
+ PT_REGS_UNWIND_INFO(0)
+{ /*
+ * Some versions of gas generate bad unwind info if the first instruction of a
+ * procedure doesn't go into the first slot of a bundle. This is a workaround.
+ */
+ nop.m 0
+ nop.i 0
+ /*
+ * We need to call schedule_tail() to complete the scheduling process.
+ * Called by ia64_switch_to() after do_fork()->copy_thread(). r8 contains the
+ * address of the previously executing task.
+ */
+ br.call.sptk.many rp=ia64_invoke_schedule_tail
+}
+.ret8:
+ adds r2=TI_FLAGS+IA64_TASK_SIZE,r13
+ ;;
+ ld4 r2=[r2]
+ ;;
+ mov r8=0
+ and r2=_TIF_SYSCALL_TRACEAUDIT,r2
+ ;;
+ cmp.ne p6,p0=r2,r0
+(p6) br.cond.spnt .strace_check_retval
+ ;; // added stop bits to prevent r8 dependency
+END(ia64_ret_from_clone)
+ // fall through
+GLOBAL_ENTRY(ia64_ret_from_syscall)
+ PT_REGS_UNWIND_INFO(0)
+ cmp.ge p6,p7=r8,r0 // syscall executed successfully?
+ adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
+ mov r10=r0 // clear error indication in r10
+(p7) br.cond.spnt handle_syscall_error // handle potential syscall failure
+END(ia64_ret_from_syscall)
+ // fall through
+/*
+ * ia64_leave_syscall(): Same as ia64_leave_kernel, except that it doesn't
+ * need to switch to bank 0 and doesn't restore the scratch registers.
+ * To avoid leaking kernel bits, the scratch registers are set to
+ * the following known-to-be-safe values:
+ *
+ * r1: restored (global pointer)
+ * r2: cleared
+ * r3: 1 (when returning to user-level)
+ * r8-r11: restored (syscall return value(s))
+ * r12: restored (user-level stack pointer)
+ * r13: restored (user-level thread pointer)
+ * r14: cleared
+ * r15: restored (syscall #)
+ * r16-r17: cleared
+ * r18: user-level b6
+ * r19: cleared
+ * r20: user-level ar.fpsr
+ * r21: user-level b0
+ * r22: cleared
+ * r23: user-level ar.bspstore
+ * r24: user-level ar.rnat
+ * r25: user-level ar.unat
+ * r26: user-level ar.pfs
+ * r27: user-level ar.rsc
+ * r28: user-level ip
+ * r29: user-level psr
+ * r30: user-level cfm
+ * r31: user-level pr
+ * f6-f11: cleared
+ * pr: restored (user-level pr)
+ * b0: restored (user-level rp)
+ * b6: restored
+ * b7: cleared
+ * ar.unat: restored (user-level ar.unat)
+ * ar.pfs: restored (user-level ar.pfs)
+ * ar.rsc: restored (user-level ar.rsc)
+ * ar.rnat: restored (user-level ar.rnat)
+ * ar.bspstore: restored (user-level ar.bspstore)
+ * ar.fpsr: restored (user-level ar.fpsr)
+ * ar.ccv: cleared
+ * ar.csd: cleared
+ * ar.ssd: cleared
+ */
+ENTRY(ia64_leave_syscall)
+ PT_REGS_UNWIND_INFO(0)
+ /*
+ * work.need_resched etc. mustn't get changed by this CPU before it returns to
+ * user- or fsys-mode, hence we disable interrupts early on.
+ *
+ * p6 controls whether current_thread_info()->flags needs to be check for
+ * extra work. We always check for extra work when returning to user-level.
+ * With CONFIG_PREEMPT, we also check for extra work when the preempt_count
+ * is 0. After extra work processing has been completed, execution
+ * resumes at .work_processed_syscall with p6 set to 1 if the extra-work-check
+ * needs to be redone.
+ */
+#ifdef CONFIG_PREEMPT
+ rsm psr.i // disable interrupts
+ cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
+(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
+ ;;
+ .pred.rel.mutex pUStk,pKStk
+(pKStk) ld4 r21=[r20] // r21 <- preempt_count
+(pUStk) mov r21=0 // r21 <- 0
+ ;;
+ cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0)
+#else /* !CONFIG_PREEMPT */
+(pUStk) rsm psr.i
+ cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
+(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
+#endif
+.work_processed_syscall:
+ adds r2=PT(LOADRS)+16,r12
+ adds r3=PT(AR_BSPSTORE)+16,r12
+ adds r18=TI_FLAGS+IA64_TASK_SIZE,r13
+ ;;
+(p6) ld4 r31=[r18] // load current_thread_info()->flags
+ ld8 r19=[r2],PT(B6)-PT(LOADRS) // load ar.rsc value for "loadrs"
+ mov b7=r0 // clear b7
+ ;;
+ ld8 r23=[r3],PT(R11)-PT(AR_BSPSTORE) // load ar.bspstore (may be garbage)
+ ld8 r18=[r2],PT(R9)-PT(B6) // load b6
+(p6) and r15=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE?
+ ;;
+ mov r16=ar.bsp // M2 get existing backing store pointer
+(p6) cmp4.ne.unc p6,p0=r15, r0 // any special work pending?
+(p6) br.cond.spnt .work_pending_syscall
+ ;;
+ // start restoring the state saved on the kernel stack (struct pt_regs):
+ ld8 r9=[r2],PT(CR_IPSR)-PT(R9)
+ ld8 r11=[r3],PT(CR_IIP)-PT(R11)
+ mov f6=f0 // clear f6
+ ;;
+ invala // M0|1 invalidate ALAT
+ rsm psr.i | psr.ic // M2 initiate turning off of interrupt and interruption collection
+ mov f9=f0 // clear f9
+
+ ld8 r29=[r2],16 // load cr.ipsr
+ ld8 r28=[r3],16 // load cr.iip
+ mov f8=f0 // clear f8
+ ;;
+ ld8 r30=[r2],16 // M0|1 load cr.ifs
+ mov.m ar.ssd=r0 // M2 clear ar.ssd
+ cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs
+ ;;
+ ld8 r25=[r3],16 // M0|1 load ar.unat
+ mov.m ar.csd=r0 // M2 clear ar.csd
+ mov r22=r0 // clear r22
+ ;;
+ ld8 r26=[r2],PT(B0)-PT(AR_PFS) // M0|1 load ar.pfs
+(pKStk) mov r22=psr // M2 read PSR now that interrupts are disabled
+ mov f10=f0 // clear f10
+ ;;
+ ld8 r21=[r2],PT(AR_RNAT)-PT(B0) // load b0
+ ld8 r27=[r3],PT(PR)-PT(AR_RSC) // load ar.rsc
+ mov f11=f0 // clear f11
+ ;;
+ ld8 r24=[r2],PT(AR_FPSR)-PT(AR_RNAT) // load ar.rnat (may be garbage)
+ ld8 r31=[r3],PT(R1)-PT(PR) // load predicates
+(pUStk) add r14=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
+ ;;
+ ld8 r20=[r2],PT(R12)-PT(AR_FPSR) // load ar.fpsr
+ ld8.fill r1=[r3],16 // load r1
+(pUStk) mov r17=1
+ ;;
+ srlz.d // M0 ensure interruption collection is off
+ ld8.fill r13=[r3],16
+ mov f7=f0 // clear f7
+ ;;
+ ld8.fill r12=[r2] // restore r12 (sp)
+ ld8.fill r15=[r3] // restore r15
+ addl r3=THIS_CPU(ia64_phys_stacked_size_p8),r0
+ ;;
+(pUStk) ld4 r3=[r3] // r3 = cpu_data->phys_stacked_size_p8
+(pUStk) st1 [r14]=r17
+ mov b6=r18 // I0 restore b6
+ ;;
+ mov r14=r0 // clear r14
+ shr.u r18=r19,16 // I0|1 get byte size of existing "dirty" partition
+(pKStk) br.cond.dpnt.many skip_rbs_switch
+
+ mov.m ar.ccv=r0 // clear ar.ccv
+(pNonSys) br.cond.dpnt.many dont_preserve_current_frame
+ br.cond.sptk.many rbs_switch
+END(ia64_leave_syscall)
+
+#ifdef CONFIG_IA32_SUPPORT
+GLOBAL_ENTRY(ia64_ret_from_ia32_execve)
+ PT_REGS_UNWIND_INFO(0)
+ adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
+ adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
+ ;;
+ .mem.offset 0,0
+ st8.spill [r2]=r8 // store return value in slot for r8 and set unat bit
+ .mem.offset 8,0
+ st8.spill [r3]=r0 // clear error indication in slot for r10 and set unat bit
+END(ia64_ret_from_ia32_execve_syscall)
+ // fall through
+#endif /* CONFIG_IA32_SUPPORT */
+GLOBAL_ENTRY(ia64_leave_kernel)
+ PT_REGS_UNWIND_INFO(0)
+ /*
+ * work.need_resched etc. mustn't get changed by this CPU before it returns to
+ * user- or fsys-mode, hence we disable interrupts early on.
+ *
+ * p6 controls whether current_thread_info()->flags needs to be check for
+ * extra work. We always check for extra work when returning to user-level.
+ * With CONFIG_PREEMPT, we also check for extra work when the preempt_count
+ * is 0. After extra work processing has been completed, execution
+ * resumes at .work_processed_syscall with p6 set to 1 if the extra-work-check
+ * needs to be redone.
+ */
+#ifdef CONFIG_PREEMPT
+ rsm psr.i // disable interrupts
+ cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
+(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
+ ;;
+ .pred.rel.mutex pUStk,pKStk
+(pKStk) ld4 r21=[r20] // r21 <- preempt_count
+(pUStk) mov r21=0 // r21 <- 0
+ ;;
+ cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0)
+#else
+(pUStk) rsm psr.i
+ cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
+(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
+#endif
+.work_processed_kernel:
+ adds r17=TI_FLAGS+IA64_TASK_SIZE,r13
+ ;;
+(p6) ld4 r31=[r17] // load current_thread_info()->flags
+ adds r21=PT(PR)+16,r12
+ ;;
+
+ lfetch [r21],PT(CR_IPSR)-PT(PR)
+ adds r2=PT(B6)+16,r12
+ adds r3=PT(R16)+16,r12
+ ;;
+ lfetch [r21]
+ ld8 r28=[r2],8 // load b6
+ adds r29=PT(R24)+16,r12
+
+ ld8.fill r16=[r3],PT(AR_CSD)-PT(R16)
+ adds r30=PT(AR_CCV)+16,r12
+(p6) and r19=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE?
+ ;;
+ ld8.fill r24=[r29]
+ ld8 r15=[r30] // load ar.ccv
+(p6) cmp4.ne.unc p6,p0=r19, r0 // any special work pending?
+ ;;
+ ld8 r29=[r2],16 // load b7
+ ld8 r30=[r3],16 // load ar.csd
+(p6) br.cond.spnt .work_pending
+ ;;
+ ld8 r31=[r2],16 // load ar.ssd
+ ld8.fill r8=[r3],16
+ ;;
+ ld8.fill r9=[r2],16
+ ld8.fill r10=[r3],PT(R17)-PT(R10)
+ ;;
+ ld8.fill r11=[r2],PT(R18)-PT(R11)
+ ld8.fill r17=[r3],16
+ ;;
+ ld8.fill r18=[r2],16
+ ld8.fill r19=[r3],16
+ ;;
+ ld8.fill r20=[r2],16
+ ld8.fill r21=[r3],16
+ mov ar.csd=r30
+ mov ar.ssd=r31
+ ;;
+ rsm psr.i | psr.ic // initiate turning off of interrupt and interruption collection
+ invala // invalidate ALAT
+ ;;
+ ld8.fill r22=[r2],24
+ ld8.fill r23=[r3],24
+ mov b6=r28
+ ;;
+ ld8.fill r25=[r2],16
+ ld8.fill r26=[r3],16
+ mov b7=r29
+ ;;
+ ld8.fill r27=[r2],16
+ ld8.fill r28=[r3],16
+ ;;
+ ld8.fill r29=[r2],16
+ ld8.fill r30=[r3],24
+ ;;
+ ld8.fill r31=[r2],PT(F9)-PT(R31)
+ adds r3=PT(F10)-PT(F6),r3
+ ;;
+ ldf.fill f9=[r2],PT(F6)-PT(F9)
+ ldf.fill f10=[r3],PT(F8)-PT(F10)
+ ;;
+ ldf.fill f6=[r2],PT(F7)-PT(F6)
+ ;;
+ ldf.fill f7=[r2],PT(F11)-PT(F7)
+ ldf.fill f8=[r3],32
+ ;;
+ srlz.i // ensure interruption collection is off
+ mov ar.ccv=r15
+ ;;
+ ldf.fill f11=[r2]
+ bsw.0 // switch back to bank 0 (no stop bit required beforehand...)
+ ;;
+(pUStk) mov r18=IA64_KR(CURRENT)// M2 (12 cycle read latency)
+ adds r16=PT(CR_IPSR)+16,r12
+ adds r17=PT(CR_IIP)+16,r12
+
+(pKStk) mov r22=psr // M2 read PSR now that interrupts are disabled
+ nop.i 0
+ nop.i 0
+ ;;
+ ld8 r29=[r16],16 // load cr.ipsr
+ ld8 r28=[r17],16 // load cr.iip
+ ;;
+ ld8 r30=[r16],16 // load cr.ifs
+ ld8 r25=[r17],16 // load ar.unat
+ ;;
+ ld8 r26=[r16],16 // load ar.pfs
+ ld8 r27=[r17],16 // load ar.rsc
+ cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs
+ ;;
+ ld8 r24=[r16],16 // load ar.rnat (may be garbage)
+ ld8 r23=[r17],16 // load ar.bspstore (may be garbage)
+ ;;
+ ld8 r31=[r16],16 // load predicates
+ ld8 r21=[r17],16 // load b0
+ ;;
+ ld8 r19=[r16],16 // load ar.rsc value for "loadrs"
+ ld8.fill r1=[r17],16 // load r1
+ ;;
+ ld8.fill r12=[r16],16
+ ld8.fill r13=[r17],16
+(pUStk) adds r18=IA64_TASK_THREAD_ON_USTACK_OFFSET,r18
+ ;;
+ ld8 r20=[r16],16 // ar.fpsr
+ ld8.fill r15=[r17],16
+ ;;
+ ld8.fill r14=[r16],16
+ ld8.fill r2=[r17]
+(pUStk) mov r17=1
+ ;;
+ ld8.fill r3=[r16]
+(pUStk) st1 [r18]=r17 // restore current->thread.on_ustack
+ shr.u r18=r19,16 // get byte size of existing "dirty" partition
+ ;;
+ mov r16=ar.bsp // get existing backing store pointer
+ addl r17=THIS_CPU(ia64_phys_stacked_size_p8),r0
+ ;;
+ ld4 r17=[r17] // r17 = cpu_data->phys_stacked_size_p8
+(pKStk) br.cond.dpnt skip_rbs_switch
+
+ /*
+ * Restore user backing store.
+ *
+ * NOTE: alloc, loadrs, and cover can't be predicated.
+ */
+(pNonSys) br.cond.dpnt dont_preserve_current_frame
+
+rbs_switch:
+ cover // add current frame into dirty partition and set cr.ifs
+ ;;
+ mov r19=ar.bsp // get new backing store pointer
+ sub r16=r16,r18 // krbs = old bsp - size of dirty partition
+ cmp.ne p9,p0=r0,r0 // clear p9 to skip restore of cr.ifs
+ ;;
+ sub r19=r19,r16 // calculate total byte size of dirty partition
+ add r18=64,r18 // don't force in0-in7 into memory...
+ ;;
+ shl r19=r19,16 // shift size of dirty partition into loadrs position
+ ;;
+dont_preserve_current_frame:
+ /*
+ * To prevent leaking bits between the kernel and user-space,
+ * we must clear the stacked registers in the "invalid" partition here.
+ * Not pretty, but at least it's fast (3.34 registers/cycle on Itanium,
+ * 5 registers/cycle on McKinley).
+ */
+# define pRecurse p6
+# define pReturn p7
+#ifdef CONFIG_ITANIUM
+# define Nregs 10
+#else
+# define Nregs 14
+#endif
+ alloc loc0=ar.pfs,2,Nregs-2,2,0
+ shr.u loc1=r18,9 // RNaTslots <= floor(dirtySize / (64*8))
+ sub r17=r17,r18 // r17 = (physStackedSize + 8) - dirtySize
+ ;;
+ mov ar.rsc=r19 // load ar.rsc to be used for "loadrs"
+ shladd in0=loc1,3,r17
+ mov in1=0
+ ;;
+ TEXT_ALIGN(32)
+rse_clear_invalid:
+#ifdef CONFIG_ITANIUM
+ // cycle 0
+ { .mii
+ alloc loc0=ar.pfs,2,Nregs-2,2,0
+ cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
+ add out0=-Nregs*8,in0
+}{ .mfb
+ add out1=1,in1 // increment recursion count
+ nop.f 0
+ nop.b 0 // can't do br.call here because of alloc (WAW on CFM)
+ ;;
+}{ .mfi // cycle 1
+ mov loc1=0
+ nop.f 0
+ mov loc2=0
+}{ .mib
+ mov loc3=0
+ mov loc4=0
+(pRecurse) br.call.sptk.many b0=rse_clear_invalid
+
+}{ .mfi // cycle 2
+ mov loc5=0
+ nop.f 0
+ cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
+}{ .mib
+ mov loc6=0
+ mov loc7=0
+(pReturn) br.ret.sptk.many b0
+}
+#else /* !CONFIG_ITANIUM */
+ alloc loc0=ar.pfs,2,Nregs-2,2,0
+ cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
+ add out0=-Nregs*8,in0
+ add out1=1,in1 // increment recursion count
+ mov loc1=0
+ mov loc2=0
+ ;;
+ mov loc3=0
+ mov loc4=0
+ mov loc5=0
+ mov loc6=0
+ mov loc7=0
+(pRecurse) br.call.sptk.few b0=rse_clear_invalid
+ ;;
+ mov loc8=0
+ mov loc9=0
+ cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
+ mov loc10=0
+ mov loc11=0
+(pReturn) br.ret.sptk.many b0
+#endif /* !CONFIG_ITANIUM */
+# undef pRecurse
+# undef pReturn
+ ;;
+ alloc r17=ar.pfs,0,0,0,0 // drop current register frame
+ ;;
+ loadrs
+ ;;
+skip_rbs_switch:
+ mov ar.unat=r25 // M2
+(pKStk) extr.u r22=r22,21,1 // I0 extract current value of psr.pp from r22
+(pLvSys)mov r19=r0 // A clear r19 for leave_syscall, no-op otherwise
+ ;;
+(pUStk) mov ar.bspstore=r23 // M2
+(pKStk) dep r29=r22,r29,21,1 // I0 update ipsr.pp with psr.pp
+(pLvSys)mov r16=r0 // A clear r16 for leave_syscall, no-op otherwise
+ ;;
+ mov cr.ipsr=r29 // M2
+ mov ar.pfs=r26 // I0
+(pLvSys)mov r17=r0 // A clear r17 for leave_syscall, no-op otherwise
+
+(p9) mov cr.ifs=r30 // M2
+ mov b0=r21 // I0
+(pLvSys)mov r18=r0 // A clear r18 for leave_syscall, no-op otherwise
+
+ mov ar.fpsr=r20 // M2
+ mov cr.iip=r28 // M2
+ nop 0
+ ;;
+(pUStk) mov ar.rnat=r24 // M2 must happen with RSE in lazy mode
+ nop 0
+(pLvSys)mov r2=r0
+
+ mov ar.rsc=r27 // M2
+ mov pr=r31,-1 // I0
+ rfi // B
+
+ /*
+ * On entry:
+ * r20 = &current->thread_info->pre_count (if CONFIG_PREEMPT)
+ * r31 = current->thread_info->flags
+ * On exit:
+ * p6 = TRUE if work-pending-check needs to be redone
+ */
+.work_pending_syscall:
+ add r2=-8,r2
+ add r3=-8,r3
+ ;;
+ st8 [r2]=r8
+ st8 [r3]=r10
+.work_pending:
+ tbit.nz p6,p0=r31,TIF_SIGDELAYED // signal delayed from MCA/INIT/NMI/PMI context?
+(p6) br.cond.sptk.few .sigdelayed
+ ;;
+ tbit.z p6,p0=r31,TIF_NEED_RESCHED // current_thread_info()->need_resched==0?
+(p6) br.cond.sptk.few .notify
+#ifdef CONFIG_PREEMPT
+(pKStk) dep r21=-1,r0,PREEMPT_ACTIVE_BIT,1
+ ;;
+(pKStk) st4 [r20]=r21
+ ssm psr.i // enable interrupts
+#endif
+ br.call.spnt.many rp=schedule
+.ret9: cmp.eq p6,p0=r0,r0 // p6 <- 1
+ rsm psr.i // disable interrupts
+ ;;
+#ifdef CONFIG_PREEMPT
+(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
+ ;;
+(pKStk) st4 [r20]=r0 // preempt_count() <- 0
+#endif
+(pLvSys)br.cond.sptk.few .work_pending_syscall_end
+ br.cond.sptk.many .work_processed_kernel // re-check
+
+.notify:
+(pUStk) br.call.spnt.many rp=notify_resume_user
+.ret10: cmp.ne p6,p0=r0,r0 // p6 <- 0
+(pLvSys)br.cond.sptk.few .work_pending_syscall_end
+ br.cond.sptk.many .work_processed_kernel // don't re-check
+
+// There is a delayed signal that was detected in MCA/INIT/NMI/PMI context where
+// it could not be delivered. Deliver it now. The signal might be for us and
+// may set TIF_SIGPENDING, so redrive ia64_leave_* after processing the delayed
+// signal.
+
+.sigdelayed:
+ br.call.sptk.many rp=do_sigdelayed
+ cmp.eq p6,p0=r0,r0 // p6 <- 1, always re-check
+(pLvSys)br.cond.sptk.few .work_pending_syscall_end
+ br.cond.sptk.many .work_processed_kernel // re-check
+
+.work_pending_syscall_end:
+ adds r2=PT(R8)+16,r12
+ adds r3=PT(R10)+16,r12
+ ;;
+ ld8 r8=[r2]
+ ld8 r10=[r3]
+ br.cond.sptk.many .work_processed_syscall // re-check
+
+END(ia64_leave_kernel)
+
+ENTRY(handle_syscall_error)
+ /*
+ * Some system calls (e.g., ptrace, mmap) can return arbitrary values which could
+ * lead us to mistake a negative return value as a failed syscall. Those syscall
+ * must deposit a non-zero value in pt_regs.r8 to indicate an error. If
+ * pt_regs.r8 is zero, we assume that the call completed successfully.
+ */
+ PT_REGS_UNWIND_INFO(0)
+ ld8 r3=[r2] // load pt_regs.r8
+ ;;
+ cmp.eq p6,p7=r3,r0 // is pt_regs.r8==0?
+ ;;
+(p7) mov r10=-1
+(p7) sub r8=0,r8 // negate return value to get errno
+ br.cond.sptk ia64_leave_syscall
+END(handle_syscall_error)
+
+ /*
+ * Invoke schedule_tail(task) while preserving in0-in7, which may be needed
+ * in case a system call gets restarted.
+ */
+GLOBAL_ENTRY(ia64_invoke_schedule_tail)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc loc1=ar.pfs,8,2,1,0
+ mov loc0=rp
+ mov out0=r8 // Address of previous task
+ ;;
+ br.call.sptk.many rp=schedule_tail
+.ret11: mov ar.pfs=loc1
+ mov rp=loc0
+ br.ret.sptk.many rp
+END(ia64_invoke_schedule_tail)
+
+ /*
+ * Setup stack and call do_notify_resume_user(). Note that pSys and pNonSys need to
+ * be set up by the caller. We declare 8 input registers so the system call
+ * args get preserved, in case we need to restart a system call.
+ */
+ENTRY(notify_resume_user)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
+ mov r9=ar.unat
+ mov loc0=rp // save return address
+ mov out0=0 // there is no "oldset"
+ adds out1=8,sp // out1=&sigscratch->ar_pfs
+(pSys) mov out2=1 // out2==1 => we're in a syscall
+ ;;
+(pNonSys) mov out2=0 // out2==0 => not a syscall
+ .fframe 16
+ .spillpsp ar.unat, 16 // (note that offset is relative to psp+0x10!)
+ st8 [sp]=r9,-16 // allocate space for ar.unat and save it
+ st8 [out1]=loc1,-8 // save ar.pfs, out1=&sigscratch
+ .body
+ br.call.sptk.many rp=do_notify_resume_user
+.ret15: .restore sp
+ adds sp=16,sp // pop scratch stack space
+ ;;
+ ld8 r9=[sp] // load new unat from sigscratch->scratch_unat
+ mov rp=loc0
+ ;;
+ mov ar.unat=r9
+ mov ar.pfs=loc1
+ br.ret.sptk.many rp
+END(notify_resume_user)
+
+GLOBAL_ENTRY(sys_rt_sigsuspend)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
+ alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
+ mov r9=ar.unat
+ mov loc0=rp // save return address
+ mov out0=in0 // mask
+ mov out1=in1 // sigsetsize
+ adds out2=8,sp // out2=&sigscratch->ar_pfs
+ ;;
+ .fframe 16
+ .spillpsp ar.unat, 16 // (note that offset is relative to psp+0x10!)
+ st8 [sp]=r9,-16 // allocate space for ar.unat and save it
+ st8 [out2]=loc1,-8 // save ar.pfs, out2=&sigscratch
+ .body
+ br.call.sptk.many rp=ia64_rt_sigsuspend
+.ret17: .restore sp
+ adds sp=16,sp // pop scratch stack space
+ ;;
+ ld8 r9=[sp] // load new unat from sw->caller_unat
+ mov rp=loc0
+ ;;
+ mov ar.unat=r9
+ mov ar.pfs=loc1
+ br.ret.sptk.many rp
+END(sys_rt_sigsuspend)
+
+ENTRY(sys_rt_sigreturn)
+ PT_REGS_UNWIND_INFO(0)
+ /*
+ * Allocate 8 input registers since ptrace() may clobber them
+ */
+ alloc r2=ar.pfs,8,0,1,0
+ .prologue
+ PT_REGS_SAVES(16)
+ adds sp=-16,sp
+ .body
+ cmp.eq pNonSys,pSys=r0,r0 // sigreturn isn't a normal syscall...
+ ;;
+ /*
+ * leave_kernel() restores f6-f11 from pt_regs, but since the streamlined
+ * syscall-entry path does not save them we save them here instead. Note: we
+ * don't need to save any other registers that are not saved by the stream-lined
+ * syscall path, because restore_sigcontext() restores them.
+ */
+ adds r16=PT(F6)+32,sp
+ adds r17=PT(F7)+32,sp
+ ;;
+ stf.spill [r16]=f6,32
+ stf.spill [r17]=f7,32
+ ;;
+ stf.spill [r16]=f8,32
+ stf.spill [r17]=f9,32
+ ;;
+ stf.spill [r16]=f10
+ stf.spill [r17]=f11
+ adds out0=16,sp // out0 = &sigscratch
+ br.call.sptk.many rp=ia64_rt_sigreturn
+.ret19: .restore sp 0
+ adds sp=16,sp
+ ;;
+ ld8 r9=[sp] // load new ar.unat
+ mov.sptk b7=r8,ia64_leave_kernel
+ ;;
+ mov ar.unat=r9
+ br.many b7
+END(sys_rt_sigreturn)
+
+GLOBAL_ENTRY(ia64_prepare_handle_unaligned)
+ .prologue
+ /*
+ * r16 = fake ar.pfs, we simply need to make sure privilege is still 0
+ */
+ mov r16=r0
+ DO_SAVE_SWITCH_STACK
+ br.call.sptk.many rp=ia64_handle_unaligned // stack frame setup in ivt
+.ret21: .body
+ DO_LOAD_SWITCH_STACK
+ br.cond.sptk.many rp // goes to ia64_leave_kernel
+END(ia64_prepare_handle_unaligned)
+
+ //
+ // unw_init_running(void (*callback)(info, arg), void *arg)
+ //
+# define EXTRA_FRAME_SIZE ((UNW_FRAME_INFO_SIZE+15)&~15)
+
+GLOBAL_ENTRY(unw_init_running)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
+ alloc loc1=ar.pfs,2,3,3,0
+ ;;
+ ld8 loc2=[in0],8
+ mov loc0=rp
+ mov r16=loc1
+ DO_SAVE_SWITCH_STACK
+ .body
+
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
+ .fframe IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE
+ SWITCH_STACK_SAVES(EXTRA_FRAME_SIZE)
+ adds sp=-EXTRA_FRAME_SIZE,sp
+ .body
+ ;;
+ adds out0=16,sp // &info
+ mov out1=r13 // current
+ adds out2=16+EXTRA_FRAME_SIZE,sp // &switch_stack
+ br.call.sptk.many rp=unw_init_frame_info
+1: adds out0=16,sp // &info
+ mov b6=loc2
+ mov loc2=gp // save gp across indirect function call
+ ;;
+ ld8 gp=[in0]
+ mov out1=in1 // arg
+ br.call.sptk.many rp=b6 // invoke the callback function
+1: mov gp=loc2 // restore gp
+
+ // For now, we don't allow changing registers from within
+ // unw_init_running; if we ever want to allow that, we'd
+ // have to do a load_switch_stack here:
+ .restore sp
+ adds sp=IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE,sp
+
+ mov ar.pfs=loc1
+ mov rp=loc0
+ br.ret.sptk.many rp
+END(unw_init_running)
+
+ .rodata
+ .align 8
+ .globl sys_call_table
+sys_call_table:
+ data8 sys_ni_syscall // This must be sys_ni_syscall! See ivt.S.
+ data8 sys_exit // 1025
+ data8 sys_read
+ data8 sys_write
+ data8 sys_open
+ data8 sys_close
+ data8 sys_creat // 1030
+ data8 sys_link
+ data8 sys_unlink
+ data8 ia64_execve
+ data8 sys_chdir
+ data8 sys_fchdir // 1035
+ data8 sys_utimes
+ data8 sys_mknod
+ data8 sys_chmod
+ data8 sys_chown
+ data8 sys_lseek // 1040
+ data8 sys_getpid
+ data8 sys_getppid
+ data8 sys_mount
+ data8 sys_umount
+ data8 sys_setuid // 1045
+ data8 sys_getuid
+ data8 sys_geteuid
+ data8 sys_ptrace
+ data8 sys_access
+ data8 sys_sync // 1050
+ data8 sys_fsync
+ data8 sys_fdatasync
+ data8 sys_kill
+ data8 sys_rename
+ data8 sys_mkdir // 1055
+ data8 sys_rmdir
+ data8 sys_dup
+ data8 sys_pipe
+ data8 sys_times
+ data8 ia64_brk // 1060
+ data8 sys_setgid
+ data8 sys_getgid
+ data8 sys_getegid
+ data8 sys_acct
+ data8 sys_ioctl // 1065
+ data8 sys_fcntl
+ data8 sys_umask
+ data8 sys_chroot
+ data8 sys_ustat
+ data8 sys_dup2 // 1070
+ data8 sys_setreuid
+ data8 sys_setregid
+ data8 sys_getresuid
+ data8 sys_setresuid
+ data8 sys_getresgid // 1075
+ data8 sys_setresgid
+ data8 sys_getgroups
+ data8 sys_setgroups
+ data8 sys_getpgid
+ data8 sys_setpgid // 1080
+ data8 sys_setsid
+ data8 sys_getsid
+ data8 sys_sethostname
+ data8 sys_setrlimit
+ data8 sys_getrlimit // 1085
+ data8 sys_getrusage
+ data8 sys_gettimeofday
+ data8 sys_settimeofday
+ data8 sys_select
+ data8 sys_poll // 1090
+ data8 sys_symlink
+ data8 sys_readlink
+ data8 sys_uselib
+ data8 sys_swapon
+ data8 sys_swapoff // 1095
+ data8 sys_reboot
+ data8 sys_truncate
+ data8 sys_ftruncate
+ data8 sys_fchmod
+ data8 sys_fchown // 1100
+ data8 ia64_getpriority
+ data8 sys_setpriority
+ data8 sys_statfs
+ data8 sys_fstatfs
+ data8 sys_gettid // 1105
+ data8 sys_semget
+ data8 sys_semop
+ data8 sys_semctl
+ data8 sys_msgget
+ data8 sys_msgsnd // 1110
+ data8 sys_msgrcv
+ data8 sys_msgctl
+ data8 sys_shmget
+ data8 ia64_shmat
+ data8 sys_shmdt // 1115
+ data8 sys_shmctl
+ data8 sys_syslog
+ data8 sys_setitimer
+ data8 sys_getitimer
+ data8 sys_ni_syscall // 1120 /* was: ia64_oldstat */
+ data8 sys_ni_syscall /* was: ia64_oldlstat */
+ data8 sys_ni_syscall /* was: ia64_oldfstat */
+ data8 sys_vhangup
+ data8 sys_lchown
+ data8 sys_remap_file_pages // 1125
+ data8 sys_wait4
+ data8 sys_sysinfo
+ data8 sys_clone
+ data8 sys_setdomainname
+ data8 sys_newuname // 1130
+ data8 sys_adjtimex
+ data8 sys_ni_syscall /* was: ia64_create_module */
+ data8 sys_init_module
+ data8 sys_delete_module
+ data8 sys_ni_syscall // 1135 /* was: sys_get_kernel_syms */
+ data8 sys_ni_syscall /* was: sys_query_module */
+ data8 sys_quotactl
+ data8 sys_bdflush
+ data8 sys_sysfs
+ data8 sys_personality // 1140
+ data8 sys_ni_syscall // sys_afs_syscall
+ data8 sys_setfsuid
+ data8 sys_setfsgid
+ data8 sys_getdents
+ data8 sys_flock // 1145
+ data8 sys_readv
+ data8 sys_writev
+ data8 sys_pread64
+ data8 sys_pwrite64
+ data8 sys_sysctl // 1150
+ data8 sys_mmap
+ data8 sys_munmap
+ data8 sys_mlock
+ data8 sys_mlockall
+ data8 sys_mprotect // 1155
+ data8 ia64_mremap
+ data8 sys_msync
+ data8 sys_munlock
+ data8 sys_munlockall
+ data8 sys_sched_getparam // 1160
+ data8 sys_sched_setparam
+ data8 sys_sched_getscheduler
+ data8 sys_sched_setscheduler
+ data8 sys_sched_yield
+ data8 sys_sched_get_priority_max // 1165
+ data8 sys_sched_get_priority_min
+ data8 sys_sched_rr_get_interval
+ data8 sys_nanosleep
+ data8 sys_nfsservctl
+ data8 sys_prctl // 1170
+ data8 sys_getpagesize
+ data8 sys_mmap2
+ data8 sys_pciconfig_read
+ data8 sys_pciconfig_write
+ data8 sys_perfmonctl // 1175
+ data8 sys_sigaltstack
+ data8 sys_rt_sigaction
+ data8 sys_rt_sigpending
+ data8 sys_rt_sigprocmask
+ data8 sys_rt_sigqueueinfo // 1180
+ data8 sys_rt_sigreturn
+ data8 sys_rt_sigsuspend
+ data8 sys_rt_sigtimedwait
+ data8 sys_getcwd
+ data8 sys_capget // 1185
+ data8 sys_capset
+ data8 sys_sendfile64
+ data8 sys_ni_syscall // sys_getpmsg (STREAMS)
+ data8 sys_ni_syscall // sys_putpmsg (STREAMS)
+ data8 sys_socket // 1190
+ data8 sys_bind
+ data8 sys_connect
+ data8 sys_listen
+ data8 sys_accept
+ data8 sys_getsockname // 1195
+ data8 sys_getpeername
+ data8 sys_socketpair
+ data8 sys_send
+ data8 sys_sendto
+ data8 sys_recv // 1200
+ data8 sys_recvfrom
+ data8 sys_shutdown
+ data8 sys_setsockopt
+ data8 sys_getsockopt
+ data8 sys_sendmsg // 1205
+ data8 sys_recvmsg
+ data8 sys_pivot_root
+ data8 sys_mincore
+ data8 sys_madvise
+ data8 sys_newstat // 1210
+ data8 sys_newlstat
+ data8 sys_newfstat
+ data8 sys_clone2
+ data8 sys_getdents64
+ data8 sys_getunwind // 1215
+ data8 sys_readahead
+ data8 sys_setxattr
+ data8 sys_lsetxattr
+ data8 sys_fsetxattr
+ data8 sys_getxattr // 1220
+ data8 sys_lgetxattr
+ data8 sys_fgetxattr
+ data8 sys_listxattr
+ data8 sys_llistxattr
+ data8 sys_flistxattr // 1225
+ data8 sys_removexattr
+ data8 sys_lremovexattr
+ data8 sys_fremovexattr
+ data8 sys_tkill
+ data8 sys_futex // 1230
+ data8 sys_sched_setaffinity
+ data8 sys_sched_getaffinity
+ data8 sys_set_tid_address
+ data8 sys_fadvise64_64
+ data8 sys_tgkill // 1235
+ data8 sys_exit_group
+ data8 sys_lookup_dcookie
+ data8 sys_io_setup
+ data8 sys_io_destroy
+ data8 sys_io_getevents // 1240
+ data8 sys_io_submit
+ data8 sys_io_cancel
+ data8 sys_epoll_create
+ data8 sys_epoll_ctl
+ data8 sys_epoll_wait // 1245
+ data8 sys_restart_syscall
+ data8 sys_semtimedop
+ data8 sys_timer_create
+ data8 sys_timer_settime
+ data8 sys_timer_gettime // 1250
+ data8 sys_timer_getoverrun
+ data8 sys_timer_delete
+ data8 sys_clock_settime
+ data8 sys_clock_gettime
+ data8 sys_clock_getres // 1255
+ data8 sys_clock_nanosleep
+ data8 sys_fstatfs64
+ data8 sys_statfs64
+ data8 sys_mbind
+ data8 sys_get_mempolicy // 1260
+ data8 sys_set_mempolicy
+ data8 sys_mq_open
+ data8 sys_mq_unlink
+ data8 sys_mq_timedsend
+ data8 sys_mq_timedreceive // 1265
+ data8 sys_mq_notify
+ data8 sys_mq_getsetattr
+ data8 sys_ni_syscall // reserved for kexec_load
+ data8 sys_ni_syscall // reserved for vserver
+ data8 sys_waitid // 1270
+ data8 sys_add_key
+ data8 sys_request_key
+ data8 sys_keyctl
+ data8 sys_ni_syscall
+ data8 sys_ni_syscall // 1275
+ data8 sys_ni_syscall
+ data8 sys_ni_syscall
+ data8 sys_ni_syscall
+ data8 sys_ni_syscall
+
+ .org sys_call_table + 8*NR_syscalls // guard against failures to increase NR_syscalls
diff --git a/arch/ia64/kernel/entry.h b/arch/ia64/kernel/entry.h
new file mode 100644
index 0000000..6d4ecec
--- /dev/null
+++ b/arch/ia64/kernel/entry.h
@@ -0,0 +1,82 @@
+#include <linux/config.h>
+
+/*
+ * Preserved registers that are shared between code in ivt.S and
+ * entry.S. Be careful not to step on these!
+ */
+#define PRED_LEAVE_SYSCALL 1 /* TRUE iff leave from syscall */
+#define PRED_KERNEL_STACK 2 /* returning to kernel-stacks? */
+#define PRED_USER_STACK 3 /* returning to user-stacks? */
+#define PRED_SYSCALL 4 /* inside a system call? */
+#define PRED_NON_SYSCALL 5 /* complement of PRED_SYSCALL */
+
+#ifdef __ASSEMBLY__
+# define PASTE2(x,y) x##y
+# define PASTE(x,y) PASTE2(x,y)
+
+# define pLvSys PASTE(p,PRED_LEAVE_SYSCALL)
+# define pKStk PASTE(p,PRED_KERNEL_STACK)
+# define pUStk PASTE(p,PRED_USER_STACK)
+# define pSys PASTE(p,PRED_SYSCALL)
+# define pNonSys PASTE(p,PRED_NON_SYSCALL)
+#endif
+
+#define PT(f) (IA64_PT_REGS_##f##_OFFSET)
+#define SW(f) (IA64_SWITCH_STACK_##f##_OFFSET)
+
+#define PT_REGS_SAVES(off) \
+ .unwabi 3, 'i'; \
+ .fframe IA64_PT_REGS_SIZE+16+(off); \
+ .spillsp rp, PT(CR_IIP)+16+(off); \
+ .spillsp ar.pfs, PT(CR_IFS)+16+(off); \
+ .spillsp ar.unat, PT(AR_UNAT)+16+(off); \
+ .spillsp ar.fpsr, PT(AR_FPSR)+16+(off); \
+ .spillsp pr, PT(PR)+16+(off);
+
+#define PT_REGS_UNWIND_INFO(off) \
+ .prologue; \
+ PT_REGS_SAVES(off); \
+ .body
+
+#define SWITCH_STACK_SAVES(off) \
+ .savesp ar.unat,SW(CALLER_UNAT)+16+(off); \
+ .savesp ar.fpsr,SW(AR_FPSR)+16+(off); \
+ .spillsp f2,SW(F2)+16+(off); .spillsp f3,SW(F3)+16+(off); \
+ .spillsp f4,SW(F4)+16+(off); .spillsp f5,SW(F5)+16+(off); \
+ .spillsp f16,SW(F16)+16+(off); .spillsp f17,SW(F17)+16+(off); \
+ .spillsp f18,SW(F18)+16+(off); .spillsp f19,SW(F19)+16+(off); \
+ .spillsp f20,SW(F20)+16+(off); .spillsp f21,SW(F21)+16+(off); \
+ .spillsp f22,SW(F22)+16+(off); .spillsp f23,SW(F23)+16+(off); \
+ .spillsp f24,SW(F24)+16+(off); .spillsp f25,SW(F25)+16+(off); \
+ .spillsp f26,SW(F26)+16+(off); .spillsp f27,SW(F27)+16+(off); \
+ .spillsp f28,SW(F28)+16+(off); .spillsp f29,SW(F29)+16+(off); \
+ .spillsp f30,SW(F30)+16+(off); .spillsp f31,SW(F31)+16+(off); \
+ .spillsp r4,SW(R4)+16+(off); .spillsp r5,SW(R5)+16+(off); \
+ .spillsp r6,SW(R6)+16+(off); .spillsp r7,SW(R7)+16+(off); \
+ .spillsp b0,SW(B0)+16+(off); .spillsp b1,SW(B1)+16+(off); \
+ .spillsp b2,SW(B2)+16+(off); .spillsp b3,SW(B3)+16+(off); \
+ .spillsp b4,SW(B4)+16+(off); .spillsp b5,SW(B5)+16+(off); \
+ .spillsp ar.pfs,SW(AR_PFS)+16+(off); .spillsp ar.lc,SW(AR_LC)+16+(off); \
+ .spillsp @priunat,SW(AR_UNAT)+16+(off); \
+ .spillsp ar.rnat,SW(AR_RNAT)+16+(off); \
+ .spillsp ar.bspstore,SW(AR_BSPSTORE)+16+(off); \
+ .spillsp pr,SW(PR)+16+(off))
+
+#define DO_SAVE_SWITCH_STACK \
+ movl r28=1f; \
+ ;; \
+ .fframe IA64_SWITCH_STACK_SIZE; \
+ adds sp=-IA64_SWITCH_STACK_SIZE,sp; \
+ mov.ret.sptk b7=r28,1f; \
+ SWITCH_STACK_SAVES(0); \
+ br.cond.sptk.many save_switch_stack; \
+1:
+
+#define DO_LOAD_SWITCH_STACK \
+ movl r28=1f; \
+ ;; \
+ invala; \
+ mov.ret.sptk b7=r28,1f; \
+ br.cond.sptk.many load_switch_stack; \
+1: .restore sp; \
+ adds sp=IA64_SWITCH_STACK_SIZE,sp
diff --git a/arch/ia64/kernel/fsys.S b/arch/ia64/kernel/fsys.S
new file mode 100644
index 0000000..0d8650f
--- /dev/null
+++ b/arch/ia64/kernel/fsys.S
@@ -0,0 +1,884 @@
+/*
+ * This file contains the light-weight system call handlers (fsyscall-handlers).
+ *
+ * Copyright (C) 2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 25-Sep-03 davidm Implement fsys_rt_sigprocmask().
+ * 18-Feb-03 louisk Implement fsys_gettimeofday().
+ * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more,
+ * probably broke it along the way... ;-)
+ * 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make
+ * it capable of using memory based clocks without falling back to C code.
+ */
+
+#include <asm/asmmacro.h>
+#include <asm/errno.h>
+#include <asm/offsets.h>
+#include <asm/percpu.h>
+#include <asm/thread_info.h>
+#include <asm/sal.h>
+#include <asm/signal.h>
+#include <asm/system.h>
+#include <asm/unistd.h>
+
+#include "entry.h"
+
+/*
+ * See Documentation/ia64/fsys.txt for details on fsyscalls.
+ *
+ * On entry to an fsyscall handler:
+ * r10 = 0 (i.e., defaults to "successful syscall return")
+ * r11 = saved ar.pfs (a user-level value)
+ * r15 = system call number
+ * r16 = "current" task pointer (in normal kernel-mode, this is in r13)
+ * r32-r39 = system call arguments
+ * b6 = return address (a user-level value)
+ * ar.pfs = previous frame-state (a user-level value)
+ * PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
+ * all other registers may contain values passed in from user-mode
+ *
+ * On return from an fsyscall handler:
+ * r11 = saved ar.pfs (as passed into the fsyscall handler)
+ * r15 = system call number (as passed into the fsyscall handler)
+ * r32-r39 = system call arguments (as passed into the fsyscall handler)
+ * b6 = return address (as passed into the fsyscall handler)
+ * ar.pfs = previous frame-state (as passed into the fsyscall handler)
+ */
+
+ENTRY(fsys_ni_syscall)
+ .prologue
+ .altrp b6
+ .body
+ mov r8=ENOSYS
+ mov r10=-1
+ FSYS_RETURN
+END(fsys_ni_syscall)
+
+ENTRY(fsys_getpid)
+ .prologue
+ .altrp b6
+ .body
+ add r9=TI_FLAGS+IA64_TASK_SIZE,r16
+ ;;
+ ld4 r9=[r9]
+ add r8=IA64_TASK_TGID_OFFSET,r16
+ ;;
+ and r9=TIF_ALLWORK_MASK,r9
+ ld4 r8=[r8] // r8 = current->tgid
+ ;;
+ cmp.ne p8,p0=0,r9
+(p8) br.spnt.many fsys_fallback_syscall
+ FSYS_RETURN
+END(fsys_getpid)
+
+ENTRY(fsys_getppid)
+ .prologue
+ .altrp b6
+ .body
+ add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16
+ ;;
+ ld8 r17=[r17] // r17 = current->group_leader
+ add r9=TI_FLAGS+IA64_TASK_SIZE,r16
+ ;;
+
+ ld4 r9=[r9]
+ add r17=IA64_TASK_REAL_PARENT_OFFSET,r17 // r17 = &current->group_leader->real_parent
+ ;;
+ and r9=TIF_ALLWORK_MASK,r9
+
+1: ld8 r18=[r17] // r18 = current->group_leader->real_parent
+ ;;
+ cmp.ne p8,p0=0,r9
+ add r8=IA64_TASK_TGID_OFFSET,r18 // r8 = &current->group_leader->real_parent->tgid
+ ;;
+
+ /*
+ * The .acq is needed to ensure that the read of tgid has returned its data before
+ * we re-check "real_parent".
+ */
+ ld4.acq r8=[r8] // r8 = current->group_leader->real_parent->tgid
+#ifdef CONFIG_SMP
+ /*
+ * Re-read current->group_leader->real_parent.
+ */
+ ld8 r19=[r17] // r19 = current->group_leader->real_parent
+(p8) br.spnt.many fsys_fallback_syscall
+ ;;
+ cmp.ne p6,p0=r18,r19 // did real_parent change?
+ mov r19=0 // i must not leak kernel bits...
+(p6) br.cond.spnt.few 1b // yes -> redo the read of tgid and the check
+ ;;
+ mov r17=0 // i must not leak kernel bits...
+ mov r18=0 // i must not leak kernel bits...
+#else
+ mov r17=0 // i must not leak kernel bits...
+ mov r18=0 // i must not leak kernel bits...
+ mov r19=0 // i must not leak kernel bits...
+#endif
+ FSYS_RETURN
+END(fsys_getppid)
+
+ENTRY(fsys_set_tid_address)
+ .prologue
+ .altrp b6
+ .body
+ add r9=TI_FLAGS+IA64_TASK_SIZE,r16
+ ;;
+ ld4 r9=[r9]
+ tnat.z p6,p7=r32 // check argument register for being NaT
+ ;;
+ and r9=TIF_ALLWORK_MASK,r9
+ add r8=IA64_TASK_PID_OFFSET,r16
+ add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16
+ ;;
+ ld4 r8=[r8]
+ cmp.ne p8,p0=0,r9
+ mov r17=-1
+ ;;
+(p6) st8 [r18]=r32
+(p7) st8 [r18]=r17
+(p8) br.spnt.many fsys_fallback_syscall
+ ;;
+ mov r17=0 // i must not leak kernel bits...
+ mov r18=0 // i must not leak kernel bits...
+ FSYS_RETURN
+END(fsys_set_tid_address)
+
+/*
+ * Ensure that the time interpolator structure is compatible with the asm code
+ */
+#if IA64_TIME_INTERPOLATOR_SOURCE_OFFSET !=0 || IA64_TIME_INTERPOLATOR_SHIFT_OFFSET != 2 \
+ || IA64_TIME_INTERPOLATOR_JITTER_OFFSET != 3 || IA64_TIME_INTERPOLATOR_NSEC_OFFSET != 4
+#error fsys_gettimeofday incompatible with changes to struct time_interpolator
+#endif
+#define CLOCK_REALTIME 0
+#define CLOCK_MONOTONIC 1
+#define CLOCK_DIVIDE_BY_1000 0x4000
+#define CLOCK_ADD_MONOTONIC 0x8000
+
+ENTRY(fsys_gettimeofday)
+ .prologue
+ .altrp b6
+ .body
+ mov r31 = r32
+ tnat.nz p6,p0 = r33 // guard against NaT argument
+(p6) br.cond.spnt.few .fail_einval
+ mov r30 = CLOCK_DIVIDE_BY_1000
+ ;;
+.gettime:
+ // Register map
+ // Incoming r31 = pointer to address where to place result
+ // r30 = flags determining how time is processed
+ // r2,r3 = temp r4-r7 preserved
+ // r8 = result nanoseconds
+ // r9 = result seconds
+ // r10 = temporary storage for clock difference
+ // r11 = preserved: saved ar.pfs
+ // r12 = preserved: memory stack
+ // r13 = preserved: thread pointer
+ // r14 = address of mask / mask
+ // r15 = preserved: system call number
+ // r16 = preserved: current task pointer
+ // r17 = wall to monotonic use
+ // r18 = time_interpolator->offset
+ // r19 = address of wall_to_monotonic
+ // r20 = pointer to struct time_interpolator / pointer to time_interpolator->address
+ // r21 = shift factor
+ // r22 = address of time interpolator->last_counter
+ // r23 = address of time_interpolator->last_cycle
+ // r24 = adress of time_interpolator->offset
+ // r25 = last_cycle value
+ // r26 = last_counter value
+ // r27 = pointer to xtime
+ // r28 = sequence number at the beginning of critcal section
+ // r29 = address of seqlock
+ // r30 = time processing flags / memory address
+ // r31 = pointer to result
+ // Predicates
+ // p6,p7 short term use
+ // p8 = timesource ar.itc
+ // p9 = timesource mmio64
+ // p10 = timesource mmio32
+ // p11 = timesource not to be handled by asm code
+ // p12 = memory time source ( = p9 | p10)
+ // p13 = do cmpxchg with time_interpolator_last_cycle
+ // p14 = Divide by 1000
+ // p15 = Add monotonic
+ //
+ // Note that instructions are optimized for McKinley. McKinley can process two
+ // bundles simultaneously and therefore we continuously try to feed the CPU
+ // two bundles and then a stop.
+ tnat.nz p6,p0 = r31 // branch deferred since it does not fit into bundle structure
+ mov pr = r30,0xc000 // Set predicates according to function
+ add r2 = TI_FLAGS+IA64_TASK_SIZE,r16
+ movl r20 = time_interpolator
+ ;;
+ ld8 r20 = [r20] // get pointer to time_interpolator structure
+ movl r29 = xtime_lock
+ ld4 r2 = [r2] // process work pending flags
+ movl r27 = xtime
+ ;; // only one bundle here
+ ld8 r21 = [r20] // first quad with control information
+ and r2 = TIF_ALLWORK_MASK,r2
+(p6) br.cond.spnt.few .fail_einval // deferred branch
+ ;;
+ add r10 = IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET,r20
+ extr r3 = r21,32,32 // time_interpolator->nsec_per_cyc
+ extr r8 = r21,0,16 // time_interpolator->source
+ cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled
+(p6) br.cond.spnt.many fsys_fallback_syscall
+ ;;
+ cmp.eq p8,p12 = 0,r8 // Check for cpu timer
+ cmp.eq p9,p0 = 1,r8 // MMIO64 ?
+ extr r2 = r21,24,8 // time_interpolator->jitter
+ cmp.eq p10,p0 = 2,r8 // MMIO32 ?
+ cmp.ltu p11,p0 = 2,r8 // function or other clock
+(p11) br.cond.spnt.many fsys_fallback_syscall
+ ;;
+ setf.sig f7 = r3 // Setup for scaling of counter
+(p15) movl r19 = wall_to_monotonic
+(p12) ld8 r30 = [r10]
+ cmp.ne p13,p0 = r2,r0 // need jitter compensation?
+ extr r21 = r21,16,8 // shift factor
+ ;;
+.time_redo:
+ .pred.rel.mutex p8,p9,p10
+ ld4.acq r28 = [r29] // xtime_lock.sequence. Must come first for locking purposes
+(p8) mov r2 = ar.itc // CPU_TIMER. 36 clocks latency!!!
+ add r22 = IA64_TIME_INTERPOLATOR_LAST_COUNTER_OFFSET,r20
+(p9) ld8 r2 = [r30] // readq(ti->address). Could also have latency issues..
+(p10) ld4 r2 = [r30] // readw(ti->address)
+(p13) add r23 = IA64_TIME_INTERPOLATOR_LAST_CYCLE_OFFSET,r20
+ ;; // could be removed by moving the last add upward
+ ld8 r26 = [r22] // time_interpolator->last_counter
+(p13) ld8 r25 = [r23] // time interpolator->last_cycle
+ add r24 = IA64_TIME_INTERPOLATOR_OFFSET_OFFSET,r20
+(p15) ld8 r17 = [r19],IA64_TIMESPEC_TV_NSEC_OFFSET
+ ld8 r9 = [r27],IA64_TIMESPEC_TV_NSEC_OFFSET
+ add r14 = IA64_TIME_INTERPOLATOR_MASK_OFFSET, r20
+ ;;
+ ld8 r18 = [r24] // time_interpolator->offset
+ ld8 r8 = [r27],-IA64_TIMESPEC_TV_NSEC_OFFSET // xtime.tv_nsec
+(p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm)
+ ;;
+ ld8 r14 = [r14] // time_interpolator->mask
+(p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared
+ sub r10 = r2,r26 // current_counter - last_counter
+ ;;
+(p6) sub r10 = r25,r26 // time we got was less than last_cycle
+(p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg
+ ;;
+ and r10 = r10,r14 // Apply mask
+ ;;
+ setf.sig f8 = r10
+ nop.i 123
+ ;;
+(p7) cmpxchg8.rel r3 = [r23],r2,ar.ccv
+EX(.fail_efault, probe.w.fault r31, 3) // This takes 5 cycles and we have spare time
+ xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter)
+(p15) add r9 = r9,r17 // Add wall to monotonic.secs to result secs
+ ;;
+(p15) ld8 r17 = [r19],-IA64_TIMESPEC_TV_NSEC_OFFSET
+(p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful redo
+ // simulate tbit.nz.or p7,p0 = r28,0
+ and r28 = ~1,r28 // Make sequence even to force retry if odd
+ getf.sig r2 = f8
+ mf
+ add r8 = r8,r18 // Add time interpolator offset
+ ;;
+ ld4 r10 = [r29] // xtime_lock.sequence
+(p15) add r8 = r8, r17 // Add monotonic.nsecs to nsecs
+ shr.u r2 = r2,r21
+ ;; // overloaded 3 bundles!
+ // End critical section.
+ add r8 = r8,r2 // Add xtime.nsecs
+ cmp4.ne.or p7,p0 = r28,r10
+(p7) br.cond.dpnt.few .time_redo // sequence number changed ?
+ // Now r8=tv->tv_nsec and r9=tv->tv_sec
+ mov r10 = r0
+ movl r2 = 1000000000
+ add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31
+(p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack
+ ;;
+.time_normalize:
+ mov r21 = r8
+ cmp.ge p6,p0 = r8,r2
+(p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting some time
+ ;;
+(p14) setf.sig f8 = r20
+(p6) sub r8 = r8,r2
+(p6) add r9 = 1,r9 // two nops before the branch.
+(p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod
+(p6) br.cond.dpnt.few .time_normalize
+ ;;
+ // Divided by 8 though shift. Now divide by 125
+ // The compiler was able to do that with a multiply
+ // and a shift and we do the same
+EX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles
+(p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it...
+ ;;
+ mov r8 = r0
+(p14) getf.sig r2 = f8
+ ;;
+(p14) shr.u r21 = r2, 4
+ ;;
+EX(.fail_efault, st8 [r31] = r9)
+EX(.fail_efault, st8 [r23] = r21)
+ FSYS_RETURN
+.fail_einval:
+ mov r8 = EINVAL
+ mov r10 = -1
+ FSYS_RETURN
+.fail_efault:
+ mov r8 = EFAULT
+ mov r10 = -1
+ FSYS_RETURN
+END(fsys_gettimeofday)
+
+ENTRY(fsys_clock_gettime)
+ .prologue
+ .altrp b6
+ .body
+ cmp4.ltu p6, p0 = CLOCK_MONOTONIC, r32
+ // Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC
+(p6) br.spnt.few fsys_fallback_syscall
+ mov r31 = r33
+ shl r30 = r32,15
+ br.many .gettime
+END(fsys_clock_gettime)
+
+/*
+ * long fsys_rt_sigprocmask (int how, sigset_t *set, sigset_t *oset, size_t sigsetsize).
+ */
+#if _NSIG_WORDS != 1
+# error Sorry, fsys_rt_sigprocmask() needs to be updated for _NSIG_WORDS != 1.
+#endif
+ENTRY(fsys_rt_sigprocmask)
+ .prologue
+ .altrp b6
+ .body
+
+ add r2=IA64_TASK_BLOCKED_OFFSET,r16
+ add r9=TI_FLAGS+IA64_TASK_SIZE,r16
+ cmp4.ltu p6,p0=SIG_SETMASK,r32
+
+ cmp.ne p15,p0=r0,r34 // oset != NULL?
+ tnat.nz p8,p0=r34
+ add r31=IA64_TASK_SIGHAND_OFFSET,r16
+ ;;
+ ld8 r3=[r2] // read/prefetch current->blocked
+ ld4 r9=[r9]
+ tnat.nz.or p6,p0=r35
+
+ cmp.ne.or p6,p0=_NSIG_WORDS*8,r35
+ tnat.nz.or p6,p0=r32
+(p6) br.spnt.few .fail_einval // fail with EINVAL
+ ;;
+#ifdef CONFIG_SMP
+ ld8 r31=[r31] // r31 <- current->sighand
+#endif
+ and r9=TIF_ALLWORK_MASK,r9
+ tnat.nz.or p8,p0=r33
+ ;;
+ cmp.ne p7,p0=0,r9
+ cmp.eq p6,p0=r0,r33 // set == NULL?
+ add r31=IA64_SIGHAND_SIGLOCK_OFFSET,r31 // r31 <- current->sighand->siglock
+(p8) br.spnt.few .fail_efault // fail with EFAULT
+(p7) br.spnt.many fsys_fallback_syscall // got pending kernel work...
+(p6) br.dpnt.many .store_mask // -> short-circuit to just reading the signal mask
+
+ /* Argh, we actually have to do some work and _update_ the signal mask: */
+
+EX(.fail_efault, probe.r.fault r33, 3) // verify user has read-access to *set
+EX(.fail_efault, ld8 r14=[r33]) // r14 <- *set
+ mov r17=(1 << (SIGKILL - 1)) | (1 << (SIGSTOP - 1))
+ ;;
+
+ rsm psr.i // mask interrupt delivery
+ mov ar.ccv=0
+ andcm r14=r14,r17 // filter out SIGKILL & SIGSTOP
+
+#ifdef CONFIG_SMP
+ mov r17=1
+ ;;
+ cmpxchg4.acq r18=[r31],r17,ar.ccv // try to acquire the lock
+ mov r8=EINVAL // default to EINVAL
+ ;;
+ ld8 r3=[r2] // re-read current->blocked now that we hold the lock
+ cmp4.ne p6,p0=r18,r0
+(p6) br.cond.spnt.many .lock_contention
+ ;;
+#else
+ ld8 r3=[r2] // re-read current->blocked now that we hold the lock
+ mov r8=EINVAL // default to EINVAL
+#endif
+ add r18=IA64_TASK_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r16
+ add r19=IA64_TASK_SIGNAL_OFFSET,r16
+ cmp4.eq p6,p0=SIG_BLOCK,r32
+ ;;
+ ld8 r19=[r19] // r19 <- current->signal
+ cmp4.eq p7,p0=SIG_UNBLOCK,r32
+ cmp4.eq p8,p0=SIG_SETMASK,r32
+ ;;
+ ld8 r18=[r18] // r18 <- current->pending.signal
+ .pred.rel.mutex p6,p7,p8
+(p6) or r14=r3,r14 // SIG_BLOCK
+(p7) andcm r14=r3,r14 // SIG_UNBLOCK
+
+(p8) mov r14=r14 // SIG_SETMASK
+(p6) mov r8=0 // clear error code
+ // recalc_sigpending()
+ add r17=IA64_SIGNAL_GROUP_STOP_COUNT_OFFSET,r19
+
+ add r19=IA64_SIGNAL_SHARED_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r19
+ ;;
+ ld4 r17=[r17] // r17 <- current->signal->group_stop_count
+(p7) mov r8=0 // clear error code
+
+ ld8 r19=[r19] // r19 <- current->signal->shared_pending
+ ;;
+ cmp4.gt p6,p7=r17,r0 // p6/p7 <- (current->signal->group_stop_count > 0)?
+(p8) mov r8=0 // clear error code
+
+ or r18=r18,r19 // r18 <- current->pending | current->signal->shared_pending
+ ;;
+ // r18 <- (current->pending | current->signal->shared_pending) & ~current->blocked:
+ andcm r18=r18,r14
+ add r9=TI_FLAGS+IA64_TASK_SIZE,r16
+ ;;
+
+(p7) cmp.ne.or.andcm p6,p7=r18,r0 // p6/p7 <- signal pending
+ mov r19=0 // i must not leak kernel bits...
+(p6) br.cond.dpnt.many .sig_pending
+ ;;
+
+1: ld4 r17=[r9] // r17 <- current->thread_info->flags
+ ;;
+ mov ar.ccv=r17
+ and r18=~_TIF_SIGPENDING,r17 // r18 <- r17 & ~(1 << TIF_SIGPENDING)
+ ;;
+
+ st8 [r2]=r14 // update current->blocked with new mask
+ cmpxchg4.acq r14=[r9],r18,ar.ccv // current->thread_info->flags <- r18
+ ;;
+ cmp.ne p6,p0=r17,r14 // update failed?
+(p6) br.cond.spnt.few 1b // yes -> retry
+
+#ifdef CONFIG_SMP
+ st4.rel [r31]=r0 // release the lock
+#endif
+ ssm psr.i
+ ;;
+
+ srlz.d // ensure psr.i is set again
+ mov r18=0 // i must not leak kernel bits...
+
+.store_mask:
+EX(.fail_efault, (p15) probe.w.fault r34, 3) // verify user has write-access to *oset
+EX(.fail_efault, (p15) st8 [r34]=r3)
+ mov r2=0 // i must not leak kernel bits...
+ mov r3=0 // i must not leak kernel bits...
+ mov r8=0 // return 0
+ mov r9=0 // i must not leak kernel bits...
+ mov r14=0 // i must not leak kernel bits...
+ mov r17=0 // i must not leak kernel bits...
+ mov r31=0 // i must not leak kernel bits...
+ FSYS_RETURN
+
+.sig_pending:
+#ifdef CONFIG_SMP
+ st4.rel [r31]=r0 // release the lock
+#endif
+ ssm psr.i
+ ;;
+ srlz.d
+ br.sptk.many fsys_fallback_syscall // with signal pending, do the heavy-weight syscall
+
+#ifdef CONFIG_SMP
+.lock_contention:
+ /* Rather than spinning here, fall back on doing a heavy-weight syscall. */
+ ssm psr.i
+ ;;
+ srlz.d
+ br.sptk.many fsys_fallback_syscall
+#endif
+END(fsys_rt_sigprocmask)
+
+ENTRY(fsys_fallback_syscall)
+ .prologue
+ .altrp b6
+ .body
+ /*
+ * We only get here from light-weight syscall handlers. Thus, we already
+ * know that r15 contains a valid syscall number. No need to re-check.
+ */
+ adds r17=-1024,r15
+ movl r14=sys_call_table
+ ;;
+ rsm psr.i
+ shladd r18=r17,3,r14
+ ;;
+ ld8 r18=[r18] // load normal (heavy-weight) syscall entry-point
+ mov r29=psr // read psr (12 cyc load latency)
+ mov r27=ar.rsc
+ mov r21=ar.fpsr
+ mov r26=ar.pfs
+END(fsys_fallback_syscall)
+ /* FALL THROUGH */
+GLOBAL_ENTRY(fsys_bubble_down)
+ .prologue
+ .altrp b6
+ .body
+ /*
+ * We get here for syscalls that don't have a lightweight handler. For those, we
+ * need to bubble down into the kernel and that requires setting up a minimal
+ * pt_regs structure, and initializing the CPU state more or less as if an
+ * interruption had occurred. To make syscall-restarts work, we setup pt_regs
+ * such that cr_iip points to the second instruction in syscall_via_break.
+ * Decrementing the IP hence will restart the syscall via break and not
+ * decrementing IP will return us to the caller, as usual. Note that we preserve
+ * the value of psr.pp rather than initializing it from dcr.pp. This makes it
+ * possible to distinguish fsyscall execution from other privileged execution.
+ *
+ * On entry:
+ * - normal fsyscall handler register usage, except that we also have:
+ * - r18: address of syscall entry point
+ * - r21: ar.fpsr
+ * - r26: ar.pfs
+ * - r27: ar.rsc
+ * - r29: psr
+ */
+# define PSR_PRESERVED_BITS (IA64_PSR_UP | IA64_PSR_MFL | IA64_PSR_MFH | IA64_PSR_PK \
+ | IA64_PSR_DT | IA64_PSR_PP | IA64_PSR_SP | IA64_PSR_RT \
+ | IA64_PSR_IC)
+ /*
+ * Reading psr.l gives us only bits 0-31, psr.it, and psr.mc. The rest we have
+ * to synthesize.
+ */
+# define PSR_ONE_BITS ((3 << IA64_PSR_CPL0_BIT) | (0x1 << IA64_PSR_RI_BIT) \
+ | IA64_PSR_BN | IA64_PSR_I)
+
+ invala
+ movl r8=PSR_ONE_BITS
+
+ mov r25=ar.unat // save ar.unat (5 cyc)
+ movl r9=PSR_PRESERVED_BITS
+
+ mov ar.rsc=0 // set enforced lazy mode, pl 0, little-endian, loadrs=0
+ movl r28=__kernel_syscall_via_break
+ ;;
+ mov r23=ar.bspstore // save ar.bspstore (12 cyc)
+ mov r31=pr // save pr (2 cyc)
+ mov r20=r1 // save caller's gp in r20
+ ;;
+ mov r2=r16 // copy current task addr to addl-addressable register
+ and r9=r9,r29
+ mov r19=b6 // save b6 (2 cyc)
+ ;;
+ mov psr.l=r9 // slam the door (17 cyc to srlz.i)
+ or r29=r8,r29 // construct cr.ipsr value to save
+ addl r22=IA64_RBS_OFFSET,r2 // compute base of RBS
+ ;;
+ // GAS reports a spurious RAW hazard on the read of ar.rnat because it thinks
+ // we may be reading ar.itc after writing to psr.l. Avoid that message with
+ // this directive:
+ dv_serialize_data
+ mov.m r24=ar.rnat // read ar.rnat (5 cyc lat)
+ lfetch.fault.excl.nt1 [r22]
+ adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r2
+
+ // ensure previous insn group is issued before we stall for srlz.i:
+ ;;
+ srlz.i // ensure new psr.l has been established
+ /////////////////////////////////////////////////////////////////////////////
+ ////////// from this point on, execution is not interruptible anymore
+ /////////////////////////////////////////////////////////////////////////////
+ addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 // compute base of memory stack
+ cmp.ne pKStk,pUStk=r0,r0 // set pKStk <- 0, pUStk <- 1
+ ;;
+ st1 [r16]=r0 // clear current->thread.on_ustack flag
+ mov ar.bspstore=r22 // switch to kernel RBS
+ mov b6=r18 // copy syscall entry-point to b6 (7 cyc)
+ add r3=TI_FLAGS+IA64_TASK_SIZE,r2
+ ;;
+ ld4 r3=[r3] // r2 = current_thread_info()->flags
+ mov r18=ar.bsp // save (kernel) ar.bsp (12 cyc)
+ mov ar.rsc=0x3 // set eager mode, pl 0, little-endian, loadrs=0
+ br.call.sptk.many b7=ia64_syscall_setup
+ ;;
+ ssm psr.i
+ movl r2=ia64_ret_from_syscall
+ ;;
+ mov rp=r2 // set the real return addr
+ tbit.z p8,p0=r3,TIF_SYSCALL_TRACE
+ ;;
+(p10) br.cond.spnt.many ia64_ret_from_syscall // p10==true means out registers are more than 8
+(p8) br.call.sptk.many b6=b6 // ignore this return addr
+ br.cond.sptk ia64_trace_syscall
+END(fsys_bubble_down)
+
+ .rodata
+ .align 8
+ .globl fsyscall_table
+
+ data8 fsys_bubble_down
+fsyscall_table:
+ data8 fsys_ni_syscall
+ data8 0 // exit // 1025
+ data8 0 // read
+ data8 0 // write
+ data8 0 // open
+ data8 0 // close
+ data8 0 // creat // 1030
+ data8 0 // link
+ data8 0 // unlink
+ data8 0 // execve
+ data8 0 // chdir
+ data8 0 // fchdir // 1035
+ data8 0 // utimes
+ data8 0 // mknod
+ data8 0 // chmod
+ data8 0 // chown
+ data8 0 // lseek // 1040
+ data8 fsys_getpid // getpid
+ data8 fsys_getppid // getppid
+ data8 0 // mount
+ data8 0 // umount
+ data8 0 // setuid // 1045
+ data8 0 // getuid
+ data8 0 // geteuid
+ data8 0 // ptrace
+ data8 0 // access
+ data8 0 // sync // 1050
+ data8 0 // fsync
+ data8 0 // fdatasync
+ data8 0 // kill
+ data8 0 // rename
+ data8 0 // mkdir // 1055
+ data8 0 // rmdir
+ data8 0 // dup
+ data8 0 // pipe
+ data8 0 // times
+ data8 0 // brk // 1060
+ data8 0 // setgid
+ data8 0 // getgid
+ data8 0 // getegid
+ data8 0 // acct
+ data8 0 // ioctl // 1065
+ data8 0 // fcntl
+ data8 0 // umask
+ data8 0 // chroot
+ data8 0 // ustat
+ data8 0 // dup2 // 1070
+ data8 0 // setreuid
+ data8 0 // setregid
+ data8 0 // getresuid
+ data8 0 // setresuid
+ data8 0 // getresgid // 1075
+ data8 0 // setresgid
+ data8 0 // getgroups
+ data8 0 // setgroups
+ data8 0 // getpgid
+ data8 0 // setpgid // 1080
+ data8 0 // setsid
+ data8 0 // getsid
+ data8 0 // sethostname
+ data8 0 // setrlimit
+ data8 0 // getrlimit // 1085
+ data8 0 // getrusage
+ data8 fsys_gettimeofday // gettimeofday
+ data8 0 // settimeofday
+ data8 0 // select
+ data8 0 // poll // 1090
+ data8 0 // symlink
+ data8 0 // readlink
+ data8 0 // uselib
+ data8 0 // swapon
+ data8 0 // swapoff // 1095
+ data8 0 // reboot
+ data8 0 // truncate
+ data8 0 // ftruncate
+ data8 0 // fchmod
+ data8 0 // fchown // 1100
+ data8 0 // getpriority
+ data8 0 // setpriority
+ data8 0 // statfs
+ data8 0 // fstatfs
+ data8 0 // gettid // 1105
+ data8 0 // semget
+ data8 0 // semop
+ data8 0 // semctl
+ data8 0 // msgget
+ data8 0 // msgsnd // 1110
+ data8 0 // msgrcv
+ data8 0 // msgctl
+ data8 0 // shmget
+ data8 0 // shmat
+ data8 0 // shmdt // 1115
+ data8 0 // shmctl
+ data8 0 // syslog
+ data8 0 // setitimer
+ data8 0 // getitimer
+ data8 0 // 1120
+ data8 0
+ data8 0
+ data8 0 // vhangup
+ data8 0 // lchown
+ data8 0 // remap_file_pages // 1125
+ data8 0 // wait4
+ data8 0 // sysinfo
+ data8 0 // clone
+ data8 0 // setdomainname
+ data8 0 // newuname // 1130
+ data8 0 // adjtimex
+ data8 0
+ data8 0 // init_module
+ data8 0 // delete_module
+ data8 0 // 1135
+ data8 0
+ data8 0 // quotactl
+ data8 0 // bdflush
+ data8 0 // sysfs
+ data8 0 // personality // 1140
+ data8 0 // afs_syscall
+ data8 0 // setfsuid
+ data8 0 // setfsgid
+ data8 0 // getdents
+ data8 0 // flock // 1145
+ data8 0 // readv
+ data8 0 // writev
+ data8 0 // pread64
+ data8 0 // pwrite64
+ data8 0 // sysctl // 1150
+ data8 0 // mmap
+ data8 0 // munmap
+ data8 0 // mlock
+ data8 0 // mlockall
+ data8 0 // mprotect // 1155
+ data8 0 // mremap
+ data8 0 // msync
+ data8 0 // munlock
+ data8 0 // munlockall
+ data8 0 // sched_getparam // 1160
+ data8 0 // sched_setparam
+ data8 0 // sched_getscheduler
+ data8 0 // sched_setscheduler
+ data8 0 // sched_yield
+ data8 0 // sched_get_priority_max // 1165
+ data8 0 // sched_get_priority_min
+ data8 0 // sched_rr_get_interval
+ data8 0 // nanosleep
+ data8 0 // nfsservctl
+ data8 0 // prctl // 1170
+ data8 0 // getpagesize
+ data8 0 // mmap2
+ data8 0 // pciconfig_read
+ data8 0 // pciconfig_write
+ data8 0 // perfmonctl // 1175
+ data8 0 // sigaltstack
+ data8 0 // rt_sigaction
+ data8 0 // rt_sigpending
+ data8 fsys_rt_sigprocmask // rt_sigprocmask
+ data8 0 // rt_sigqueueinfo // 1180
+ data8 0 // rt_sigreturn
+ data8 0 // rt_sigsuspend
+ data8 0 // rt_sigtimedwait
+ data8 0 // getcwd
+ data8 0 // capget // 1185
+ data8 0 // capset
+ data8 0 // sendfile
+ data8 0
+ data8 0
+ data8 0 // socket // 1190
+ data8 0 // bind
+ data8 0 // connect
+ data8 0 // listen
+ data8 0 // accept
+ data8 0 // getsockname // 1195
+ data8 0 // getpeername
+ data8 0 // socketpair
+ data8 0 // send
+ data8 0 // sendto
+ data8 0 // recv // 1200
+ data8 0 // recvfrom
+ data8 0 // shutdown
+ data8 0 // setsockopt
+ data8 0 // getsockopt
+ data8 0 // sendmsg // 1205
+ data8 0 // recvmsg
+ data8 0 // pivot_root
+ data8 0 // mincore
+ data8 0 // madvise
+ data8 0 // newstat // 1210
+ data8 0 // newlstat
+ data8 0 // newfstat
+ data8 0 // clone2
+ data8 0 // getdents64
+ data8 0 // getunwind // 1215
+ data8 0 // readahead
+ data8 0 // setxattr
+ data8 0 // lsetxattr
+ data8 0 // fsetxattr
+ data8 0 // getxattr // 1220
+ data8 0 // lgetxattr
+ data8 0 // fgetxattr
+ data8 0 // listxattr
+ data8 0 // llistxattr
+ data8 0 // flistxattr // 1225
+ data8 0 // removexattr
+ data8 0 // lremovexattr
+ data8 0 // fremovexattr
+ data8 0 // tkill
+ data8 0 // futex // 1230
+ data8 0 // sched_setaffinity
+ data8 0 // sched_getaffinity
+ data8 fsys_set_tid_address // set_tid_address
+ data8 0 // fadvise64_64
+ data8 0 // tgkill // 1235
+ data8 0 // exit_group
+ data8 0 // lookup_dcookie
+ data8 0 // io_setup
+ data8 0 // io_destroy
+ data8 0 // io_getevents // 1240
+ data8 0 // io_submit
+ data8 0 // io_cancel
+ data8 0 // epoll_create
+ data8 0 // epoll_ctl
+ data8 0 // epoll_wait // 1245
+ data8 0 // restart_syscall
+ data8 0 // semtimedop
+ data8 0 // timer_create
+ data8 0 // timer_settime
+ data8 0 // timer_gettime // 1250
+ data8 0 // timer_getoverrun
+ data8 0 // timer_delete
+ data8 0 // clock_settime
+ data8 fsys_clock_gettime // clock_gettime
+ data8 0 // clock_getres // 1255
+ data8 0 // clock_nanosleep
+ data8 0 // fstatfs64
+ data8 0 // statfs64
+ data8 0
+ data8 0 // 1260
+ data8 0
+ data8 0 // mq_open
+ data8 0 // mq_unlink
+ data8 0 // mq_timedsend
+ data8 0 // mq_timedreceive // 1265
+ data8 0 // mq_notify
+ data8 0 // mq_getsetattr
+ data8 0 // kexec_load
+ data8 0
+ data8 0 // 1270
+ data8 0
+ data8 0
+ data8 0
+ data8 0
+ data8 0 // 1275
+ data8 0
+ data8 0
+ data8 0
+ data8 0
+
+ .org fsyscall_table + 8*NR_syscalls // guard against failures to increase NR_syscalls
diff --git a/arch/ia64/kernel/gate-data.S b/arch/ia64/kernel/gate-data.S
new file mode 100644
index 0000000..258c0a3
--- /dev/null
+++ b/arch/ia64/kernel/gate-data.S
@@ -0,0 +1,3 @@
+ .section .data.gate, "aw"
+
+ .incbin "arch/ia64/kernel/gate.so"
diff --git a/arch/ia64/kernel/gate.S b/arch/ia64/kernel/gate.S
new file mode 100644
index 0000000..facf75a
--- /dev/null
+++ b/arch/ia64/kernel/gate.S
@@ -0,0 +1,372 @@
+/*
+ * This file contains the code that gets mapped at the upper end of each task's text
+ * region. For now, it contains the signal trampoline code only.
+ *
+ * Copyright (C) 1999-2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+
+#include <linux/config.h>
+
+#include <asm/asmmacro.h>
+#include <asm/errno.h>
+#include <asm/offsets.h>
+#include <asm/sigcontext.h>
+#include <asm/system.h>
+#include <asm/unistd.h>
+
+/*
+ * We can't easily refer to symbols inside the kernel. To avoid full runtime relocation,
+ * complications with the linker (which likes to create PLT stubs for branches
+ * to targets outside the shared object) and to avoid multi-phase kernel builds, we
+ * simply create minimalistic "patch lists" in special ELF sections.
+ */
+ .section ".data.patch.fsyscall_table", "a"
+ .previous
+#define LOAD_FSYSCALL_TABLE(reg) \
+[1:] movl reg=0; \
+ .xdata4 ".data.patch.fsyscall_table", 1b-.
+
+ .section ".data.patch.brl_fsys_bubble_down", "a"
+ .previous
+#define BRL_COND_FSYS_BUBBLE_DOWN(pr) \
+[1:](pr)brl.cond.sptk 0; \
+ .xdata4 ".data.patch.brl_fsys_bubble_down", 1b-.
+
+GLOBAL_ENTRY(__kernel_syscall_via_break)
+ .prologue
+ .altrp b6
+ .body
+ /*
+ * Note: for (fast) syscall restart to work, the break instruction must be
+ * the first one in the bundle addressed by syscall_via_break.
+ */
+{ .mib
+ break 0x100000
+ nop.i 0
+ br.ret.sptk.many b6
+}
+END(__kernel_syscall_via_break)
+
+/*
+ * On entry:
+ * r11 = saved ar.pfs
+ * r15 = system call #
+ * b0 = saved return address
+ * b6 = return address
+ * On exit:
+ * r11 = saved ar.pfs
+ * r15 = system call #
+ * b0 = saved return address
+ * all other "scratch" registers: undefined
+ * all "preserved" registers: same as on entry
+ */
+
+GLOBAL_ENTRY(__kernel_syscall_via_epc)
+ .prologue
+ .altrp b6
+ .body
+{
+ /*
+ * Note: the kernel cannot assume that the first two instructions in this
+ * bundle get executed. The remaining code must be safe even if
+ * they do not get executed.
+ */
+ adds r17=-1024,r15
+ mov r10=0 // default to successful syscall execution
+ epc
+}
+ ;;
+ rsm psr.be // note: on McKinley "rsm psr.be/srlz.d" is slightly faster than "rum psr.be"
+ LOAD_FSYSCALL_TABLE(r14)
+
+ mov r16=IA64_KR(CURRENT) // 12 cycle read latency
+ tnat.nz p10,p9=r15
+ mov r19=NR_syscalls-1
+ ;;
+ shladd r18=r17,3,r14
+
+ srlz.d
+ cmp.ne p8,p0=r0,r0 // p8 <- FALSE
+ /* Note: if r17 is a NaT, p6 will be set to zero. */
+ cmp.geu p6,p7=r19,r17 // (syscall > 0 && syscall < 1024+NR_syscalls)?
+ ;;
+(p6) ld8 r18=[r18]
+ mov r21=ar.fpsr
+ add r14=-8,r14 // r14 <- addr of fsys_bubble_down entry
+ ;;
+(p6) mov b7=r18
+(p6) tbit.z p8,p0=r18,0
+(p8) br.dptk.many b7
+
+(p6) rsm psr.i
+ mov r27=ar.rsc
+ mov r26=ar.pfs
+ ;;
+ mov r29=psr // read psr (12 cyc load latency)
+/*
+ * brl.cond doesn't work as intended because the linker would convert this branch
+ * into a branch to a PLT. Perhaps there will be a way to avoid this with some
+ * future version of the linker. In the meantime, we just use an indirect branch
+ * instead.
+ */
+#ifdef CONFIG_ITANIUM
+(p6) ld8 r14=[r14] // r14 <- fsys_bubble_down
+ ;;
+(p6) mov b7=r14
+(p6) br.sptk.many b7
+#else
+ BRL_COND_FSYS_BUBBLE_DOWN(p6)
+#endif
+
+ mov r10=-1
+(p10) mov r8=EINVAL
+(p9) mov r8=ENOSYS
+ FSYS_RETURN
+END(__kernel_syscall_via_epc)
+
+# define ARG0_OFF (16 + IA64_SIGFRAME_ARG0_OFFSET)
+# define ARG1_OFF (16 + IA64_SIGFRAME_ARG1_OFFSET)
+# define ARG2_OFF (16 + IA64_SIGFRAME_ARG2_OFFSET)
+# define SIGHANDLER_OFF (16 + IA64_SIGFRAME_HANDLER_OFFSET)
+# define SIGCONTEXT_OFF (16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET)
+
+# define FLAGS_OFF IA64_SIGCONTEXT_FLAGS_OFFSET
+# define CFM_OFF IA64_SIGCONTEXT_CFM_OFFSET
+# define FR6_OFF IA64_SIGCONTEXT_FR6_OFFSET
+# define BSP_OFF IA64_SIGCONTEXT_AR_BSP_OFFSET
+# define RNAT_OFF IA64_SIGCONTEXT_AR_RNAT_OFFSET
+# define UNAT_OFF IA64_SIGCONTEXT_AR_UNAT_OFFSET
+# define FPSR_OFF IA64_SIGCONTEXT_AR_FPSR_OFFSET
+# define PR_OFF IA64_SIGCONTEXT_PR_OFFSET
+# define RP_OFF IA64_SIGCONTEXT_IP_OFFSET
+# define SP_OFF IA64_SIGCONTEXT_R12_OFFSET
+# define RBS_BASE_OFF IA64_SIGCONTEXT_RBS_BASE_OFFSET
+# define LOADRS_OFF IA64_SIGCONTEXT_LOADRS_OFFSET
+# define base0 r2
+# define base1 r3
+ /*
+ * When we get here, the memory stack looks like this:
+ *
+ * +===============================+
+ * | |
+ * // struct sigframe //
+ * | |
+ * +-------------------------------+ <-- sp+16
+ * | 16 byte of scratch |
+ * | space |
+ * +-------------------------------+ <-- sp
+ *
+ * The register stack looks _exactly_ the way it looked at the time the signal
+ * occurred. In other words, we're treading on a potential mine-field: each
+ * incoming general register may be a NaT value (including sp, in which case the
+ * process ends up dying with a SIGSEGV).
+ *
+ * The first thing need to do is a cover to get the registers onto the backing
+ * store. Once that is done, we invoke the signal handler which may modify some
+ * of the machine state. After returning from the signal handler, we return
+ * control to the previous context by executing a sigreturn system call. A signal
+ * handler may call the rt_sigreturn() function to directly return to a given
+ * sigcontext. However, the user-level sigreturn() needs to do much more than
+ * calling the rt_sigreturn() system call as it needs to unwind the stack to
+ * restore preserved registers that may have been saved on the signal handler's
+ * call stack.
+ */
+
+#define SIGTRAMP_SAVES \
+ .unwabi 3, 's'; /* mark this as a sigtramp handler (saves scratch regs) */ \
+ .unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */ \
+ .savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF; \
+ .savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF; \
+ .savesp pr, PR_OFF+SIGCONTEXT_OFF; \
+ .savesp rp, RP_OFF+SIGCONTEXT_OFF; \
+ .savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF; \
+ .vframesp SP_OFF+SIGCONTEXT_OFF
+
+GLOBAL_ENTRY(__kernel_sigtramp)
+ // describe the state that is active when we get here:
+ .prologue
+ SIGTRAMP_SAVES
+ .body
+
+ .label_state 1
+
+ adds base0=SIGHANDLER_OFF,sp
+ adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp
+ br.call.sptk.many rp=1f
+1:
+ ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF) // get pointer to signal handler's plabel
+ ld8 r15=[base1] // get address of new RBS base (or NULL)
+ cover // push args in interrupted frame onto backing store
+ ;;
+ cmp.ne p1,p0=r15,r0 // do we need to switch rbs? (note: pr is saved by kernel)
+ mov.m r9=ar.bsp // fetch ar.bsp
+ .spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
+(p1) br.cond.spnt setup_rbs // yup -> (clobbers p8, r14-r16, and r18-r20)
+back_from_setup_rbs:
+ alloc r8=ar.pfs,0,0,3,0
+ ld8 out0=[base0],16 // load arg0 (signum)
+ adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1
+ ;;
+ ld8 out1=[base1] // load arg1 (siginfop)
+ ld8 r10=[r17],8 // get signal handler entry point
+ ;;
+ ld8 out2=[base0] // load arg2 (sigcontextp)
+ ld8 gp=[r17] // get signal handler's global pointer
+ adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
+ ;;
+ .spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF
+ st8 [base0]=r9 // save sc_ar_bsp
+ adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
+ adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
+ ;;
+ stf.spill [base0]=f6,32
+ stf.spill [base1]=f7,32
+ ;;
+ stf.spill [base0]=f8,32
+ stf.spill [base1]=f9,32
+ mov b6=r10
+ ;;
+ stf.spill [base0]=f10,32
+ stf.spill [base1]=f11,32
+ ;;
+ stf.spill [base0]=f12,32
+ stf.spill [base1]=f13,32
+ ;;
+ stf.spill [base0]=f14,32
+ stf.spill [base1]=f15,32
+ br.call.sptk.many rp=b6 // call the signal handler
+.ret0: adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
+ ;;
+ ld8 r15=[base0] // fetch sc_ar_bsp
+ mov r14=ar.bsp
+ ;;
+ cmp.ne p1,p0=r14,r15 // do we need to restore the rbs?
+(p1) br.cond.spnt restore_rbs // yup -> (clobbers r14-r18, f6 & f7)
+ ;;
+back_from_restore_rbs:
+ adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
+ adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
+ ;;
+ ldf.fill f6=[base0],32
+ ldf.fill f7=[base1],32
+ ;;
+ ldf.fill f8=[base0],32
+ ldf.fill f9=[base1],32
+ ;;
+ ldf.fill f10=[base0],32
+ ldf.fill f11=[base1],32
+ ;;
+ ldf.fill f12=[base0],32
+ ldf.fill f13=[base1],32
+ ;;
+ ldf.fill f14=[base0],32
+ ldf.fill f15=[base1],32
+ mov r15=__NR_rt_sigreturn
+ .restore sp // pop .prologue
+ break __BREAK_SYSCALL
+
+ .prologue
+ SIGTRAMP_SAVES
+setup_rbs:
+ mov ar.rsc=0 // put RSE into enforced lazy mode
+ ;;
+ .save ar.rnat, r19
+ mov r19=ar.rnat // save RNaT before switching backing store area
+ adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp
+
+ mov r18=ar.bspstore
+ mov ar.bspstore=r15 // switch over to new register backing store area
+ ;;
+
+ .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
+ st8 [r14]=r19 // save sc_ar_rnat
+ .body
+ mov.m r16=ar.bsp // sc_loadrs <- (new bsp - new bspstore) << 16
+ adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp
+ ;;
+ invala
+ sub r15=r16,r15
+ extr.u r20=r18,3,6
+ ;;
+ mov ar.rsc=0xf // set RSE into eager mode, pl 3
+ cmp.eq p8,p0=63,r20
+ shl r15=r15,16
+ ;;
+ st8 [r14]=r15 // save sc_loadrs
+(p8) st8 [r18]=r19 // if bspstore points at RNaT slot, store RNaT there now
+ .restore sp // pop .prologue
+ br.cond.sptk back_from_setup_rbs
+
+ .prologue
+ SIGTRAMP_SAVES
+ .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
+ .body
+restore_rbs:
+ // On input:
+ // r14 = bsp1 (bsp at the time of return from signal handler)
+ // r15 = bsp0 (bsp at the time the signal occurred)
+ //
+ // Here, we need to calculate bspstore0, the value that ar.bspstore needs
+ // to be set to, based on bsp0 and the size of the dirty partition on
+ // the alternate stack (sc_loadrs >> 16). This can be done with the
+ // following algorithm:
+ //
+ // bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1));
+ //
+ // This is what the code below does.
+ //
+ alloc r2=ar.pfs,0,0,0,0 // alloc null frame
+ adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp
+ adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp
+ ;;
+ ld8 r17=[r16]
+ ld8 r16=[r18] // get new rnat
+ extr.u r18=r15,3,6 // r18 <- rse_slot_num(bsp0)
+ ;;
+ mov ar.rsc=r17 // put RSE into enforced lazy mode
+ shr.u r17=r17,16
+ ;;
+ sub r14=r14,r17 // r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16)
+ shr.u r17=r17,3 // r17 <- (sc_loadrs >> 19)
+ ;;
+ loadrs // restore dirty partition
+ extr.u r14=r14,3,6 // r14 <- rse_slot_num(bspstore1)
+ ;;
+ add r14=r14,r17 // r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19)
+ ;;
+ shr.u r14=r14,6 // r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40
+ ;;
+ sub r14=r14,r17 // r14 <- -rse_num_regs(bspstore1, bsp1)
+ movl r17=0x8208208208208209
+ ;;
+ add r18=r18,r14 // r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1)
+ setf.sig f7=r17
+ cmp.lt p7,p0=r14,r0 // p7 <- (r14 < 0)?
+ ;;
+(p7) adds r18=-62,r18 // delta -= 62
+ ;;
+ setf.sig f6=r18
+ ;;
+ xmpy.h f6=f6,f7
+ ;;
+ getf.sig r17=f6
+ ;;
+ add r17=r17,r18
+ shr r18=r18,63
+ ;;
+ shr r17=r17,5
+ ;;
+ sub r17=r17,r18 // r17 = delta/63
+ ;;
+ add r17=r14,r17 // r17 <- delta/63 - rse_num_regs(bspstore1, bsp1)
+ ;;
+ shladd r15=r17,3,r15 // r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1))
+ ;;
+ mov ar.bspstore=r15 // switch back to old register backing store area
+ ;;
+ mov ar.rnat=r16 // restore RNaT
+ mov ar.rsc=0xf // (will be restored later on from sc_ar_rsc)
+ // invala not necessary as that will happen when returning to user-mode
+ br.cond.sptk back_from_restore_rbs
+END(__kernel_sigtramp)
diff --git a/arch/ia64/kernel/gate.lds.S b/arch/ia64/kernel/gate.lds.S
new file mode 100644
index 0000000..e1e4aba
--- /dev/null
+++ b/arch/ia64/kernel/gate.lds.S
@@ -0,0 +1,95 @@
+/*
+ * Linker script for gate DSO. The gate pages are an ELF shared object prelinked to its
+ * virtual address, with only one read-only segment and one execute-only segment (both fit
+ * in one page). This script controls its layout.
+ */
+
+#include <linux/config.h>
+
+#include <asm/system.h>
+
+SECTIONS
+{
+ . = GATE_ADDR + SIZEOF_HEADERS;
+
+ .hash : { *(.hash) } :readable
+ .dynsym : { *(.dynsym) }
+ .dynstr : { *(.dynstr) }
+ .gnu.version : { *(.gnu.version) }
+ .gnu.version_d : { *(.gnu.version_d) }
+ .gnu.version_r : { *(.gnu.version_r) }
+ .dynamic : { *(.dynamic) } :readable :dynamic
+
+ /*
+ * This linker script is used both with -r and with -shared. For the layouts to match,
+ * we need to skip more than enough space for the dynamic symbol table et al. If this
+ * amount is insufficient, ld -shared will barf. Just increase it here.
+ */
+ . = GATE_ADDR + 0x500;
+
+ .data.patch : {
+ __start_gate_mckinley_e9_patchlist = .;
+ *(.data.patch.mckinley_e9)
+ __end_gate_mckinley_e9_patchlist = .;
+
+ __start_gate_vtop_patchlist = .;
+ *(.data.patch.vtop)
+ __end_gate_vtop_patchlist = .;
+
+ __start_gate_fsyscall_patchlist = .;
+ *(.data.patch.fsyscall_table)
+ __end_gate_fsyscall_patchlist = .;
+
+ __start_gate_brl_fsys_bubble_down_patchlist = .;
+ *(.data.patch.brl_fsys_bubble_down)
+ __end_gate_brl_fsys_bubble_down_patchlist = .;
+ } :readable
+ .IA_64.unwind_info : { *(.IA_64.unwind_info*) }
+ .IA_64.unwind : { *(.IA_64.unwind*) } :readable :unwind
+#ifdef HAVE_BUGGY_SEGREL
+ .text (GATE_ADDR + PAGE_SIZE) : { *(.text) *(.text.*) } :readable
+#else
+ . = ALIGN (PERCPU_PAGE_SIZE) + (. & (PERCPU_PAGE_SIZE - 1));
+ .text : { *(.text) *(.text.*) } :epc
+#endif
+
+ /DISCARD/ : {
+ *(.got.plt) *(.got)
+ *(.data .data.* .gnu.linkonce.d.*)
+ *(.dynbss)
+ *(.bss .bss.* .gnu.linkonce.b.*)
+ *(__ex_table)
+ }
+}
+
+/*
+ * We must supply the ELF program headers explicitly to get just one
+ * PT_LOAD segment, and set the flags explicitly to make segments read-only.
+ */
+PHDRS
+{
+ readable PT_LOAD FILEHDR PHDRS FLAGS(4); /* PF_R */
+#ifndef HAVE_BUGGY_SEGREL
+ epc PT_LOAD FILEHDR PHDRS FLAGS(1); /* PF_X */
+#endif
+ dynamic PT_DYNAMIC FLAGS(4); /* PF_R */
+ unwind 0x70000001; /* PT_IA_64_UNWIND, but ld doesn't match the name */
+}
+
+/*
+ * This controls what symbols we export from the DSO.
+ */
+VERSION
+{
+ LINUX_2.5 {
+ global:
+ __kernel_syscall_via_break;
+ __kernel_syscall_via_epc;
+ __kernel_sigtramp;
+
+ local: *;
+ };
+}
+
+/* The ELF entry point can be used to set the AT_SYSINFO value. */
+ENTRY(__kernel_syscall_via_epc)
diff --git a/arch/ia64/kernel/head.S b/arch/ia64/kernel/head.S
new file mode 100644
index 0000000..105c7fe
--- /dev/null
+++ b/arch/ia64/kernel/head.S
@@ -0,0 +1,996 @@
+/*
+ * Here is where the ball gets rolling as far as the kernel is concerned.
+ * When control is transferred to _start, the bootload has already
+ * loaded us to the correct address. All that's left to do here is
+ * to set up the kernel's global pointer and jump to the kernel
+ * entry point.
+ *
+ * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999 Intel Corp.
+ * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
+ * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
+ * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
+ * -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
+ */
+
+#include <linux/config.h>
+
+#include <asm/asmmacro.h>
+#include <asm/fpu.h>
+#include <asm/kregs.h>
+#include <asm/mmu_context.h>
+#include <asm/offsets.h>
+#include <asm/pal.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+
+ .section __special_page_section,"ax"
+
+ .global empty_zero_page
+empty_zero_page:
+ .skip PAGE_SIZE
+
+ .global swapper_pg_dir
+swapper_pg_dir:
+ .skip PAGE_SIZE
+
+ .rodata
+halt_msg:
+ stringz "Halting kernel\n"
+
+ .text
+
+ .global start_ap
+
+ /*
+ * Start the kernel. When the bootloader passes control to _start(), r28
+ * points to the address of the boot parameter area. Execution reaches
+ * here in physical mode.
+ */
+GLOBAL_ENTRY(_start)
+start_ap:
+ .prologue
+ .save rp, r0 // terminate unwind chain with a NULL rp
+ .body
+
+ rsm psr.i | psr.ic
+ ;;
+ srlz.i
+ ;;
+ /*
+ * Initialize kernel region registers:
+ * rr[0]: VHPT enabled, page size = PAGE_SHIFT
+ * rr[1]: VHPT enabled, page size = PAGE_SHIFT
+ * rr[2]: VHPT enabled, page size = PAGE_SHIFT
+ * rr[3]: VHPT enabled, page size = PAGE_SHIFT
+ * rr[4]: VHPT enabled, page size = PAGE_SHIFT
+ * rr[5]: VHPT enabled, page size = PAGE_SHIFT
+ * rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
+ * rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
+ * We initialize all of them to prevent inadvertently assuming
+ * something about the state of address translation early in boot.
+ */
+ mov r6=((ia64_rid(IA64_REGION_ID_KERNEL, (0<<61)) << 8) | (PAGE_SHIFT << 2) | 1)
+ movl r7=(0<<61)
+ mov r8=((ia64_rid(IA64_REGION_ID_KERNEL, (1<<61)) << 8) | (PAGE_SHIFT << 2) | 1)
+ movl r9=(1<<61)
+ mov r10=((ia64_rid(IA64_REGION_ID_KERNEL, (2<<61)) << 8) | (PAGE_SHIFT << 2) | 1)
+ movl r11=(2<<61)
+ mov r12=((ia64_rid(IA64_REGION_ID_KERNEL, (3<<61)) << 8) | (PAGE_SHIFT << 2) | 1)
+ movl r13=(3<<61)
+ mov r14=((ia64_rid(IA64_REGION_ID_KERNEL, (4<<61)) << 8) | (PAGE_SHIFT << 2) | 1)
+ movl r15=(4<<61)
+ mov r16=((ia64_rid(IA64_REGION_ID_KERNEL, (5<<61)) << 8) | (PAGE_SHIFT << 2) | 1)
+ movl r17=(5<<61)
+ mov r18=((ia64_rid(IA64_REGION_ID_KERNEL, (6<<61)) << 8) | (IA64_GRANULE_SHIFT << 2))
+ movl r19=(6<<61)
+ mov r20=((ia64_rid(IA64_REGION_ID_KERNEL, (7<<61)) << 8) | (IA64_GRANULE_SHIFT << 2))
+ movl r21=(7<<61)
+ ;;
+ mov rr[r7]=r6
+ mov rr[r9]=r8
+ mov rr[r11]=r10
+ mov rr[r13]=r12
+ mov rr[r15]=r14
+ mov rr[r17]=r16
+ mov rr[r19]=r18
+ mov rr[r21]=r20
+ ;;
+ /*
+ * Now pin mappings into the TLB for kernel text and data
+ */
+ mov r18=KERNEL_TR_PAGE_SHIFT<<2
+ movl r17=KERNEL_START
+ ;;
+ mov cr.itir=r18
+ mov cr.ifa=r17
+ mov r16=IA64_TR_KERNEL
+ mov r3=ip
+ movl r18=PAGE_KERNEL
+ ;;
+ dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
+ ;;
+ or r18=r2,r18
+ ;;
+ srlz.i
+ ;;
+ itr.i itr[r16]=r18
+ ;;
+ itr.d dtr[r16]=r18
+ ;;
+ srlz.i
+
+ /*
+ * Switch into virtual mode:
+ */
+ movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
+ |IA64_PSR_DI)
+ ;;
+ mov cr.ipsr=r16
+ movl r17=1f
+ ;;
+ mov cr.iip=r17
+ mov cr.ifs=r0
+ ;;
+ rfi
+ ;;
+1: // now we are in virtual mode
+
+ // set IVT entry point---can't access I/O ports without it
+ movl r3=ia64_ivt
+ ;;
+ mov cr.iva=r3
+ movl r2=FPSR_DEFAULT
+ ;;
+ srlz.i
+ movl gp=__gp
+
+ mov ar.fpsr=r2
+ ;;
+
+#define isAP p2 // are we an Application Processor?
+#define isBP p3 // are we the Bootstrap Processor?
+
+#ifdef CONFIG_SMP
+ /*
+ * Find the init_task for the currently booting CPU. At poweron, and in
+ * UP mode, task_for_booting_cpu is NULL.
+ */
+ movl r3=task_for_booting_cpu
+ ;;
+ ld8 r3=[r3]
+ movl r2=init_task
+ ;;
+ cmp.eq isBP,isAP=r3,r0
+ ;;
+(isAP) mov r2=r3
+#else
+ movl r2=init_task
+ cmp.eq isBP,isAP=r0,r0
+#endif
+ ;;
+ tpa r3=r2 // r3 == phys addr of task struct
+ mov r16=-1
+(isBP) br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
+
+ // load mapping for stack (virtaddr in r2, physaddr in r3)
+ rsm psr.ic
+ movl r17=PAGE_KERNEL
+ ;;
+ srlz.d
+ dep r18=0,r3,0,12
+ ;;
+ or r18=r17,r18
+ dep r2=-1,r3,61,3 // IMVA of task
+ ;;
+ mov r17=rr[r2]
+ shr.u r16=r3,IA64_GRANULE_SHIFT
+ ;;
+ dep r17=0,r17,8,24
+ ;;
+ mov cr.itir=r17
+ mov cr.ifa=r2
+
+ mov r19=IA64_TR_CURRENT_STACK
+ ;;
+ itr.d dtr[r19]=r18
+ ;;
+ ssm psr.ic
+ srlz.d
+ ;;
+
+.load_current:
+ // load the "current" pointer (r13) and ar.k6 with the current task
+ mov IA64_KR(CURRENT)=r2 // virtual address
+ mov IA64_KR(CURRENT_STACK)=r16
+ mov r13=r2
+ /*
+ * Reserve space at the top of the stack for "struct pt_regs". Kernel threads
+ * don't store interesting values in that structure, but the space still needs
+ * to be there because time-critical stuff such as the context switching can
+ * be implemented more efficiently (for example, __switch_to()
+ * always sets the psr.dfh bit of the task it is switching to).
+ */
+ addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
+ addl r2=IA64_RBS_OFFSET,r2 // initialize the RSE
+ mov ar.rsc=0 // place RSE in enforced lazy mode
+ ;;
+ loadrs // clear the dirty partition
+ ;;
+ mov ar.bspstore=r2 // establish the new RSE stack
+ ;;
+ mov ar.rsc=0x3 // place RSE in eager mode
+
+(isBP) dep r28=-1,r28,61,3 // make address virtual
+(isBP) movl r2=ia64_boot_param
+ ;;
+(isBP) st8 [r2]=r28 // save the address of the boot param area passed by the bootloader
+
+#ifdef CONFIG_SMP
+(isAP) br.call.sptk.many rp=start_secondary
+.ret0:
+(isAP) br.cond.sptk self
+#endif
+
+ // This is executed by the bootstrap processor (bsp) only:
+
+#ifdef CONFIG_IA64_FW_EMU
+ // initialize PAL & SAL emulator:
+ br.call.sptk.many rp=sys_fw_init
+.ret1:
+#endif
+ br.call.sptk.many rp=start_kernel
+.ret2: addl r3=@ltoff(halt_msg),gp
+ ;;
+ alloc r2=ar.pfs,8,0,2,0
+ ;;
+ ld8 out0=[r3]
+ br.call.sptk.many b0=console_print
+
+self: hint @pause
+ br.sptk.many self // endless loop
+END(_start)
+
+GLOBAL_ENTRY(ia64_save_debug_regs)
+ alloc r16=ar.pfs,1,0,0,0
+ mov r20=ar.lc // preserve ar.lc
+ mov ar.lc=IA64_NUM_DBG_REGS-1
+ mov r18=0
+ add r19=IA64_NUM_DBG_REGS*8,in0
+ ;;
+1: mov r16=dbr[r18]
+#ifdef CONFIG_ITANIUM
+ ;;
+ srlz.d
+#endif
+ mov r17=ibr[r18]
+ add r18=1,r18
+ ;;
+ st8.nta [in0]=r16,8
+ st8.nta [r19]=r17,8
+ br.cloop.sptk.many 1b
+ ;;
+ mov ar.lc=r20 // restore ar.lc
+ br.ret.sptk.many rp
+END(ia64_save_debug_regs)
+
+GLOBAL_ENTRY(ia64_load_debug_regs)
+ alloc r16=ar.pfs,1,0,0,0
+ lfetch.nta [in0]
+ mov r20=ar.lc // preserve ar.lc
+ add r19=IA64_NUM_DBG_REGS*8,in0
+ mov ar.lc=IA64_NUM_DBG_REGS-1
+ mov r18=-1
+ ;;
+1: ld8.nta r16=[in0],8
+ ld8.nta r17=[r19],8
+ add r18=1,r18
+ ;;
+ mov dbr[r18]=r16
+#ifdef CONFIG_ITANIUM
+ ;;
+ srlz.d // Errata 132 (NoFix status)
+#endif
+ mov ibr[r18]=r17
+ br.cloop.sptk.many 1b
+ ;;
+ mov ar.lc=r20 // restore ar.lc
+ br.ret.sptk.many rp
+END(ia64_load_debug_regs)
+
+GLOBAL_ENTRY(__ia64_save_fpu)
+ alloc r2=ar.pfs,1,4,0,0
+ adds loc0=96*16-16,in0
+ adds loc1=96*16-16-128,in0
+ ;;
+ stf.spill.nta [loc0]=f127,-256
+ stf.spill.nta [loc1]=f119,-256
+ ;;
+ stf.spill.nta [loc0]=f111,-256
+ stf.spill.nta [loc1]=f103,-256
+ ;;
+ stf.spill.nta [loc0]=f95,-256
+ stf.spill.nta [loc1]=f87,-256
+ ;;
+ stf.spill.nta [loc0]=f79,-256
+ stf.spill.nta [loc1]=f71,-256
+ ;;
+ stf.spill.nta [loc0]=f63,-256
+ stf.spill.nta [loc1]=f55,-256
+ adds loc2=96*16-32,in0
+ ;;
+ stf.spill.nta [loc0]=f47,-256
+ stf.spill.nta [loc1]=f39,-256
+ adds loc3=96*16-32-128,in0
+ ;;
+ stf.spill.nta [loc2]=f126,-256
+ stf.spill.nta [loc3]=f118,-256
+ ;;
+ stf.spill.nta [loc2]=f110,-256
+ stf.spill.nta [loc3]=f102,-256
+ ;;
+ stf.spill.nta [loc2]=f94,-256
+ stf.spill.nta [loc3]=f86,-256
+ ;;
+ stf.spill.nta [loc2]=f78,-256
+ stf.spill.nta [loc3]=f70,-256
+ ;;
+ stf.spill.nta [loc2]=f62,-256
+ stf.spill.nta [loc3]=f54,-256
+ adds loc0=96*16-48,in0
+ ;;
+ stf.spill.nta [loc2]=f46,-256
+ stf.spill.nta [loc3]=f38,-256
+ adds loc1=96*16-48-128,in0
+ ;;
+ stf.spill.nta [loc0]=f125,-256
+ stf.spill.nta [loc1]=f117,-256
+ ;;
+ stf.spill.nta [loc0]=f109,-256
+ stf.spill.nta [loc1]=f101,-256
+ ;;
+ stf.spill.nta [loc0]=f93,-256
+ stf.spill.nta [loc1]=f85,-256
+ ;;
+ stf.spill.nta [loc0]=f77,-256
+ stf.spill.nta [loc1]=f69,-256
+ ;;
+ stf.spill.nta [loc0]=f61,-256
+ stf.spill.nta [loc1]=f53,-256
+ adds loc2=96*16-64,in0
+ ;;
+ stf.spill.nta [loc0]=f45,-256
+ stf.spill.nta [loc1]=f37,-256
+ adds loc3=96*16-64-128,in0
+ ;;
+ stf.spill.nta [loc2]=f124,-256
+ stf.spill.nta [loc3]=f116,-256
+ ;;
+ stf.spill.nta [loc2]=f108,-256
+ stf.spill.nta [loc3]=f100,-256
+ ;;
+ stf.spill.nta [loc2]=f92,-256
+ stf.spill.nta [loc3]=f84,-256
+ ;;
+ stf.spill.nta [loc2]=f76,-256
+ stf.spill.nta [loc3]=f68,-256
+ ;;
+ stf.spill.nta [loc2]=f60,-256
+ stf.spill.nta [loc3]=f52,-256
+ adds loc0=96*16-80,in0
+ ;;
+ stf.spill.nta [loc2]=f44,-256
+ stf.spill.nta [loc3]=f36,-256
+ adds loc1=96*16-80-128,in0
+ ;;
+ stf.spill.nta [loc0]=f123,-256
+ stf.spill.nta [loc1]=f115,-256
+ ;;
+ stf.spill.nta [loc0]=f107,-256
+ stf.spill.nta [loc1]=f99,-256
+ ;;
+ stf.spill.nta [loc0]=f91,-256
+ stf.spill.nta [loc1]=f83,-256
+ ;;
+ stf.spill.nta [loc0]=f75,-256
+ stf.spill.nta [loc1]=f67,-256
+ ;;
+ stf.spill.nta [loc0]=f59,-256
+ stf.spill.nta [loc1]=f51,-256
+ adds loc2=96*16-96,in0
+ ;;
+ stf.spill.nta [loc0]=f43,-256
+ stf.spill.nta [loc1]=f35,-256
+ adds loc3=96*16-96-128,in0
+ ;;
+ stf.spill.nta [loc2]=f122,-256
+ stf.spill.nta [loc3]=f114,-256
+ ;;
+ stf.spill.nta [loc2]=f106,-256
+ stf.spill.nta [loc3]=f98,-256
+ ;;
+ stf.spill.nta [loc2]=f90,-256
+ stf.spill.nta [loc3]=f82,-256
+ ;;
+ stf.spill.nta [loc2]=f74,-256
+ stf.spill.nta [loc3]=f66,-256
+ ;;
+ stf.spill.nta [loc2]=f58,-256
+ stf.spill.nta [loc3]=f50,-256
+ adds loc0=96*16-112,in0
+ ;;
+ stf.spill.nta [loc2]=f42,-256
+ stf.spill.nta [loc3]=f34,-256
+ adds loc1=96*16-112-128,in0
+ ;;
+ stf.spill.nta [loc0]=f121,-256
+ stf.spill.nta [loc1]=f113,-256
+ ;;
+ stf.spill.nta [loc0]=f105,-256
+ stf.spill.nta [loc1]=f97,-256
+ ;;
+ stf.spill.nta [loc0]=f89,-256
+ stf.spill.nta [loc1]=f81,-256
+ ;;
+ stf.spill.nta [loc0]=f73,-256
+ stf.spill.nta [loc1]=f65,-256
+ ;;
+ stf.spill.nta [loc0]=f57,-256
+ stf.spill.nta [loc1]=f49,-256
+ adds loc2=96*16-128,in0
+ ;;
+ stf.spill.nta [loc0]=f41,-256
+ stf.spill.nta [loc1]=f33,-256
+ adds loc3=96*16-128-128,in0
+ ;;
+ stf.spill.nta [loc2]=f120,-256
+ stf.spill.nta [loc3]=f112,-256
+ ;;
+ stf.spill.nta [loc2]=f104,-256
+ stf.spill.nta [loc3]=f96,-256
+ ;;
+ stf.spill.nta [loc2]=f88,-256
+ stf.spill.nta [loc3]=f80,-256
+ ;;
+ stf.spill.nta [loc2]=f72,-256
+ stf.spill.nta [loc3]=f64,-256
+ ;;
+ stf.spill.nta [loc2]=f56,-256
+ stf.spill.nta [loc3]=f48,-256
+ ;;
+ stf.spill.nta [loc2]=f40
+ stf.spill.nta [loc3]=f32
+ br.ret.sptk.many rp
+END(__ia64_save_fpu)
+
+GLOBAL_ENTRY(__ia64_load_fpu)
+ alloc r2=ar.pfs,1,2,0,0
+ adds r3=128,in0
+ adds r14=256,in0
+ adds r15=384,in0
+ mov loc0=512
+ mov loc1=-1024+16
+ ;;
+ ldf.fill.nta f32=[in0],loc0
+ ldf.fill.nta f40=[ r3],loc0
+ ldf.fill.nta f48=[r14],loc0
+ ldf.fill.nta f56=[r15],loc0
+ ;;
+ ldf.fill.nta f64=[in0],loc0
+ ldf.fill.nta f72=[ r3],loc0
+ ldf.fill.nta f80=[r14],loc0
+ ldf.fill.nta f88=[r15],loc0
+ ;;
+ ldf.fill.nta f96=[in0],loc1
+ ldf.fill.nta f104=[ r3],loc1
+ ldf.fill.nta f112=[r14],loc1
+ ldf.fill.nta f120=[r15],loc1
+ ;;
+ ldf.fill.nta f33=[in0],loc0
+ ldf.fill.nta f41=[ r3],loc0
+ ldf.fill.nta f49=[r14],loc0
+ ldf.fill.nta f57=[r15],loc0
+ ;;
+ ldf.fill.nta f65=[in0],loc0
+ ldf.fill.nta f73=[ r3],loc0
+ ldf.fill.nta f81=[r14],loc0
+ ldf.fill.nta f89=[r15],loc0
+ ;;
+ ldf.fill.nta f97=[in0],loc1
+ ldf.fill.nta f105=[ r3],loc1
+ ldf.fill.nta f113=[r14],loc1
+ ldf.fill.nta f121=[r15],loc1
+ ;;
+ ldf.fill.nta f34=[in0],loc0
+ ldf.fill.nta f42=[ r3],loc0
+ ldf.fill.nta f50=[r14],loc0
+ ldf.fill.nta f58=[r15],loc0
+ ;;
+ ldf.fill.nta f66=[in0],loc0
+ ldf.fill.nta f74=[ r3],loc0
+ ldf.fill.nta f82=[r14],loc0
+ ldf.fill.nta f90=[r15],loc0
+ ;;
+ ldf.fill.nta f98=[in0],loc1
+ ldf.fill.nta f106=[ r3],loc1
+ ldf.fill.nta f114=[r14],loc1
+ ldf.fill.nta f122=[r15],loc1
+ ;;
+ ldf.fill.nta f35=[in0],loc0
+ ldf.fill.nta f43=[ r3],loc0
+ ldf.fill.nta f51=[r14],loc0
+ ldf.fill.nta f59=[r15],loc0
+ ;;
+ ldf.fill.nta f67=[in0],loc0
+ ldf.fill.nta f75=[ r3],loc0
+ ldf.fill.nta f83=[r14],loc0
+ ldf.fill.nta f91=[r15],loc0
+ ;;
+ ldf.fill.nta f99=[in0],loc1
+ ldf.fill.nta f107=[ r3],loc1
+ ldf.fill.nta f115=[r14],loc1
+ ldf.fill.nta f123=[r15],loc1
+ ;;
+ ldf.fill.nta f36=[in0],loc0
+ ldf.fill.nta f44=[ r3],loc0
+ ldf.fill.nta f52=[r14],loc0
+ ldf.fill.nta f60=[r15],loc0
+ ;;
+ ldf.fill.nta f68=[in0],loc0
+ ldf.fill.nta f76=[ r3],loc0
+ ldf.fill.nta f84=[r14],loc0
+ ldf.fill.nta f92=[r15],loc0
+ ;;
+ ldf.fill.nta f100=[in0],loc1
+ ldf.fill.nta f108=[ r3],loc1
+ ldf.fill.nta f116=[r14],loc1
+ ldf.fill.nta f124=[r15],loc1
+ ;;
+ ldf.fill.nta f37=[in0],loc0
+ ldf.fill.nta f45=[ r3],loc0
+ ldf.fill.nta f53=[r14],loc0
+ ldf.fill.nta f61=[r15],loc0
+ ;;
+ ldf.fill.nta f69=[in0],loc0
+ ldf.fill.nta f77=[ r3],loc0
+ ldf.fill.nta f85=[r14],loc0
+ ldf.fill.nta f93=[r15],loc0
+ ;;
+ ldf.fill.nta f101=[in0],loc1
+ ldf.fill.nta f109=[ r3],loc1
+ ldf.fill.nta f117=[r14],loc1
+ ldf.fill.nta f125=[r15],loc1
+ ;;
+ ldf.fill.nta f38 =[in0],loc0
+ ldf.fill.nta f46 =[ r3],loc0
+ ldf.fill.nta f54 =[r14],loc0
+ ldf.fill.nta f62 =[r15],loc0
+ ;;
+ ldf.fill.nta f70 =[in0],loc0
+ ldf.fill.nta f78 =[ r3],loc0
+ ldf.fill.nta f86 =[r14],loc0
+ ldf.fill.nta f94 =[r15],loc0
+ ;;
+ ldf.fill.nta f102=[in0],loc1
+ ldf.fill.nta f110=[ r3],loc1
+ ldf.fill.nta f118=[r14],loc1
+ ldf.fill.nta f126=[r15],loc1
+ ;;
+ ldf.fill.nta f39 =[in0],loc0
+ ldf.fill.nta f47 =[ r3],loc0
+ ldf.fill.nta f55 =[r14],loc0
+ ldf.fill.nta f63 =[r15],loc0
+ ;;
+ ldf.fill.nta f71 =[in0],loc0
+ ldf.fill.nta f79 =[ r3],loc0
+ ldf.fill.nta f87 =[r14],loc0
+ ldf.fill.nta f95 =[r15],loc0
+ ;;
+ ldf.fill.nta f103=[in0]
+ ldf.fill.nta f111=[ r3]
+ ldf.fill.nta f119=[r14]
+ ldf.fill.nta f127=[r15]
+ br.ret.sptk.many rp
+END(__ia64_load_fpu)
+
+GLOBAL_ENTRY(__ia64_init_fpu)
+ stf.spill [sp]=f0 // M3
+ mov f32=f0 // F
+ nop.b 0
+
+ ldfps f33,f34=[sp] // M0
+ ldfps f35,f36=[sp] // M1
+ mov f37=f0 // F
+ ;;
+
+ setf.s f38=r0 // M2
+ setf.s f39=r0 // M3
+ mov f40=f0 // F
+
+ ldfps f41,f42=[sp] // M0
+ ldfps f43,f44=[sp] // M1
+ mov f45=f0 // F
+
+ setf.s f46=r0 // M2
+ setf.s f47=r0 // M3
+ mov f48=f0 // F
+
+ ldfps f49,f50=[sp] // M0
+ ldfps f51,f52=[sp] // M1
+ mov f53=f0 // F
+
+ setf.s f54=r0 // M2
+ setf.s f55=r0 // M3
+ mov f56=f0 // F
+
+ ldfps f57,f58=[sp] // M0
+ ldfps f59,f60=[sp] // M1
+ mov f61=f0 // F
+
+ setf.s f62=r0 // M2
+ setf.s f63=r0 // M3
+ mov f64=f0 // F
+
+ ldfps f65,f66=[sp] // M0
+ ldfps f67,f68=[sp] // M1
+ mov f69=f0 // F
+
+ setf.s f70=r0 // M2
+ setf.s f71=r0 // M3
+ mov f72=f0 // F
+
+ ldfps f73,f74=[sp] // M0
+ ldfps f75,f76=[sp] // M1
+ mov f77=f0 // F
+
+ setf.s f78=r0 // M2
+ setf.s f79=r0 // M3
+ mov f80=f0 // F
+
+ ldfps f81,f82=[sp] // M0
+ ldfps f83,f84=[sp] // M1
+ mov f85=f0 // F
+
+ setf.s f86=r0 // M2
+ setf.s f87=r0 // M3
+ mov f88=f0 // F
+
+ /*
+ * When the instructions are cached, it would be faster to initialize
+ * the remaining registers with simply mov instructions (F-unit).
+ * This gets the time down to ~29 cycles. However, this would use up
+ * 33 bundles, whereas continuing with the above pattern yields
+ * 10 bundles and ~30 cycles.
+ */
+
+ ldfps f89,f90=[sp] // M0
+ ldfps f91,f92=[sp] // M1
+ mov f93=f0 // F
+
+ setf.s f94=r0 // M2
+ setf.s f95=r0 // M3
+ mov f96=f0 // F
+
+ ldfps f97,f98=[sp] // M0
+ ldfps f99,f100=[sp] // M1
+ mov f101=f0 // F
+
+ setf.s f102=r0 // M2
+ setf.s f103=r0 // M3
+ mov f104=f0 // F
+
+ ldfps f105,f106=[sp] // M0
+ ldfps f107,f108=[sp] // M1
+ mov f109=f0 // F
+
+ setf.s f110=r0 // M2
+ setf.s f111=r0 // M3
+ mov f112=f0 // F
+
+ ldfps f113,f114=[sp] // M0
+ ldfps f115,f116=[sp] // M1
+ mov f117=f0 // F
+
+ setf.s f118=r0 // M2
+ setf.s f119=r0 // M3
+ mov f120=f0 // F
+
+ ldfps f121,f122=[sp] // M0
+ ldfps f123,f124=[sp] // M1
+ mov f125=f0 // F
+
+ setf.s f126=r0 // M2
+ setf.s f127=r0 // M3
+ br.ret.sptk.many rp // F
+END(__ia64_init_fpu)
+
+/*
+ * Switch execution mode from virtual to physical
+ *
+ * Inputs:
+ * r16 = new psr to establish
+ * Output:
+ * r19 = old virtual address of ar.bsp
+ * r20 = old virtual address of sp
+ *
+ * Note: RSE must already be in enforced lazy mode
+ */
+GLOBAL_ENTRY(ia64_switch_mode_phys)
+ {
+ alloc r2=ar.pfs,0,0,0,0
+ rsm psr.i | psr.ic // disable interrupts and interrupt collection
+ mov r15=ip
+ }
+ ;;
+ {
+ flushrs // must be first insn in group
+ srlz.i
+ }
+ ;;
+ mov cr.ipsr=r16 // set new PSR
+ add r3=1f-ia64_switch_mode_phys,r15
+
+ mov r19=ar.bsp
+ mov r20=sp
+ mov r14=rp // get return address into a general register
+ ;;
+
+ // going to physical mode, use tpa to translate virt->phys
+ tpa r17=r19
+ tpa r3=r3
+ tpa sp=sp
+ tpa r14=r14
+ ;;
+
+ mov r18=ar.rnat // save ar.rnat
+ mov ar.bspstore=r17 // this steps on ar.rnat
+ mov cr.iip=r3
+ mov cr.ifs=r0
+ ;;
+ mov ar.rnat=r18 // restore ar.rnat
+ rfi // must be last insn in group
+ ;;
+1: mov rp=r14
+ br.ret.sptk.many rp
+END(ia64_switch_mode_phys)
+
+/*
+ * Switch execution mode from physical to virtual
+ *
+ * Inputs:
+ * r16 = new psr to establish
+ * r19 = new bspstore to establish
+ * r20 = new sp to establish
+ *
+ * Note: RSE must already be in enforced lazy mode
+ */
+GLOBAL_ENTRY(ia64_switch_mode_virt)
+ {
+ alloc r2=ar.pfs,0,0,0,0
+ rsm psr.i | psr.ic // disable interrupts and interrupt collection
+ mov r15=ip
+ }
+ ;;
+ {
+ flushrs // must be first insn in group
+ srlz.i
+ }
+ ;;
+ mov cr.ipsr=r16 // set new PSR
+ add r3=1f-ia64_switch_mode_virt,r15
+
+ mov r14=rp // get return address into a general register
+ ;;
+
+ // going to virtual
+ // - for code addresses, set upper bits of addr to KERNEL_START
+ // - for stack addresses, copy from input argument
+ movl r18=KERNEL_START
+ dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
+ dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
+ mov sp=r20
+ ;;
+ or r3=r3,r18
+ or r14=r14,r18
+ ;;
+
+ mov r18=ar.rnat // save ar.rnat
+ mov ar.bspstore=r19 // this steps on ar.rnat
+ mov cr.iip=r3
+ mov cr.ifs=r0
+ ;;
+ mov ar.rnat=r18 // restore ar.rnat
+ rfi // must be last insn in group
+ ;;
+1: mov rp=r14
+ br.ret.sptk.many rp
+END(ia64_switch_mode_virt)
+
+GLOBAL_ENTRY(ia64_delay_loop)
+ .prologue
+{ nop 0 // work around GAS unwind info generation bug...
+ .save ar.lc,r2
+ mov r2=ar.lc
+ .body
+ ;;
+ mov ar.lc=r32
+}
+ ;;
+ // force loop to be 32-byte aligned (GAS bug means we cannot use .align
+ // inside function body without corrupting unwind info).
+{ nop 0 }
+1: br.cloop.sptk.few 1b
+ ;;
+ mov ar.lc=r2
+ br.ret.sptk.many rp
+END(ia64_delay_loop)
+
+/*
+ * Return a CPU-local timestamp in nano-seconds. This timestamp is
+ * NOT synchronized across CPUs its return value must never be
+ * compared against the values returned on another CPU. The usage in
+ * kernel/sched.c ensures that.
+ *
+ * The return-value of sched_clock() is NOT supposed to wrap-around.
+ * If it did, it would cause some scheduling hiccups (at the worst).
+ * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
+ * that would happen only once every 5+ years.
+ *
+ * The code below basically calculates:
+ *
+ * (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
+ *
+ * except that the multiplication and the shift are done with 128-bit
+ * intermediate precision so that we can produce a full 64-bit result.
+ */
+GLOBAL_ENTRY(sched_clock)
+ addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
+ mov.m r9=ar.itc // fetch cycle-counter (35 cyc)
+ ;;
+ ldf8 f8=[r8]
+ ;;
+ setf.sig f9=r9 // certain to stall, so issue it _after_ ldf8...
+ ;;
+ xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc)
+ xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product
+ ;;
+ getf.sig r8=f10 // (5 cyc)
+ getf.sig r9=f11
+ ;;
+ shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
+ br.ret.sptk.many rp
+END(sched_clock)
+
+GLOBAL_ENTRY(start_kernel_thread)
+ .prologue
+ .save rp, r0 // this is the end of the call-chain
+ .body
+ alloc r2 = ar.pfs, 0, 0, 2, 0
+ mov out0 = r9
+ mov out1 = r11;;
+ br.call.sptk.many rp = kernel_thread_helper;;
+ mov out0 = r8
+ br.call.sptk.many rp = sys_exit;;
+1: br.sptk.few 1b // not reached
+END(start_kernel_thread)
+
+#ifdef CONFIG_IA64_BRL_EMU
+
+/*
+ * Assembly routines used by brl_emu.c to set preserved register state.
+ */
+
+#define SET_REG(reg) \
+ GLOBAL_ENTRY(ia64_set_##reg); \
+ alloc r16=ar.pfs,1,0,0,0; \
+ mov reg=r32; \
+ ;; \
+ br.ret.sptk.many rp; \
+ END(ia64_set_##reg)
+
+SET_REG(b1);
+SET_REG(b2);
+SET_REG(b3);
+SET_REG(b4);
+SET_REG(b5);
+
+#endif /* CONFIG_IA64_BRL_EMU */
+
+#ifdef CONFIG_SMP
+ /*
+ * This routine handles spinlock contention. It uses a non-standard calling
+ * convention to avoid converting leaf routines into interior routines. Because
+ * of this special convention, there are several restrictions:
+ *
+ * - do not use gp relative variables, this code is called from the kernel
+ * and from modules, r1 is undefined.
+ * - do not use stacked registers, the caller owns them.
+ * - do not use the scratch stack space, the caller owns it.
+ * - do not use any registers other than the ones listed below
+ *
+ * Inputs:
+ * ar.pfs - saved CFM of caller
+ * ar.ccv - 0 (and available for use)
+ * r27 - flags from spin_lock_irqsave or 0. Must be preserved.
+ * r28 - available for use.
+ * r29 - available for use.
+ * r30 - available for use.
+ * r31 - address of lock, available for use.
+ * b6 - return address
+ * p14 - available for use.
+ * p15 - used to track flag status.
+ *
+ * If you patch this code to use more registers, do not forget to update
+ * the clobber lists for spin_lock() in include/asm-ia64/spinlock.h.
+ */
+
+#if __GNUC__ < 3 || (__GNUC__ == 3 && __GNUC_MINOR__ < 3)
+
+GLOBAL_ENTRY(ia64_spinlock_contention_pre3_4)
+ .prologue
+ .save ar.pfs, r0 // this code effectively has a zero frame size
+ .save rp, r28
+ .body
+ nop 0
+ tbit.nz p15,p0=r27,IA64_PSR_I_BIT
+ .restore sp // pop existing prologue after next insn
+ mov b6 = r28
+ .prologue
+ .save ar.pfs, r0
+ .altrp b6
+ .body
+ ;;
+(p15) ssm psr.i // reenable interrupts if they were on
+ // DavidM says that srlz.d is slow and is not required in this case
+.wait:
+ // exponential backoff, kdb, lockmeter etc. go in here
+ hint @pause
+ ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
+ nop 0
+ ;;
+ cmp4.ne p14,p0=r30,r0
+(p14) br.cond.sptk.few .wait
+(p15) rsm psr.i // disable interrupts if we reenabled them
+ br.cond.sptk.few b6 // lock is now free, try to acquire
+ .global ia64_spinlock_contention_pre3_4_end // for kernprof
+ia64_spinlock_contention_pre3_4_end:
+END(ia64_spinlock_contention_pre3_4)
+
+#else
+
+GLOBAL_ENTRY(ia64_spinlock_contention)
+ .prologue
+ .altrp b6
+ .body
+ tbit.nz p15,p0=r27,IA64_PSR_I_BIT
+ ;;
+.wait:
+(p15) ssm psr.i // reenable interrupts if they were on
+ // DavidM says that srlz.d is slow and is not required in this case
+.wait2:
+ // exponential backoff, kdb, lockmeter etc. go in here
+ hint @pause
+ ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
+ ;;
+ cmp4.ne p14,p0=r30,r0
+ mov r30 = 1
+(p14) br.cond.sptk.few .wait2
+(p15) rsm psr.i // disable interrupts if we reenabled them
+ ;;
+ cmpxchg4.acq r30=[r31], r30, ar.ccv
+ ;;
+ cmp4.ne p14,p0=r0,r30
+(p14) br.cond.sptk.few .wait
+
+ br.ret.sptk.many b6 // lock is now taken
+END(ia64_spinlock_contention)
+
+#endif
+
+#endif /* CONFIG_SMP */
diff --git a/arch/ia64/kernel/ia64_ksyms.c b/arch/ia64/kernel/ia64_ksyms.c
new file mode 100644
index 0000000..7bbf019
--- /dev/null
+++ b/arch/ia64/kernel/ia64_ksyms.c
@@ -0,0 +1,127 @@
+/*
+ * Architecture-specific kernel symbols
+ *
+ * Don't put any exports here unless it's defined in an assembler file.
+ * All other exports should be put directly after the definition.
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+
+#include <linux/string.h>
+EXPORT_SYMBOL(memset);
+EXPORT_SYMBOL(memchr);
+EXPORT_SYMBOL(memcmp);
+EXPORT_SYMBOL(memcpy);
+EXPORT_SYMBOL(memmove);
+EXPORT_SYMBOL(memscan);
+EXPORT_SYMBOL(strcat);
+EXPORT_SYMBOL(strchr);
+EXPORT_SYMBOL(strcmp);
+EXPORT_SYMBOL(strcpy);
+EXPORT_SYMBOL(strlen);
+EXPORT_SYMBOL(strncat);
+EXPORT_SYMBOL(strncmp);
+EXPORT_SYMBOL(strncpy);
+EXPORT_SYMBOL(strnlen);
+EXPORT_SYMBOL(strrchr);
+EXPORT_SYMBOL(strstr);
+EXPORT_SYMBOL(strpbrk);
+
+#include <asm/checksum.h>
+EXPORT_SYMBOL(ip_fast_csum); /* hand-coded assembly */
+
+#include <asm/semaphore.h>
+EXPORT_SYMBOL(__down);
+EXPORT_SYMBOL(__down_interruptible);
+EXPORT_SYMBOL(__down_trylock);
+EXPORT_SYMBOL(__up);
+
+#include <asm/page.h>
+EXPORT_SYMBOL(clear_page);
+
+#ifdef CONFIG_VIRTUAL_MEM_MAP
+#include <linux/bootmem.h>
+EXPORT_SYMBOL(max_low_pfn); /* defined by bootmem.c, but not exported by generic code */
+#endif
+
+#include <asm/processor.h>
+EXPORT_SYMBOL(per_cpu__cpu_info);
+#ifdef CONFIG_SMP
+EXPORT_SYMBOL(per_cpu__local_per_cpu_offset);
+#endif
+
+#include <asm/uaccess.h>
+EXPORT_SYMBOL(__copy_user);
+EXPORT_SYMBOL(__do_clear_user);
+EXPORT_SYMBOL(__strlen_user);
+EXPORT_SYMBOL(__strncpy_from_user);
+EXPORT_SYMBOL(__strnlen_user);
+
+#include <asm/unistd.h>
+EXPORT_SYMBOL(__ia64_syscall);
+
+/* from arch/ia64/lib */
+extern void __divsi3(void);
+extern void __udivsi3(void);
+extern void __modsi3(void);
+extern void __umodsi3(void);
+extern void __divdi3(void);
+extern void __udivdi3(void);
+extern void __moddi3(void);
+extern void __umoddi3(void);
+
+EXPORT_SYMBOL(__divsi3);
+EXPORT_SYMBOL(__udivsi3);
+EXPORT_SYMBOL(__modsi3);
+EXPORT_SYMBOL(__umodsi3);
+EXPORT_SYMBOL(__divdi3);
+EXPORT_SYMBOL(__udivdi3);
+EXPORT_SYMBOL(__moddi3);
+EXPORT_SYMBOL(__umoddi3);
+
+#if defined(CONFIG_MD_RAID5) || defined(CONFIG_MD_RAID5_MODULE)
+extern void xor_ia64_2(void);
+extern void xor_ia64_3(void);
+extern void xor_ia64_4(void);
+extern void xor_ia64_5(void);
+
+EXPORT_SYMBOL(xor_ia64_2);
+EXPORT_SYMBOL(xor_ia64_3);
+EXPORT_SYMBOL(xor_ia64_4);
+EXPORT_SYMBOL(xor_ia64_5);
+#endif
+
+#include <asm/pal.h>
+EXPORT_SYMBOL(ia64_pal_call_phys_stacked);
+EXPORT_SYMBOL(ia64_pal_call_phys_static);
+EXPORT_SYMBOL(ia64_pal_call_stacked);
+EXPORT_SYMBOL(ia64_pal_call_static);
+EXPORT_SYMBOL(ia64_load_scratch_fpregs);
+EXPORT_SYMBOL(ia64_save_scratch_fpregs);
+
+#include <asm/unwind.h>
+EXPORT_SYMBOL(unw_init_running);
+
+#ifdef ASM_SUPPORTED
+# ifdef CONFIG_SMP
+# if __GNUC__ < 3 || (__GNUC__ == 3 && __GNUC_MINOR__ < 3)
+/*
+ * This is not a normal routine and we don't want a function descriptor for it, so we use
+ * a fake declaration here.
+ */
+extern char ia64_spinlock_contention_pre3_4;
+EXPORT_SYMBOL(ia64_spinlock_contention_pre3_4);
+# else
+/*
+ * This is not a normal routine and we don't want a function descriptor for it, so we use
+ * a fake declaration here.
+ */
+extern char ia64_spinlock_contention;
+EXPORT_SYMBOL(ia64_spinlock_contention);
+# endif
+# endif
+#endif
+
+extern char ia64_ivt[];
+EXPORT_SYMBOL(ia64_ivt);
diff --git a/arch/ia64/kernel/init_task.c b/arch/ia64/kernel/init_task.c
new file mode 100644
index 0000000..b69c397
--- /dev/null
+++ b/arch/ia64/kernel/init_task.c
@@ -0,0 +1,46 @@
+/*
+ * This is where we statically allocate and initialize the initial
+ * task.
+ *
+ * Copyright (C) 1999, 2002-2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/init_task.h>
+#include <linux/mqueue.h>
+
+#include <asm/uaccess.h>
+#include <asm/pgtable.h>
+
+static struct fs_struct init_fs = INIT_FS;
+static struct files_struct init_files = INIT_FILES;
+static struct signal_struct init_signals = INIT_SIGNALS(init_signals);
+static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand);
+struct mm_struct init_mm = INIT_MM(init_mm);
+
+EXPORT_SYMBOL(init_mm);
+
+/*
+ * Initial task structure.
+ *
+ * We need to make sure that this is properly aligned due to the way process stacks are
+ * handled. This is done by having a special ".data.init_task" section...
+ */
+#define init_thread_info init_task_mem.s.thread_info
+
+union {
+ struct {
+ struct task_struct task;
+ struct thread_info thread_info;
+ } s;
+ unsigned long stack[KERNEL_STACK_SIZE/sizeof (unsigned long)];
+} init_task_mem asm ("init_task") __attribute__((section(".data.init_task"))) = {{
+ .task = INIT_TASK(init_task_mem.s.task),
+ .thread_info = INIT_THREAD_INFO(init_task_mem.s.task)
+}};
+
+EXPORT_SYMBOL(init_task);
diff --git a/arch/ia64/kernel/iosapic.c b/arch/ia64/kernel/iosapic.c
new file mode 100644
index 0000000..c15be5c
--- /dev/null
+++ b/arch/ia64/kernel/iosapic.c
@@ -0,0 +1,827 @@
+/*
+ * I/O SAPIC support.
+ *
+ * Copyright (C) 1999 Intel Corp.
+ * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
+ * Copyright (C) 2000-2002 J.I. Lee <jung-ik.lee@intel.com>
+ * Copyright (C) 1999-2000, 2002-2003 Hewlett-Packard Co.
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999,2000 Walt Drummond <drummond@valinux.com>
+ *
+ * 00/04/19 D. Mosberger Rewritten to mirror more closely the x86 I/O APIC code.
+ * In particular, we now have separate handlers for edge
+ * and level triggered interrupts.
+ * 00/10/27 Asit Mallick, Goutham Rao <goutham.rao@intel.com> IRQ vector allocation
+ * PCI to vector mapping, shared PCI interrupts.
+ * 00/10/27 D. Mosberger Document things a bit more to make them more understandable.
+ * Clean up much of the old IOSAPIC cruft.
+ * 01/07/27 J.I. Lee PCI irq routing, Platform/Legacy interrupts and fixes for
+ * ACPI S5(SoftOff) support.
+ * 02/01/23 J.I. Lee iosapic pgm fixes for PCI irq routing from _PRT
+ * 02/01/07 E. Focht <efocht@ess.nec.de> Redirectable interrupt vectors in
+ * iosapic_set_affinity(), initializations for
+ * /proc/irq/#/smp_affinity
+ * 02/04/02 P. Diefenbaugh Cleaned up ACPI PCI IRQ routing.
+ * 02/04/18 J.I. Lee bug fix in iosapic_init_pci_irq
+ * 02/04/30 J.I. Lee bug fix in find_iosapic to fix ACPI PCI IRQ to IOSAPIC mapping
+ * error
+ * 02/07/29 T. Kochi Allocate interrupt vectors dynamically
+ * 02/08/04 T. Kochi Cleaned up terminology (irq, global system interrupt, vector, etc.)
+ * 02/09/20 D. Mosberger Simplified by taking advantage of ACPI's pci_irq code.
+ * 03/02/19 B. Helgaas Make pcat_compat system-wide, not per-IOSAPIC.
+ * Remove iosapic_address & gsi_base from external interfaces.
+ * Rationalize __init/__devinit attributes.
+ * 04/12/04 Ashok Raj <ashok.raj@intel.com> Intel Corporation 2004
+ * Updated to work with irq migration necessary for CPU Hotplug
+ */
+/*
+ * Here is what the interrupt logic between a PCI device and the kernel looks like:
+ *
+ * (1) A PCI device raises one of the four interrupt pins (INTA, INTB, INTC, INTD). The
+ * device is uniquely identified by its bus--, and slot-number (the function
+ * number does not matter here because all functions share the same interrupt
+ * lines).
+ *
+ * (2) The motherboard routes the interrupt line to a pin on a IOSAPIC controller.
+ * Multiple interrupt lines may have to share the same IOSAPIC pin (if they're level
+ * triggered and use the same polarity). Each interrupt line has a unique Global
+ * System Interrupt (GSI) number which can be calculated as the sum of the controller's
+ * base GSI number and the IOSAPIC pin number to which the line connects.
+ *
+ * (3) The IOSAPIC uses an internal routing table entries (RTEs) to map the IOSAPIC pin
+ * into the IA-64 interrupt vector. This interrupt vector is then sent to the CPU.
+ *
+ * (4) The kernel recognizes an interrupt as an IRQ. The IRQ interface is used as
+ * architecture-independent interrupt handling mechanism in Linux. As an
+ * IRQ is a number, we have to have IA-64 interrupt vector number <-> IRQ number
+ * mapping. On smaller systems, we use one-to-one mapping between IA-64 vector and
+ * IRQ. A platform can implement platform_irq_to_vector(irq) and
+ * platform_local_vector_to_irq(vector) APIs to differentiate the mapping.
+ * Please see also include/asm-ia64/hw_irq.h for those APIs.
+ *
+ * To sum up, there are three levels of mappings involved:
+ *
+ * PCI pin -> global system interrupt (GSI) -> IA-64 vector <-> IRQ
+ *
+ * Note: The term "IRQ" is loosely used everywhere in Linux kernel to describe interrupts.
+ * Now we use "IRQ" only for Linux IRQ's. ISA IRQ (isa_irq) is the only exception in this
+ * source code.
+ */
+#include <linux/config.h>
+
+#include <linux/acpi.h>
+#include <linux/init.h>
+#include <linux/irq.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/string.h>
+
+#include <asm/delay.h>
+#include <asm/hw_irq.h>
+#include <asm/io.h>
+#include <asm/iosapic.h>
+#include <asm/machvec.h>
+#include <asm/processor.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+
+
+#undef DEBUG_INTERRUPT_ROUTING
+
+#ifdef DEBUG_INTERRUPT_ROUTING
+#define DBG(fmt...) printk(fmt)
+#else
+#define DBG(fmt...)
+#endif
+
+static DEFINE_SPINLOCK(iosapic_lock);
+
+/* These tables map IA-64 vectors to the IOSAPIC pin that generates this vector. */
+
+static struct iosapic_intr_info {
+ char __iomem *addr; /* base address of IOSAPIC */
+ u32 low32; /* current value of low word of Redirection table entry */
+ unsigned int gsi_base; /* first GSI assigned to this IOSAPIC */
+ char rte_index; /* IOSAPIC RTE index (-1 => not an IOSAPIC interrupt) */
+ unsigned char dmode : 3; /* delivery mode (see iosapic.h) */
+ unsigned char polarity: 1; /* interrupt polarity (see iosapic.h) */
+ unsigned char trigger : 1; /* trigger mode (see iosapic.h) */
+ int refcnt; /* reference counter */
+} iosapic_intr_info[IA64_NUM_VECTORS];
+
+static struct iosapic {
+ char __iomem *addr; /* base address of IOSAPIC */
+ unsigned int gsi_base; /* first GSI assigned to this IOSAPIC */
+ unsigned short num_rte; /* number of RTE in this IOSAPIC */
+#ifdef CONFIG_NUMA
+ unsigned short node; /* numa node association via pxm */
+#endif
+} iosapic_lists[NR_IOSAPICS];
+
+static int num_iosapic;
+
+static unsigned char pcat_compat __initdata; /* 8259 compatibility flag */
+
+
+/*
+ * Find an IOSAPIC associated with a GSI
+ */
+static inline int
+find_iosapic (unsigned int gsi)
+{
+ int i;
+
+ for (i = 0; i < num_iosapic; i++) {
+ if ((unsigned) (gsi - iosapic_lists[i].gsi_base) < iosapic_lists[i].num_rte)
+ return i;
+ }
+
+ return -1;
+}
+
+static inline int
+_gsi_to_vector (unsigned int gsi)
+{
+ struct iosapic_intr_info *info;
+
+ for (info = iosapic_intr_info; info < iosapic_intr_info + IA64_NUM_VECTORS; ++info)
+ if (info->gsi_base + info->rte_index == gsi)
+ return info - iosapic_intr_info;
+ return -1;
+}
+
+/*
+ * Translate GSI number to the corresponding IA-64 interrupt vector. If no
+ * entry exists, return -1.
+ */
+inline int
+gsi_to_vector (unsigned int gsi)
+{
+ return _gsi_to_vector(gsi);
+}
+
+int
+gsi_to_irq (unsigned int gsi)
+{
+ /*
+ * XXX fix me: this assumes an identity mapping vetween IA-64 vector and Linux irq
+ * numbers...
+ */
+ return _gsi_to_vector(gsi);
+}
+
+static void
+set_rte (unsigned int vector, unsigned int dest, int mask)
+{
+ unsigned long pol, trigger, dmode;
+ u32 low32, high32;
+ char __iomem *addr;
+ int rte_index;
+ char redir;
+
+ DBG(KERN_DEBUG"IOSAPIC: routing vector %d to 0x%x\n", vector, dest);
+
+ rte_index = iosapic_intr_info[vector].rte_index;
+ if (rte_index < 0)
+ return; /* not an IOSAPIC interrupt */
+
+ addr = iosapic_intr_info[vector].addr;
+ pol = iosapic_intr_info[vector].polarity;
+ trigger = iosapic_intr_info[vector].trigger;
+ dmode = iosapic_intr_info[vector].dmode;
+ vector &= (~IA64_IRQ_REDIRECTED);
+
+ redir = (dmode == IOSAPIC_LOWEST_PRIORITY) ? 1 : 0;
+
+#ifdef CONFIG_SMP
+ {
+ unsigned int irq;
+
+ for (irq = 0; irq < NR_IRQS; ++irq)
+ if (irq_to_vector(irq) == vector) {
+ set_irq_affinity_info(irq, (int)(dest & 0xffff), redir);
+ break;
+ }
+ }
+#endif
+
+ low32 = ((pol << IOSAPIC_POLARITY_SHIFT) |
+ (trigger << IOSAPIC_TRIGGER_SHIFT) |
+ (dmode << IOSAPIC_DELIVERY_SHIFT) |
+ ((mask ? 1 : 0) << IOSAPIC_MASK_SHIFT) |
+ vector);
+
+ /* dest contains both id and eid */
+ high32 = (dest << IOSAPIC_DEST_SHIFT);
+
+ iosapic_write(addr, IOSAPIC_RTE_HIGH(rte_index), high32);
+ iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
+ iosapic_intr_info[vector].low32 = low32;
+}
+
+static void
+nop (unsigned int vector)
+{
+ /* do nothing... */
+}
+
+static void
+mask_irq (unsigned int irq)
+{
+ unsigned long flags;
+ char __iomem *addr;
+ u32 low32;
+ int rte_index;
+ ia64_vector vec = irq_to_vector(irq);
+
+ addr = iosapic_intr_info[vec].addr;
+ rte_index = iosapic_intr_info[vec].rte_index;
+
+ if (rte_index < 0)
+ return; /* not an IOSAPIC interrupt! */
+
+ spin_lock_irqsave(&iosapic_lock, flags);
+ {
+ /* set only the mask bit */
+ low32 = iosapic_intr_info[vec].low32 |= IOSAPIC_MASK;
+ iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
+ }
+ spin_unlock_irqrestore(&iosapic_lock, flags);
+}
+
+static void
+unmask_irq (unsigned int irq)
+{
+ unsigned long flags;
+ char __iomem *addr;
+ u32 low32;
+ int rte_index;
+ ia64_vector vec = irq_to_vector(irq);
+
+ addr = iosapic_intr_info[vec].addr;
+ rte_index = iosapic_intr_info[vec].rte_index;
+ if (rte_index < 0)
+ return; /* not an IOSAPIC interrupt! */
+
+ spin_lock_irqsave(&iosapic_lock, flags);
+ {
+ low32 = iosapic_intr_info[vec].low32 &= ~IOSAPIC_MASK;
+ iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
+ }
+ spin_unlock_irqrestore(&iosapic_lock, flags);
+}
+
+
+static void
+iosapic_set_affinity (unsigned int irq, cpumask_t mask)
+{
+#ifdef CONFIG_SMP
+ unsigned long flags;
+ u32 high32, low32;
+ int dest, rte_index;
+ char __iomem *addr;
+ int redir = (irq & IA64_IRQ_REDIRECTED) ? 1 : 0;
+ ia64_vector vec;
+
+ irq &= (~IA64_IRQ_REDIRECTED);
+ vec = irq_to_vector(irq);
+
+ if (cpus_empty(mask))
+ return;
+
+ dest = cpu_physical_id(first_cpu(mask));
+
+ rte_index = iosapic_intr_info[vec].rte_index;
+ addr = iosapic_intr_info[vec].addr;
+
+ if (rte_index < 0)
+ return; /* not an IOSAPIC interrupt */
+
+ set_irq_affinity_info(irq, dest, redir);
+
+ /* dest contains both id and eid */
+ high32 = dest << IOSAPIC_DEST_SHIFT;
+
+ spin_lock_irqsave(&iosapic_lock, flags);
+ {
+ low32 = iosapic_intr_info[vec].low32 & ~(7 << IOSAPIC_DELIVERY_SHIFT);
+
+ if (redir)
+ /* change delivery mode to lowest priority */
+ low32 |= (IOSAPIC_LOWEST_PRIORITY << IOSAPIC_DELIVERY_SHIFT);
+ else
+ /* change delivery mode to fixed */
+ low32 |= (IOSAPIC_FIXED << IOSAPIC_DELIVERY_SHIFT);
+
+ iosapic_intr_info[vec].low32 = low32;
+ iosapic_write(addr, IOSAPIC_RTE_HIGH(rte_index), high32);
+ iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
+ }
+ spin_unlock_irqrestore(&iosapic_lock, flags);
+#endif
+}
+
+/*
+ * Handlers for level-triggered interrupts.
+ */
+
+static unsigned int
+iosapic_startup_level_irq (unsigned int irq)
+{
+ unmask_irq(irq);
+ return 0;
+}
+
+static void
+iosapic_end_level_irq (unsigned int irq)
+{
+ ia64_vector vec = irq_to_vector(irq);
+
+ move_irq(irq);
+ iosapic_eoi(iosapic_intr_info[vec].addr, vec);
+}
+
+#define iosapic_shutdown_level_irq mask_irq
+#define iosapic_enable_level_irq unmask_irq
+#define iosapic_disable_level_irq mask_irq
+#define iosapic_ack_level_irq nop
+
+struct hw_interrupt_type irq_type_iosapic_level = {
+ .typename = "IO-SAPIC-level",
+ .startup = iosapic_startup_level_irq,
+ .shutdown = iosapic_shutdown_level_irq,
+ .enable = iosapic_enable_level_irq,
+ .disable = iosapic_disable_level_irq,
+ .ack = iosapic_ack_level_irq,
+ .end = iosapic_end_level_irq,
+ .set_affinity = iosapic_set_affinity
+};
+
+/*
+ * Handlers for edge-triggered interrupts.
+ */
+
+static unsigned int
+iosapic_startup_edge_irq (unsigned int irq)
+{
+ unmask_irq(irq);
+ /*
+ * IOSAPIC simply drops interrupts pended while the
+ * corresponding pin was masked, so we can't know if an
+ * interrupt is pending already. Let's hope not...
+ */
+ return 0;
+}
+
+static void
+iosapic_ack_edge_irq (unsigned int irq)
+{
+ irq_desc_t *idesc = irq_descp(irq);
+
+ move_irq(irq);
+ /*
+ * Once we have recorded IRQ_PENDING already, we can mask the
+ * interrupt for real. This prevents IRQ storms from unhandled
+ * devices.
+ */
+ if ((idesc->status & (IRQ_PENDING|IRQ_DISABLED)) == (IRQ_PENDING|IRQ_DISABLED))
+ mask_irq(irq);
+}
+
+#define iosapic_enable_edge_irq unmask_irq
+#define iosapic_disable_edge_irq nop
+#define iosapic_end_edge_irq nop
+
+struct hw_interrupt_type irq_type_iosapic_edge = {
+ .typename = "IO-SAPIC-edge",
+ .startup = iosapic_startup_edge_irq,
+ .shutdown = iosapic_disable_edge_irq,
+ .enable = iosapic_enable_edge_irq,
+ .disable = iosapic_disable_edge_irq,
+ .ack = iosapic_ack_edge_irq,
+ .end = iosapic_end_edge_irq,
+ .set_affinity = iosapic_set_affinity
+};
+
+unsigned int
+iosapic_version (char __iomem *addr)
+{
+ /*
+ * IOSAPIC Version Register return 32 bit structure like:
+ * {
+ * unsigned int version : 8;
+ * unsigned int reserved1 : 8;
+ * unsigned int max_redir : 8;
+ * unsigned int reserved2 : 8;
+ * }
+ */
+ return iosapic_read(addr, IOSAPIC_VERSION);
+}
+
+/*
+ * if the given vector is already owned by other,
+ * assign a new vector for the other and make the vector available
+ */
+static void __init
+iosapic_reassign_vector (int vector)
+{
+ int new_vector;
+
+ if (iosapic_intr_info[vector].rte_index >= 0 || iosapic_intr_info[vector].addr
+ || iosapic_intr_info[vector].gsi_base || iosapic_intr_info[vector].dmode
+ || iosapic_intr_info[vector].polarity || iosapic_intr_info[vector].trigger)
+ {
+ new_vector = assign_irq_vector(AUTO_ASSIGN);
+ printk(KERN_INFO "Reassigning vector %d to %d\n", vector, new_vector);
+ memcpy(&iosapic_intr_info[new_vector], &iosapic_intr_info[vector],
+ sizeof(struct iosapic_intr_info));
+ memset(&iosapic_intr_info[vector], 0, sizeof(struct iosapic_intr_info));
+ iosapic_intr_info[vector].rte_index = -1;
+ }
+}
+
+static void
+register_intr (unsigned int gsi, int vector, unsigned char delivery,
+ unsigned long polarity, unsigned long trigger)
+{
+ irq_desc_t *idesc;
+ struct hw_interrupt_type *irq_type;
+ int rte_index;
+ int index;
+ unsigned long gsi_base;
+ void __iomem *iosapic_address;
+
+ index = find_iosapic(gsi);
+ if (index < 0) {
+ printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n", __FUNCTION__, gsi);
+ return;
+ }
+
+ iosapic_address = iosapic_lists[index].addr;
+ gsi_base = iosapic_lists[index].gsi_base;
+
+ rte_index = gsi - gsi_base;
+ iosapic_intr_info[vector].rte_index = rte_index;
+ iosapic_intr_info[vector].polarity = polarity;
+ iosapic_intr_info[vector].dmode = delivery;
+ iosapic_intr_info[vector].addr = iosapic_address;
+ iosapic_intr_info[vector].gsi_base = gsi_base;
+ iosapic_intr_info[vector].trigger = trigger;
+ iosapic_intr_info[vector].refcnt++;
+
+ if (trigger == IOSAPIC_EDGE)
+ irq_type = &irq_type_iosapic_edge;
+ else
+ irq_type = &irq_type_iosapic_level;
+
+ idesc = irq_descp(vector);
+ if (idesc->handler != irq_type) {
+ if (idesc->handler != &no_irq_type)
+ printk(KERN_WARNING "%s: changing vector %d from %s to %s\n",
+ __FUNCTION__, vector, idesc->handler->typename, irq_type->typename);
+ idesc->handler = irq_type;
+ }
+}
+
+static unsigned int
+get_target_cpu (unsigned int gsi, int vector)
+{
+#ifdef CONFIG_SMP
+ static int cpu = -1;
+
+ /*
+ * If the platform supports redirection via XTP, let it
+ * distribute interrupts.
+ */
+ if (smp_int_redirect & SMP_IRQ_REDIRECTION)
+ return cpu_physical_id(smp_processor_id());
+
+ /*
+ * Some interrupts (ACPI SCI, for instance) are registered
+ * before the BSP is marked as online.
+ */
+ if (!cpu_online(smp_processor_id()))
+ return cpu_physical_id(smp_processor_id());
+
+#ifdef CONFIG_NUMA
+ {
+ int num_cpus, cpu_index, iosapic_index, numa_cpu, i = 0;
+ cpumask_t cpu_mask;
+
+ iosapic_index = find_iosapic(gsi);
+ if (iosapic_index < 0 ||
+ iosapic_lists[iosapic_index].node == MAX_NUMNODES)
+ goto skip_numa_setup;
+
+ cpu_mask = node_to_cpumask(iosapic_lists[iosapic_index].node);
+
+ for_each_cpu_mask(numa_cpu, cpu_mask) {
+ if (!cpu_online(numa_cpu))
+ cpu_clear(numa_cpu, cpu_mask);
+ }
+
+ num_cpus = cpus_weight(cpu_mask);
+
+ if (!num_cpus)
+ goto skip_numa_setup;
+
+ /* Use vector assigment to distribute across cpus in node */
+ cpu_index = vector % num_cpus;
+
+ for (numa_cpu = first_cpu(cpu_mask) ; i < cpu_index ; i++)
+ numa_cpu = next_cpu(numa_cpu, cpu_mask);
+
+ if (numa_cpu != NR_CPUS)
+ return cpu_physical_id(numa_cpu);
+ }
+skip_numa_setup:
+#endif
+ /*
+ * Otherwise, round-robin interrupt vectors across all the
+ * processors. (It'd be nice if we could be smarter in the
+ * case of NUMA.)
+ */
+ do {
+ if (++cpu >= NR_CPUS)
+ cpu = 0;
+ } while (!cpu_online(cpu));
+
+ return cpu_physical_id(cpu);
+#else
+ return cpu_physical_id(smp_processor_id());
+#endif
+}
+
+/*
+ * ACPI can describe IOSAPIC interrupts via static tables and namespace
+ * methods. This provides an interface to register those interrupts and
+ * program the IOSAPIC RTE.
+ */
+int
+iosapic_register_intr (unsigned int gsi,
+ unsigned long polarity, unsigned long trigger)
+{
+ int vector;
+ unsigned int dest;
+ unsigned long flags;
+
+ /*
+ * If this GSI has already been registered (i.e., it's a
+ * shared interrupt, or we lost a race to register it),
+ * don't touch the RTE.
+ */
+ spin_lock_irqsave(&iosapic_lock, flags);
+ {
+ vector = gsi_to_vector(gsi);
+ if (vector > 0) {
+ iosapic_intr_info[vector].refcnt++;
+ spin_unlock_irqrestore(&iosapic_lock, flags);
+ return vector;
+ }
+
+ vector = assign_irq_vector(AUTO_ASSIGN);
+ dest = get_target_cpu(gsi, vector);
+ register_intr(gsi, vector, IOSAPIC_LOWEST_PRIORITY,
+ polarity, trigger);
+
+ set_rte(vector, dest, 1);
+ }
+ spin_unlock_irqrestore(&iosapic_lock, flags);
+
+ printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n",
+ gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"),
+ (polarity == IOSAPIC_POL_HIGH ? "high" : "low"),
+ cpu_logical_id(dest), dest, vector);
+
+ return vector;
+}
+
+#ifdef CONFIG_ACPI_DEALLOCATE_IRQ
+void
+iosapic_unregister_intr (unsigned int gsi)
+{
+ unsigned long flags;
+ int irq, vector;
+ irq_desc_t *idesc;
+ int rte_index;
+ unsigned long trigger, polarity;
+
+ /*
+ * If the irq associated with the gsi is not found,
+ * iosapic_unregister_intr() is unbalanced. We need to check
+ * this again after getting locks.
+ */
+ irq = gsi_to_irq(gsi);
+ if (irq < 0) {
+ printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi);
+ WARN_ON(1);
+ return;
+ }
+ vector = irq_to_vector(irq);
+
+ idesc = irq_descp(irq);
+ spin_lock_irqsave(&idesc->lock, flags);
+ spin_lock(&iosapic_lock);
+ {
+ rte_index = iosapic_intr_info[vector].rte_index;
+ if (rte_index < 0) {
+ spin_unlock(&iosapic_lock);
+ spin_unlock_irqrestore(&idesc->lock, flags);
+ printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi);
+ WARN_ON(1);
+ return;
+ }
+
+ if (--iosapic_intr_info[vector].refcnt > 0) {
+ spin_unlock(&iosapic_lock);
+ spin_unlock_irqrestore(&idesc->lock, flags);
+ return;
+ }
+
+ /*
+ * If interrupt handlers still exist on the irq
+ * associated with the gsi, don't unregister the
+ * interrupt.
+ */
+ if (idesc->action) {
+ iosapic_intr_info[vector].refcnt++;
+ spin_unlock(&iosapic_lock);
+ spin_unlock_irqrestore(&idesc->lock, flags);
+ printk(KERN_WARNING "Cannot unregister GSI. IRQ %u is still in use.\n", irq);
+ return;
+ }
+
+ /* Clear the interrupt controller descriptor. */
+ idesc->handler = &no_irq_type;
+
+ trigger = iosapic_intr_info[vector].trigger;
+ polarity = iosapic_intr_info[vector].polarity;
+
+ /* Clear the interrupt information. */
+ memset(&iosapic_intr_info[vector], 0, sizeof(struct iosapic_intr_info));
+ iosapic_intr_info[vector].rte_index = -1; /* mark as unused */
+ }
+ spin_unlock(&iosapic_lock);
+ spin_unlock_irqrestore(&idesc->lock, flags);
+
+ /* Free the interrupt vector */
+ free_irq_vector(vector);
+
+ printk(KERN_INFO "GSI %u (%s, %s) -> vector %d unregisterd.\n",
+ gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"),
+ (polarity == IOSAPIC_POL_HIGH ? "high" : "low"),
+ vector);
+}
+#endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
+
+/*
+ * ACPI calls this when it finds an entry for a platform interrupt.
+ * Note that the irq_base and IOSAPIC address must be set in iosapic_init().
+ */
+int __init
+iosapic_register_platform_intr (u32 int_type, unsigned int gsi,
+ int iosapic_vector, u16 eid, u16 id,
+ unsigned long polarity, unsigned long trigger)
+{
+ static const char * const name[] = {"unknown", "PMI", "INIT", "CPEI"};
+ unsigned char delivery;
+ int vector, mask = 0;
+ unsigned int dest = ((id << 8) | eid) & 0xffff;
+
+ switch (int_type) {
+ case ACPI_INTERRUPT_PMI:
+ vector = iosapic_vector;
+ /*
+ * since PMI vector is alloc'd by FW(ACPI) not by kernel,
+ * we need to make sure the vector is available
+ */
+ iosapic_reassign_vector(vector);
+ delivery = IOSAPIC_PMI;
+ break;
+ case ACPI_INTERRUPT_INIT:
+ vector = assign_irq_vector(AUTO_ASSIGN);
+ delivery = IOSAPIC_INIT;
+ break;
+ case ACPI_INTERRUPT_CPEI:
+ vector = IA64_CPE_VECTOR;
+ delivery = IOSAPIC_LOWEST_PRIORITY;
+ mask = 1;
+ break;
+ default:
+ printk(KERN_ERR "iosapic_register_platform_irq(): invalid int type 0x%x\n", int_type);
+ return -1;
+ }
+
+ register_intr(gsi, vector, delivery, polarity, trigger);
+
+ printk(KERN_INFO "PLATFORM int %s (0x%x): GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n",
+ int_type < ARRAY_SIZE(name) ? name[int_type] : "unknown",
+ int_type, gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"),
+ (polarity == IOSAPIC_POL_HIGH ? "high" : "low"),
+ cpu_logical_id(dest), dest, vector);
+
+ set_rte(vector, dest, mask);
+ return vector;
+}
+
+
+/*
+ * ACPI calls this when it finds an entry for a legacy ISA IRQ override.
+ * Note that the gsi_base and IOSAPIC address must be set in iosapic_init().
+ */
+void __init
+iosapic_override_isa_irq (unsigned int isa_irq, unsigned int gsi,
+ unsigned long polarity,
+ unsigned long trigger)
+{
+ int vector;
+ unsigned int dest = cpu_physical_id(smp_processor_id());
+
+ vector = isa_irq_to_vector(isa_irq);
+
+ register_intr(gsi, vector, IOSAPIC_LOWEST_PRIORITY, polarity, trigger);
+
+ DBG("ISA: IRQ %u -> GSI %u (%s,%s) -> CPU %d (0x%04x) vector %d\n",
+ isa_irq, gsi, trigger == IOSAPIC_EDGE ? "edge" : "level",
+ polarity == IOSAPIC_POL_HIGH ? "high" : "low",
+ cpu_logical_id(dest), dest, vector);
+
+ set_rte(vector, dest, 1);
+}
+
+void __init
+iosapic_system_init (int system_pcat_compat)
+{
+ int vector;
+
+ for (vector = 0; vector < IA64_NUM_VECTORS; ++vector)
+ iosapic_intr_info[vector].rte_index = -1; /* mark as unused */
+
+ pcat_compat = system_pcat_compat;
+ if (pcat_compat) {
+ /*
+ * Disable the compatibility mode interrupts (8259 style), needs IN/OUT support
+ * enabled.
+ */
+ printk(KERN_INFO "%s: Disabling PC-AT compatible 8259 interrupts\n", __FUNCTION__);
+ outb(0xff, 0xA1);
+ outb(0xff, 0x21);
+ }
+}
+
+void __init
+iosapic_init (unsigned long phys_addr, unsigned int gsi_base)
+{
+ int num_rte;
+ unsigned int isa_irq, ver;
+ char __iomem *addr;
+
+ addr = ioremap(phys_addr, 0);
+ ver = iosapic_version(addr);
+
+ /*
+ * The MAX_REDIR register holds the highest input pin
+ * number (starting from 0).
+ * We add 1 so that we can use it for number of pins (= RTEs)
+ */
+ num_rte = ((ver >> 16) & 0xff) + 1;
+
+ iosapic_lists[num_iosapic].addr = addr;
+ iosapic_lists[num_iosapic].gsi_base = gsi_base;
+ iosapic_lists[num_iosapic].num_rte = num_rte;
+#ifdef CONFIG_NUMA
+ iosapic_lists[num_iosapic].node = MAX_NUMNODES;
+#endif
+ num_iosapic++;
+
+ if ((gsi_base == 0) && pcat_compat) {
+ /*
+ * Map the legacy ISA devices into the IOSAPIC data. Some of these may
+ * get reprogrammed later on with data from the ACPI Interrupt Source
+ * Override table.
+ */
+ for (isa_irq = 0; isa_irq < 16; ++isa_irq)
+ iosapic_override_isa_irq(isa_irq, isa_irq, IOSAPIC_POL_HIGH, IOSAPIC_EDGE);
+ }
+}
+
+#ifdef CONFIG_NUMA
+void __init
+map_iosapic_to_node(unsigned int gsi_base, int node)
+{
+ int index;
+
+ index = find_iosapic(gsi_base);
+ if (index < 0) {
+ printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n",
+ __FUNCTION__, gsi_base);
+ return;
+ }
+ iosapic_lists[index].node = node;
+ return;
+}
+#endif
diff --git a/arch/ia64/kernel/irq.c b/arch/ia64/kernel/irq.c
new file mode 100644
index 0000000..28f2aad
--- /dev/null
+++ b/arch/ia64/kernel/irq.c
@@ -0,0 +1,238 @@
+/*
+ * linux/arch/ia64/kernel/irq.c
+ *
+ * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
+ *
+ * This file contains the code used by various IRQ handling routines:
+ * asking for different IRQ's should be done through these routines
+ * instead of just grabbing them. Thus setups with different IRQ numbers
+ * shouldn't result in any weird surprises, and installing new handlers
+ * should be easier.
+ *
+ * Copyright (C) Ashok Raj<ashok.raj@intel.com>, Intel Corporation 2004
+ *
+ * 4/14/2004: Added code to handle cpu migration and do safe irq
+ * migration without lossing interrupts for iosapic
+ * architecture.
+ */
+
+#include <asm/delay.h>
+#include <asm/uaccess.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/interrupt.h>
+#include <linux/kernel_stat.h>
+
+/*
+ * 'what should we do if we get a hw irq event on an illegal vector'.
+ * each architecture has to answer this themselves.
+ */
+void ack_bad_irq(unsigned int irq)
+{
+ printk(KERN_ERR "Unexpected irq vector 0x%x on CPU %u!\n", irq, smp_processor_id());
+}
+
+#ifdef CONFIG_IA64_GENERIC
+unsigned int __ia64_local_vector_to_irq (ia64_vector vec)
+{
+ return (unsigned int) vec;
+}
+#endif
+
+/*
+ * Interrupt statistics:
+ */
+
+atomic_t irq_err_count;
+
+/*
+ * /proc/interrupts printing:
+ */
+
+int show_interrupts(struct seq_file *p, void *v)
+{
+ int i = *(loff_t *) v, j;
+ struct irqaction * action;
+ unsigned long flags;
+
+ if (i == 0) {
+ seq_printf(p, " ");
+ for (j=0; j<NR_CPUS; j++)
+ if (cpu_online(j))
+ seq_printf(p, "CPU%d ",j);
+ seq_putc(p, '\n');
+ }
+
+ if (i < NR_IRQS) {
+ spin_lock_irqsave(&irq_desc[i].lock, flags);
+ action = irq_desc[i].action;
+ if (!action)
+ goto skip;
+ seq_printf(p, "%3d: ",i);
+#ifndef CONFIG_SMP
+ seq_printf(p, "%10u ", kstat_irqs(i));
+#else
+ for (j = 0; j < NR_CPUS; j++)
+ if (cpu_online(j))
+ seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
+#endif
+ seq_printf(p, " %14s", irq_desc[i].handler->typename);
+ seq_printf(p, " %s", action->name);
+
+ for (action=action->next; action; action = action->next)
+ seq_printf(p, ", %s", action->name);
+
+ seq_putc(p, '\n');
+skip:
+ spin_unlock_irqrestore(&irq_desc[i].lock, flags);
+ } else if (i == NR_IRQS)
+ seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
+ return 0;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * This is updated when the user sets irq affinity via /proc
+ */
+static cpumask_t __cacheline_aligned pending_irq_cpumask[NR_IRQS];
+static unsigned long pending_irq_redir[BITS_TO_LONGS(NR_IRQS)];
+
+static char irq_redir [NR_IRQS]; // = { [0 ... NR_IRQS-1] = 1 };
+
+/*
+ * Arch specific routine for deferred write to iosapic rte to reprogram
+ * intr destination.
+ */
+void proc_set_irq_affinity(unsigned int irq, cpumask_t mask_val)
+{
+ pending_irq_cpumask[irq] = mask_val;
+}
+
+void set_irq_affinity_info (unsigned int irq, int hwid, int redir)
+{
+ cpumask_t mask = CPU_MASK_NONE;
+
+ cpu_set(cpu_logical_id(hwid), mask);
+
+ if (irq < NR_IRQS) {
+ irq_affinity[irq] = mask;
+ irq_redir[irq] = (char) (redir & 0xff);
+ }
+}
+
+
+void move_irq(int irq)
+{
+ /* note - we hold desc->lock */
+ cpumask_t tmp;
+ irq_desc_t *desc = irq_descp(irq);
+ int redir = test_bit(irq, pending_irq_redir);
+
+ if (unlikely(!desc->handler->set_affinity))
+ return;
+
+ if (!cpus_empty(pending_irq_cpumask[irq])) {
+ cpus_and(tmp, pending_irq_cpumask[irq], cpu_online_map);
+ if (unlikely(!cpus_empty(tmp))) {
+ desc->handler->set_affinity(irq | (redir ? IA64_IRQ_REDIRECTED : 0),
+ pending_irq_cpumask[irq]);
+ }
+ cpus_clear(pending_irq_cpumask[irq]);
+ }
+}
+
+
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_HOTPLUG_CPU
+unsigned int vectors_in_migration[NR_IRQS];
+
+/*
+ * Since cpu_online_map is already updated, we just need to check for
+ * affinity that has zeros
+ */
+static void migrate_irqs(void)
+{
+ cpumask_t mask;
+ irq_desc_t *desc;
+ int irq, new_cpu;
+
+ for (irq=0; irq < NR_IRQS; irq++) {
+ desc = irq_descp(irq);
+
+ /*
+ * No handling for now.
+ * TBD: Implement a disable function so we can now
+ * tell CPU not to respond to these local intr sources.
+ * such as ITV,CPEI,MCA etc.
+ */
+ if (desc->status == IRQ_PER_CPU)
+ continue;
+
+ cpus_and(mask, irq_affinity[irq], cpu_online_map);
+ if (any_online_cpu(mask) == NR_CPUS) {
+ /*
+ * Save it for phase 2 processing
+ */
+ vectors_in_migration[irq] = irq;
+
+ new_cpu = any_online_cpu(cpu_online_map);
+ mask = cpumask_of_cpu(new_cpu);
+
+ /*
+ * Al three are essential, currently WARN_ON.. maybe panic?
+ */
+ if (desc->handler && desc->handler->disable &&
+ desc->handler->enable && desc->handler->set_affinity) {
+ desc->handler->disable(irq);
+ desc->handler->set_affinity(irq, mask);
+ desc->handler->enable(irq);
+ } else {
+ WARN_ON((!(desc->handler) || !(desc->handler->disable) ||
+ !(desc->handler->enable) ||
+ !(desc->handler->set_affinity)));
+ }
+ }
+ }
+}
+
+void fixup_irqs(void)
+{
+ unsigned int irq;
+ extern void ia64_process_pending_intr(void);
+
+ ia64_set_itv(1<<16);
+ /*
+ * Phase 1: Locate irq's bound to this cpu and
+ * relocate them for cpu removal.
+ */
+ migrate_irqs();
+
+ /*
+ * Phase 2: Perform interrupt processing for all entries reported in
+ * local APIC.
+ */
+ ia64_process_pending_intr();
+
+ /*
+ * Phase 3: Now handle any interrupts not captured in local APIC.
+ * This is to account for cases that device interrupted during the time the
+ * rte was being disabled and re-programmed.
+ */
+ for (irq=0; irq < NR_IRQS; irq++) {
+ if (vectors_in_migration[irq]) {
+ vectors_in_migration[irq]=0;
+ __do_IRQ(irq, NULL);
+ }
+ }
+
+ /*
+ * Now let processor die. We do irq disable and max_xtp() to
+ * ensure there is no more interrupts routed to this processor.
+ * But the local timer interrupt can have 1 pending which we
+ * take care in timer_interrupt().
+ */
+ max_xtp();
+ local_irq_disable();
+}
+#endif
diff --git a/arch/ia64/kernel/irq_ia64.c b/arch/ia64/kernel/irq_ia64.c
new file mode 100644
index 0000000..5ba06eb
--- /dev/null
+++ b/arch/ia64/kernel/irq_ia64.c
@@ -0,0 +1,278 @@
+/*
+ * linux/arch/ia64/kernel/irq.c
+ *
+ * Copyright (C) 1998-2001 Hewlett-Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 6/10/99: Updated to bring in sync with x86 version to facilitate
+ * support for SMP and different interrupt controllers.
+ *
+ * 09/15/00 Goutham Rao <goutham.rao@intel.com> Implemented pci_irq_to_vector
+ * PCI to vector allocation routine.
+ * 04/14/2004 Ashok Raj <ashok.raj@intel.com>
+ * Added CPU Hotplug handling for IPF.
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+
+#include <linux/jiffies.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/ioport.h>
+#include <linux/kernel_stat.h>
+#include <linux/slab.h>
+#include <linux/ptrace.h>
+#include <linux/random.h> /* for rand_initialize_irq() */
+#include <linux/signal.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/threads.h>
+#include <linux/bitops.h>
+
+#include <asm/delay.h>
+#include <asm/intrinsics.h>
+#include <asm/io.h>
+#include <asm/hw_irq.h>
+#include <asm/machvec.h>
+#include <asm/pgtable.h>
+#include <asm/system.h>
+
+#ifdef CONFIG_PERFMON
+# include <asm/perfmon.h>
+#endif
+
+#define IRQ_DEBUG 0
+
+/* default base addr of IPI table */
+void __iomem *ipi_base_addr = ((void __iomem *)
+ (__IA64_UNCACHED_OFFSET | IA64_IPI_DEFAULT_BASE_ADDR));
+
+/*
+ * Legacy IRQ to IA-64 vector translation table.
+ */
+__u8 isa_irq_to_vector_map[16] = {
+ /* 8259 IRQ translation, first 16 entries */
+ 0x2f, 0x20, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29,
+ 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21
+};
+EXPORT_SYMBOL(isa_irq_to_vector_map);
+
+static unsigned long ia64_vector_mask[BITS_TO_LONGS(IA64_NUM_DEVICE_VECTORS)];
+
+int
+assign_irq_vector (int irq)
+{
+ int pos, vector;
+ again:
+ pos = find_first_zero_bit(ia64_vector_mask, IA64_NUM_DEVICE_VECTORS);
+ vector = IA64_FIRST_DEVICE_VECTOR + pos;
+ if (vector > IA64_LAST_DEVICE_VECTOR)
+ /* XXX could look for sharable vectors instead of panic'ing... */
+ panic("assign_irq_vector: out of interrupt vectors!");
+ if (test_and_set_bit(pos, ia64_vector_mask))
+ goto again;
+ return vector;
+}
+
+void
+free_irq_vector (int vector)
+{
+ int pos;
+
+ if (vector < IA64_FIRST_DEVICE_VECTOR || vector > IA64_LAST_DEVICE_VECTOR)
+ return;
+
+ pos = vector - IA64_FIRST_DEVICE_VECTOR;
+ if (!test_and_clear_bit(pos, ia64_vector_mask))
+ printk(KERN_WARNING "%s: double free!\n", __FUNCTION__);
+}
+
+#ifdef CONFIG_SMP
+# define IS_RESCHEDULE(vec) (vec == IA64_IPI_RESCHEDULE)
+#else
+# define IS_RESCHEDULE(vec) (0)
+#endif
+/*
+ * That's where the IVT branches when we get an external
+ * interrupt. This branches to the correct hardware IRQ handler via
+ * function ptr.
+ */
+void
+ia64_handle_irq (ia64_vector vector, struct pt_regs *regs)
+{
+ unsigned long saved_tpr;
+
+#if IRQ_DEBUG
+ {
+ unsigned long bsp, sp;
+
+ /*
+ * Note: if the interrupt happened while executing in
+ * the context switch routine (ia64_switch_to), we may
+ * get a spurious stack overflow here. This is
+ * because the register and the memory stack are not
+ * switched atomically.
+ */
+ bsp = ia64_getreg(_IA64_REG_AR_BSP);
+ sp = ia64_getreg(_IA64_REG_SP);
+
+ if ((sp - bsp) < 1024) {
+ static unsigned char count;
+ static long last_time;
+
+ if (jiffies - last_time > 5*HZ)
+ count = 0;
+ if (++count < 5) {
+ last_time = jiffies;
+ printk("ia64_handle_irq: DANGER: less than "
+ "1KB of free stack space!!\n"
+ "(bsp=0x%lx, sp=%lx)\n", bsp, sp);
+ }
+ }
+ }
+#endif /* IRQ_DEBUG */
+
+ /*
+ * Always set TPR to limit maximum interrupt nesting depth to
+ * 16 (without this, it would be ~240, which could easily lead
+ * to kernel stack overflows).
+ */
+ irq_enter();
+ saved_tpr = ia64_getreg(_IA64_REG_CR_TPR);
+ ia64_srlz_d();
+ while (vector != IA64_SPURIOUS_INT_VECTOR) {
+ if (!IS_RESCHEDULE(vector)) {
+ ia64_setreg(_IA64_REG_CR_TPR, vector);
+ ia64_srlz_d();
+
+ __do_IRQ(local_vector_to_irq(vector), regs);
+
+ /*
+ * Disable interrupts and send EOI:
+ */
+ local_irq_disable();
+ ia64_setreg(_IA64_REG_CR_TPR, saved_tpr);
+ }
+ ia64_eoi();
+ vector = ia64_get_ivr();
+ }
+ /*
+ * This must be done *after* the ia64_eoi(). For example, the keyboard softirq
+ * handler needs to be able to wait for further keyboard interrupts, which can't
+ * come through until ia64_eoi() has been done.
+ */
+ irq_exit();
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * This function emulates a interrupt processing when a cpu is about to be
+ * brought down.
+ */
+void ia64_process_pending_intr(void)
+{
+ ia64_vector vector;
+ unsigned long saved_tpr;
+ extern unsigned int vectors_in_migration[NR_IRQS];
+
+ vector = ia64_get_ivr();
+
+ irq_enter();
+ saved_tpr = ia64_getreg(_IA64_REG_CR_TPR);
+ ia64_srlz_d();
+
+ /*
+ * Perform normal interrupt style processing
+ */
+ while (vector != IA64_SPURIOUS_INT_VECTOR) {
+ if (!IS_RESCHEDULE(vector)) {
+ ia64_setreg(_IA64_REG_CR_TPR, vector);
+ ia64_srlz_d();
+
+ /*
+ * Now try calling normal ia64_handle_irq as it would have got called
+ * from a real intr handler. Try passing null for pt_regs, hopefully
+ * it will work. I hope it works!.
+ * Probably could shared code.
+ */
+ vectors_in_migration[local_vector_to_irq(vector)]=0;
+ __do_IRQ(local_vector_to_irq(vector), NULL);
+
+ /*
+ * Disable interrupts and send EOI
+ */
+ local_irq_disable();
+ ia64_setreg(_IA64_REG_CR_TPR, saved_tpr);
+ }
+ ia64_eoi();
+ vector = ia64_get_ivr();
+ }
+ irq_exit();
+}
+#endif
+
+
+#ifdef CONFIG_SMP
+extern irqreturn_t handle_IPI (int irq, void *dev_id, struct pt_regs *regs);
+
+static struct irqaction ipi_irqaction = {
+ .handler = handle_IPI,
+ .flags = SA_INTERRUPT,
+ .name = "IPI"
+};
+#endif
+
+void
+register_percpu_irq (ia64_vector vec, struct irqaction *action)
+{
+ irq_desc_t *desc;
+ unsigned int irq;
+
+ for (irq = 0; irq < NR_IRQS; ++irq)
+ if (irq_to_vector(irq) == vec) {
+ desc = irq_descp(irq);
+ desc->status |= IRQ_PER_CPU;
+ desc->handler = &irq_type_ia64_lsapic;
+ if (action)
+ setup_irq(irq, action);
+ }
+}
+
+void __init
+init_IRQ (void)
+{
+ register_percpu_irq(IA64_SPURIOUS_INT_VECTOR, NULL);
+#ifdef CONFIG_SMP
+ register_percpu_irq(IA64_IPI_VECTOR, &ipi_irqaction);
+#endif
+#ifdef CONFIG_PERFMON
+ pfm_init_percpu();
+#endif
+ platform_irq_init();
+}
+
+void
+ia64_send_ipi (int cpu, int vector, int delivery_mode, int redirect)
+{
+ void __iomem *ipi_addr;
+ unsigned long ipi_data;
+ unsigned long phys_cpu_id;
+
+#ifdef CONFIG_SMP
+ phys_cpu_id = cpu_physical_id(cpu);
+#else
+ phys_cpu_id = (ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff;
+#endif
+
+ /*
+ * cpu number is in 8bit ID and 8bit EID
+ */
+
+ ipi_data = (delivery_mode << 8) | (vector & 0xff);
+ ipi_addr = ipi_base_addr + ((phys_cpu_id << 4) | ((redirect & 1) << 3));
+
+ writeq(ipi_data, ipi_addr);
+}
diff --git a/arch/ia64/kernel/irq_lsapic.c b/arch/ia64/kernel/irq_lsapic.c
new file mode 100644
index 0000000..ea14e6a
--- /dev/null
+++ b/arch/ia64/kernel/irq_lsapic.c
@@ -0,0 +1,37 @@
+/*
+ * LSAPIC Interrupt Controller
+ *
+ * This takes care of interrupts that are generated by the CPU's
+ * internal Streamlined Advanced Programmable Interrupt Controller
+ * (LSAPIC), such as the ITC and IPI interrupts.
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 2000 Hewlett-Packard Co
+ * Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+
+#include <linux/sched.h>
+#include <linux/irq.h>
+
+static unsigned int
+lsapic_noop_startup (unsigned int irq)
+{
+ return 0;
+}
+
+static void
+lsapic_noop (unsigned int irq)
+{
+ /* nuthing to do... */
+}
+
+struct hw_interrupt_type irq_type_ia64_lsapic = {
+ .typename = "LSAPIC",
+ .startup = lsapic_noop_startup,
+ .shutdown = lsapic_noop,
+ .enable = lsapic_noop,
+ .disable = lsapic_noop,
+ .ack = lsapic_noop,
+ .end = lsapic_noop
+};
diff --git a/arch/ia64/kernel/ivt.S b/arch/ia64/kernel/ivt.S
new file mode 100644
index 0000000..d9c05d5
--- /dev/null
+++ b/arch/ia64/kernel/ivt.S
@@ -0,0 +1,1619 @@
+/*
+ * arch/ia64/kernel/ivt.S
+ *
+ * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * David Mosberger <davidm@hpl.hp.com>
+ * Copyright (C) 2000, 2002-2003 Intel Co
+ * Asit Mallick <asit.k.mallick@intel.com>
+ * Suresh Siddha <suresh.b.siddha@intel.com>
+ * Kenneth Chen <kenneth.w.chen@intel.com>
+ * Fenghua Yu <fenghua.yu@intel.com>
+ *
+ * 00/08/23 Asit Mallick <asit.k.mallick@intel.com> TLB handling for SMP
+ * 00/12/20 David Mosberger-Tang <davidm@hpl.hp.com> DTLB/ITLB handler now uses virtual PT.
+ */
+/*
+ * This file defines the interruption vector table used by the CPU.
+ * It does not include one entry per possible cause of interruption.
+ *
+ * The first 20 entries of the table contain 64 bundles each while the
+ * remaining 48 entries contain only 16 bundles each.
+ *
+ * The 64 bundles are used to allow inlining the whole handler for critical
+ * interruptions like TLB misses.
+ *
+ * For each entry, the comment is as follows:
+ *
+ * // 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51)
+ * entry offset ----/ / / / /
+ * entry number ---------/ / / /
+ * size of the entry -------------/ / /
+ * vector name -------------------------------------/ /
+ * interruptions triggering this vector ----------------------/
+ *
+ * The table is 32KB in size and must be aligned on 32KB boundary.
+ * (The CPU ignores the 15 lower bits of the address)
+ *
+ * Table is based upon EAS2.6 (Oct 1999)
+ */
+
+#include <linux/config.h>
+
+#include <asm/asmmacro.h>
+#include <asm/break.h>
+#include <asm/ia32.h>
+#include <asm/kregs.h>
+#include <asm/offsets.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+#include <asm/thread_info.h>
+#include <asm/unistd.h>
+#include <asm/errno.h>
+
+#if 1
+# define PSR_DEFAULT_BITS psr.ac
+#else
+# define PSR_DEFAULT_BITS 0
+#endif
+
+#if 0
+ /*
+ * This lets you track the last eight faults that occurred on the CPU. Make sure ar.k2 isn't
+ * needed for something else before enabling this...
+ */
+# define DBG_FAULT(i) mov r16=ar.k2;; shl r16=r16,8;; add r16=(i),r16;;mov ar.k2=r16
+#else
+# define DBG_FAULT(i)
+#endif
+
+#define MINSTATE_VIRT /* needed by minstate.h */
+#include "minstate.h"
+
+#define FAULT(n) \
+ mov r31=pr; \
+ mov r19=n;; /* prepare to save predicates */ \
+ br.sptk.many dispatch_to_fault_handler
+
+ .section .text.ivt,"ax"
+
+ .align 32768 // align on 32KB boundary
+ .global ia64_ivt
+ia64_ivt:
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x0000 Entry 0 (size 64 bundles) VHPT Translation (8,20,47)
+ENTRY(vhpt_miss)
+ DBG_FAULT(0)
+ /*
+ * The VHPT vector is invoked when the TLB entry for the virtual page table
+ * is missing. This happens only as a result of a previous
+ * (the "original") TLB miss, which may either be caused by an instruction
+ * fetch or a data access (or non-access).
+ *
+ * What we do here is normal TLB miss handing for the _original_ miss, followed
+ * by inserting the TLB entry for the virtual page table page that the VHPT
+ * walker was attempting to access. The latter gets inserted as long
+ * as both L1 and L2 have valid mappings for the faulting address.
+ * The TLB entry for the original miss gets inserted only if
+ * the L3 entry indicates that the page is present.
+ *
+ * do_page_fault gets invoked in the following cases:
+ * - the faulting virtual address uses unimplemented address bits
+ * - the faulting virtual address has no L1, L2, or L3 mapping
+ */
+ mov r16=cr.ifa // get address that caused the TLB miss
+#ifdef CONFIG_HUGETLB_PAGE
+ movl r18=PAGE_SHIFT
+ mov r25=cr.itir
+#endif
+ ;;
+ rsm psr.dt // use physical addressing for data
+ mov r31=pr // save the predicate registers
+ mov r19=IA64_KR(PT_BASE) // get page table base address
+ shl r21=r16,3 // shift bit 60 into sign bit
+ shr.u r17=r16,61 // get the region number into r17
+ ;;
+ shr r22=r21,3
+#ifdef CONFIG_HUGETLB_PAGE
+ extr.u r26=r25,2,6
+ ;;
+ cmp.ne p8,p0=r18,r26
+ sub r27=r26,r18
+ ;;
+(p8) dep r25=r18,r25,2,6
+(p8) shr r22=r22,r27
+#endif
+ ;;
+ cmp.eq p6,p7=5,r17 // is IFA pointing into to region 5?
+ shr.u r18=r22,PGDIR_SHIFT // get bits 33-63 of the faulting address
+ ;;
+(p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place
+
+ srlz.d
+ LOAD_PHYSICAL(p6, r19, swapper_pg_dir) // region 5 is rooted at swapper_pg_dir
+
+ .pred.rel "mutex", p6, p7
+(p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT
+(p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3
+ ;;
+(p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=PTA + IFA(33,42)*8
+(p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=PTA + (((IFA(61,63) << 7) | IFA(33,39))*8)
+ cmp.eq p7,p6=0,r21 // unused address bits all zeroes?
+ shr.u r18=r22,PMD_SHIFT // shift L2 index into position
+ ;;
+ ld8 r17=[r17] // fetch the L1 entry (may be 0)
+ ;;
+(p7) cmp.eq p6,p7=r17,r0 // was L1 entry NULL?
+ dep r17=r18,r17,3,(PAGE_SHIFT-3) // compute address of L2 page table entry
+ ;;
+(p7) ld8 r20=[r17] // fetch the L2 entry (may be 0)
+ shr.u r19=r22,PAGE_SHIFT // shift L3 index into position
+ ;;
+(p7) cmp.eq.or.andcm p6,p7=r20,r0 // was L2 entry NULL?
+ dep r21=r19,r20,3,(PAGE_SHIFT-3) // compute address of L3 page table entry
+ ;;
+(p7) ld8 r18=[r21] // read the L3 PTE
+ mov r19=cr.isr // cr.isr bit 0 tells us if this is an insn miss
+ ;;
+(p7) tbit.z p6,p7=r18,_PAGE_P_BIT // page present bit cleared?
+ mov r22=cr.iha // get the VHPT address that caused the TLB miss
+ ;; // avoid RAW on p7
+(p7) tbit.nz.unc p10,p11=r19,32 // is it an instruction TLB miss?
+ dep r23=0,r20,0,PAGE_SHIFT // clear low bits to get page address
+ ;;
+(p10) itc.i r18 // insert the instruction TLB entry
+(p11) itc.d r18 // insert the data TLB entry
+(p6) br.cond.spnt.many page_fault // handle bad address/page not present (page fault)
+ mov cr.ifa=r22
+
+#ifdef CONFIG_HUGETLB_PAGE
+(p8) mov cr.itir=r25 // change to default page-size for VHPT
+#endif
+
+ /*
+ * Now compute and insert the TLB entry for the virtual page table. We never
+ * execute in a page table page so there is no need to set the exception deferral
+ * bit.
+ */
+ adds r24=__DIRTY_BITS_NO_ED|_PAGE_PL_0|_PAGE_AR_RW,r23
+ ;;
+(p7) itc.d r24
+ ;;
+#ifdef CONFIG_SMP
+ /*
+ * Tell the assemblers dependency-violation checker that the above "itc" instructions
+ * cannot possibly affect the following loads:
+ */
+ dv_serialize_data
+
+ /*
+ * Re-check L2 and L3 pagetable. If they changed, we may have received a ptc.g
+ * between reading the pagetable and the "itc". If so, flush the entry we
+ * inserted and retry.
+ */
+ ld8 r25=[r21] // read L3 PTE again
+ ld8 r26=[r17] // read L2 entry again
+ ;;
+ cmp.ne p6,p7=r26,r20 // did L2 entry change
+ mov r27=PAGE_SHIFT<<2
+ ;;
+(p6) ptc.l r22,r27 // purge PTE page translation
+(p7) cmp.ne.or.andcm p6,p7=r25,r18 // did L3 PTE change
+ ;;
+(p6) ptc.l r16,r27 // purge translation
+#endif
+
+ mov pr=r31,-1 // restore predicate registers
+ rfi
+END(vhpt_miss)
+
+ .org ia64_ivt+0x400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x0400 Entry 1 (size 64 bundles) ITLB (21)
+ENTRY(itlb_miss)
+ DBG_FAULT(1)
+ /*
+ * The ITLB handler accesses the L3 PTE via the virtually mapped linear
+ * page table. If a nested TLB miss occurs, we switch into physical
+ * mode, walk the page table, and then re-execute the L3 PTE read
+ * and go on normally after that.
+ */
+ mov r16=cr.ifa // get virtual address
+ mov r29=b0 // save b0
+ mov r31=pr // save predicates
+.itlb_fault:
+ mov r17=cr.iha // get virtual address of L3 PTE
+ movl r30=1f // load nested fault continuation point
+ ;;
+1: ld8 r18=[r17] // read L3 PTE
+ ;;
+ mov b0=r29
+ tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared?
+(p6) br.cond.spnt page_fault
+ ;;
+ itc.i r18
+ ;;
+#ifdef CONFIG_SMP
+ /*
+ * Tell the assemblers dependency-violation checker that the above "itc" instructions
+ * cannot possibly affect the following loads:
+ */
+ dv_serialize_data
+
+ ld8 r19=[r17] // read L3 PTE again and see if same
+ mov r20=PAGE_SHIFT<<2 // setup page size for purge
+ ;;
+ cmp.ne p7,p0=r18,r19
+ ;;
+(p7) ptc.l r16,r20
+#endif
+ mov pr=r31,-1
+ rfi
+END(itlb_miss)
+
+ .org ia64_ivt+0x0800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x0800 Entry 2 (size 64 bundles) DTLB (9,48)
+ENTRY(dtlb_miss)
+ DBG_FAULT(2)
+ /*
+ * The DTLB handler accesses the L3 PTE via the virtually mapped linear
+ * page table. If a nested TLB miss occurs, we switch into physical
+ * mode, walk the page table, and then re-execute the L3 PTE read
+ * and go on normally after that.
+ */
+ mov r16=cr.ifa // get virtual address
+ mov r29=b0 // save b0
+ mov r31=pr // save predicates
+dtlb_fault:
+ mov r17=cr.iha // get virtual address of L3 PTE
+ movl r30=1f // load nested fault continuation point
+ ;;
+1: ld8 r18=[r17] // read L3 PTE
+ ;;
+ mov b0=r29
+ tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared?
+(p6) br.cond.spnt page_fault
+ ;;
+ itc.d r18
+ ;;
+#ifdef CONFIG_SMP
+ /*
+ * Tell the assemblers dependency-violation checker that the above "itc" instructions
+ * cannot possibly affect the following loads:
+ */
+ dv_serialize_data
+
+ ld8 r19=[r17] // read L3 PTE again and see if same
+ mov r20=PAGE_SHIFT<<2 // setup page size for purge
+ ;;
+ cmp.ne p7,p0=r18,r19
+ ;;
+(p7) ptc.l r16,r20
+#endif
+ mov pr=r31,-1
+ rfi
+END(dtlb_miss)
+
+ .org ia64_ivt+0x0c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x0c00 Entry 3 (size 64 bundles) Alt ITLB (19)
+ENTRY(alt_itlb_miss)
+ DBG_FAULT(3)
+ mov r16=cr.ifa // get address that caused the TLB miss
+ movl r17=PAGE_KERNEL
+ mov r21=cr.ipsr
+ movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff)
+ mov r31=pr
+ ;;
+#ifdef CONFIG_DISABLE_VHPT
+ shr.u r22=r16,61 // get the region number into r21
+ ;;
+ cmp.gt p8,p0=6,r22 // user mode
+ ;;
+(p8) thash r17=r16
+ ;;
+(p8) mov cr.iha=r17
+(p8) mov r29=b0 // save b0
+(p8) br.cond.dptk .itlb_fault
+#endif
+ extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl
+ and r19=r19,r16 // clear ed, reserved bits, and PTE control bits
+ shr.u r18=r16,57 // move address bit 61 to bit 4
+ ;;
+ andcm r18=0x10,r18 // bit 4=~address-bit(61)
+ cmp.ne p8,p0=r0,r23 // psr.cpl != 0?
+ or r19=r17,r19 // insert PTE control bits into r19
+ ;;
+ or r19=r19,r18 // set bit 4 (uncached) if the access was to region 6
+(p8) br.cond.spnt page_fault
+ ;;
+ itc.i r19 // insert the TLB entry
+ mov pr=r31,-1
+ rfi
+END(alt_itlb_miss)
+
+ .org ia64_ivt+0x1000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x1000 Entry 4 (size 64 bundles) Alt DTLB (7,46)
+ENTRY(alt_dtlb_miss)
+ DBG_FAULT(4)
+ mov r16=cr.ifa // get address that caused the TLB miss
+ movl r17=PAGE_KERNEL
+ mov r20=cr.isr
+ movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff)
+ mov r21=cr.ipsr
+ mov r31=pr
+ ;;
+#ifdef CONFIG_DISABLE_VHPT
+ shr.u r22=r16,61 // get the region number into r21
+ ;;
+ cmp.gt p8,p0=6,r22 // access to region 0-5
+ ;;
+(p8) thash r17=r16
+ ;;
+(p8) mov cr.iha=r17
+(p8) mov r29=b0 // save b0
+(p8) br.cond.dptk dtlb_fault
+#endif
+ extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl
+ and r22=IA64_ISR_CODE_MASK,r20 // get the isr.code field
+ tbit.nz p6,p7=r20,IA64_ISR_SP_BIT // is speculation bit on?
+ shr.u r18=r16,57 // move address bit 61 to bit 4
+ and r19=r19,r16 // clear ed, reserved bits, and PTE control bits
+ tbit.nz p9,p0=r20,IA64_ISR_NA_BIT // is non-access bit on?
+ ;;
+ andcm r18=0x10,r18 // bit 4=~address-bit(61)
+ cmp.ne p8,p0=r0,r23
+(p9) cmp.eq.or.andcm p6,p7=IA64_ISR_CODE_LFETCH,r22 // check isr.code field
+(p8) br.cond.spnt page_fault
+
+ dep r21=-1,r21,IA64_PSR_ED_BIT,1
+ or r19=r19,r17 // insert PTE control bits into r19
+ ;;
+ or r19=r19,r18 // set bit 4 (uncached) if the access was to region 6
+(p6) mov cr.ipsr=r21
+ ;;
+(p7) itc.d r19 // insert the TLB entry
+ mov pr=r31,-1
+ rfi
+END(alt_dtlb_miss)
+
+ .org ia64_ivt+0x1400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x1400 Entry 5 (size 64 bundles) Data nested TLB (6,45)
+ENTRY(nested_dtlb_miss)
+ /*
+ * In the absence of kernel bugs, we get here when the virtually mapped linear
+ * page table is accessed non-speculatively (e.g., in the Dirty-bit, Instruction
+ * Access-bit, or Data Access-bit faults). If the DTLB entry for the virtual page
+ * table is missing, a nested TLB miss fault is triggered and control is
+ * transferred to this point. When this happens, we lookup the pte for the
+ * faulting address by walking the page table in physical mode and return to the
+ * continuation point passed in register r30 (or call page_fault if the address is
+ * not mapped).
+ *
+ * Input: r16: faulting address
+ * r29: saved b0
+ * r30: continuation address
+ * r31: saved pr
+ *
+ * Output: r17: physical address of L3 PTE of faulting address
+ * r29: saved b0
+ * r30: continuation address
+ * r31: saved pr
+ *
+ * Clobbered: b0, r18, r19, r21, psr.dt (cleared)
+ */
+ rsm psr.dt // switch to using physical data addressing
+ mov r19=IA64_KR(PT_BASE) // get the page table base address
+ shl r21=r16,3 // shift bit 60 into sign bit
+ ;;
+ shr.u r17=r16,61 // get the region number into r17
+ ;;
+ cmp.eq p6,p7=5,r17 // is faulting address in region 5?
+ shr.u r18=r16,PGDIR_SHIFT // get bits 33-63 of faulting address
+ ;;
+(p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place
+
+ srlz.d
+ LOAD_PHYSICAL(p6, r19, swapper_pg_dir) // region 5 is rooted at swapper_pg_dir
+
+ .pred.rel "mutex", p6, p7
+(p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT
+(p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3
+ ;;
+(p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=PTA + IFA(33,42)*8
+(p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=PTA + (((IFA(61,63) << 7) | IFA(33,39))*8)
+ cmp.eq p7,p6=0,r21 // unused address bits all zeroes?
+ shr.u r18=r16,PMD_SHIFT // shift L2 index into position
+ ;;
+ ld8 r17=[r17] // fetch the L1 entry (may be 0)
+ ;;
+(p7) cmp.eq p6,p7=r17,r0 // was L1 entry NULL?
+ dep r17=r18,r17,3,(PAGE_SHIFT-3) // compute address of L2 page table entry
+ ;;
+(p7) ld8 r17=[r17] // fetch the L2 entry (may be 0)
+ shr.u r19=r16,PAGE_SHIFT // shift L3 index into position
+ ;;
+(p7) cmp.eq.or.andcm p6,p7=r17,r0 // was L2 entry NULL?
+ dep r17=r19,r17,3,(PAGE_SHIFT-3) // compute address of L3 page table entry
+(p6) br.cond.spnt page_fault
+ mov b0=r30
+ br.sptk.many b0 // return to continuation point
+END(nested_dtlb_miss)
+
+ .org ia64_ivt+0x1800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x1800 Entry 6 (size 64 bundles) Instruction Key Miss (24)
+ENTRY(ikey_miss)
+ DBG_FAULT(6)
+ FAULT(6)
+END(ikey_miss)
+
+ //-----------------------------------------------------------------------------------
+ // call do_page_fault (predicates are in r31, psr.dt may be off, r16 is faulting address)
+ENTRY(page_fault)
+ ssm psr.dt
+ ;;
+ srlz.i
+ ;;
+ SAVE_MIN_WITH_COVER
+ alloc r15=ar.pfs,0,0,3,0
+ mov out0=cr.ifa
+ mov out1=cr.isr
+ adds r3=8,r2 // set up second base pointer
+ ;;
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collectin is on
+ ;;
+(p15) ssm psr.i // restore psr.i
+ movl r14=ia64_leave_kernel
+ ;;
+ SAVE_REST
+ mov rp=r14
+ ;;
+ adds out2=16,r12 // out2 = pointer to pt_regs
+ br.call.sptk.many b6=ia64_do_page_fault // ignore return address
+END(page_fault)
+
+ .org ia64_ivt+0x1c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51)
+ENTRY(dkey_miss)
+ DBG_FAULT(7)
+ FAULT(7)
+END(dkey_miss)
+
+ .org ia64_ivt+0x2000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x2000 Entry 8 (size 64 bundles) Dirty-bit (54)
+ENTRY(dirty_bit)
+ DBG_FAULT(8)
+ /*
+ * What we do here is to simply turn on the dirty bit in the PTE. We need to
+ * update both the page-table and the TLB entry. To efficiently access the PTE,
+ * we address it through the virtual page table. Most likely, the TLB entry for
+ * the relevant virtual page table page is still present in the TLB so we can
+ * normally do this without additional TLB misses. In case the necessary virtual
+ * page table TLB entry isn't present, we take a nested TLB miss hit where we look
+ * up the physical address of the L3 PTE and then continue at label 1 below.
+ */
+ mov r16=cr.ifa // get the address that caused the fault
+ movl r30=1f // load continuation point in case of nested fault
+ ;;
+ thash r17=r16 // compute virtual address of L3 PTE
+ mov r29=b0 // save b0 in case of nested fault
+ mov r31=pr // save pr
+#ifdef CONFIG_SMP
+ mov r28=ar.ccv // save ar.ccv
+ ;;
+1: ld8 r18=[r17]
+ ;; // avoid RAW on r18
+ mov ar.ccv=r18 // set compare value for cmpxchg
+ or r25=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits
+ ;;
+ cmpxchg8.acq r26=[r17],r25,ar.ccv
+ mov r24=PAGE_SHIFT<<2
+ ;;
+ cmp.eq p6,p7=r26,r18
+ ;;
+(p6) itc.d r25 // install updated PTE
+ ;;
+ /*
+ * Tell the assemblers dependency-violation checker that the above "itc" instructions
+ * cannot possibly affect the following loads:
+ */
+ dv_serialize_data
+
+ ld8 r18=[r17] // read PTE again
+ ;;
+ cmp.eq p6,p7=r18,r25 // is it same as the newly installed
+ ;;
+(p7) ptc.l r16,r24
+ mov b0=r29 // restore b0
+ mov ar.ccv=r28
+#else
+ ;;
+1: ld8 r18=[r17]
+ ;; // avoid RAW on r18
+ or r18=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits
+ mov b0=r29 // restore b0
+ ;;
+ st8 [r17]=r18 // store back updated PTE
+ itc.d r18 // install updated PTE
+#endif
+ mov pr=r31,-1 // restore pr
+ rfi
+END(dirty_bit)
+
+ .org ia64_ivt+0x2400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x2400 Entry 9 (size 64 bundles) Instruction Access-bit (27)
+ENTRY(iaccess_bit)
+ DBG_FAULT(9)
+ // Like Entry 8, except for instruction access
+ mov r16=cr.ifa // get the address that caused the fault
+ movl r30=1f // load continuation point in case of nested fault
+ mov r31=pr // save predicates
+#ifdef CONFIG_ITANIUM
+ /*
+ * Erratum 10 (IFA may contain incorrect address) has "NoFix" status.
+ */
+ mov r17=cr.ipsr
+ ;;
+ mov r18=cr.iip
+ tbit.z p6,p0=r17,IA64_PSR_IS_BIT // IA64 instruction set?
+ ;;
+(p6) mov r16=r18 // if so, use cr.iip instead of cr.ifa
+#endif /* CONFIG_ITANIUM */
+ ;;
+ thash r17=r16 // compute virtual address of L3 PTE
+ mov r29=b0 // save b0 in case of nested fault)
+#ifdef CONFIG_SMP
+ mov r28=ar.ccv // save ar.ccv
+ ;;
+1: ld8 r18=[r17]
+ ;;
+ mov ar.ccv=r18 // set compare value for cmpxchg
+ or r25=_PAGE_A,r18 // set the accessed bit
+ ;;
+ cmpxchg8.acq r26=[r17],r25,ar.ccv
+ mov r24=PAGE_SHIFT<<2
+ ;;
+ cmp.eq p6,p7=r26,r18
+ ;;
+(p6) itc.i r25 // install updated PTE
+ ;;
+ /*
+ * Tell the assemblers dependency-violation checker that the above "itc" instructions
+ * cannot possibly affect the following loads:
+ */
+ dv_serialize_data
+
+ ld8 r18=[r17] // read PTE again
+ ;;
+ cmp.eq p6,p7=r18,r25 // is it same as the newly installed
+ ;;
+(p7) ptc.l r16,r24
+ mov b0=r29 // restore b0
+ mov ar.ccv=r28
+#else /* !CONFIG_SMP */
+ ;;
+1: ld8 r18=[r17]
+ ;;
+ or r18=_PAGE_A,r18 // set the accessed bit
+ mov b0=r29 // restore b0
+ ;;
+ st8 [r17]=r18 // store back updated PTE
+ itc.i r18 // install updated PTE
+#endif /* !CONFIG_SMP */
+ mov pr=r31,-1
+ rfi
+END(iaccess_bit)
+
+ .org ia64_ivt+0x2800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x2800 Entry 10 (size 64 bundles) Data Access-bit (15,55)
+ENTRY(daccess_bit)
+ DBG_FAULT(10)
+ // Like Entry 8, except for data access
+ mov r16=cr.ifa // get the address that caused the fault
+ movl r30=1f // load continuation point in case of nested fault
+ ;;
+ thash r17=r16 // compute virtual address of L3 PTE
+ mov r31=pr
+ mov r29=b0 // save b0 in case of nested fault)
+#ifdef CONFIG_SMP
+ mov r28=ar.ccv // save ar.ccv
+ ;;
+1: ld8 r18=[r17]
+ ;; // avoid RAW on r18
+ mov ar.ccv=r18 // set compare value for cmpxchg
+ or r25=_PAGE_A,r18 // set the dirty bit
+ ;;
+ cmpxchg8.acq r26=[r17],r25,ar.ccv
+ mov r24=PAGE_SHIFT<<2
+ ;;
+ cmp.eq p6,p7=r26,r18
+ ;;
+(p6) itc.d r25 // install updated PTE
+ /*
+ * Tell the assemblers dependency-violation checker that the above "itc" instructions
+ * cannot possibly affect the following loads:
+ */
+ dv_serialize_data
+ ;;
+ ld8 r18=[r17] // read PTE again
+ ;;
+ cmp.eq p6,p7=r18,r25 // is it same as the newly installed
+ ;;
+(p7) ptc.l r16,r24
+ mov ar.ccv=r28
+#else
+ ;;
+1: ld8 r18=[r17]
+ ;; // avoid RAW on r18
+ or r18=_PAGE_A,r18 // set the accessed bit
+ ;;
+ st8 [r17]=r18 // store back updated PTE
+ itc.d r18 // install updated PTE
+#endif
+ mov b0=r29 // restore b0
+ mov pr=r31,-1
+ rfi
+END(daccess_bit)
+
+ .org ia64_ivt+0x2c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x2c00 Entry 11 (size 64 bundles) Break instruction (33)
+ENTRY(break_fault)
+ /*
+ * The streamlined system call entry/exit paths only save/restore the initial part
+ * of pt_regs. This implies that the callers of system-calls must adhere to the
+ * normal procedure calling conventions.
+ *
+ * Registers to be saved & restored:
+ * CR registers: cr.ipsr, cr.iip, cr.ifs
+ * AR registers: ar.unat, ar.pfs, ar.rsc, ar.rnat, ar.bspstore, ar.fpsr
+ * others: pr, b0, b6, loadrs, r1, r11, r12, r13, r15
+ * Registers to be restored only:
+ * r8-r11: output value from the system call.
+ *
+ * During system call exit, scratch registers (including r15) are modified/cleared
+ * to prevent leaking bits from kernel to user level.
+ */
+ DBG_FAULT(11)
+ mov r16=IA64_KR(CURRENT) // r16 = current task; 12 cycle read lat.
+ mov r17=cr.iim
+ mov r18=__IA64_BREAK_SYSCALL
+ mov r21=ar.fpsr
+ mov r29=cr.ipsr
+ mov r19=b6
+ mov r25=ar.unat
+ mov r27=ar.rsc
+ mov r26=ar.pfs
+ mov r28=cr.iip
+ mov r31=pr // prepare to save predicates
+ mov r20=r1
+ ;;
+ adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16
+ cmp.eq p0,p7=r18,r17 // is this a system call? (p7 <- false, if so)
+(p7) br.cond.spnt non_syscall
+ ;;
+ ld1 r17=[r16] // load current->thread.on_ustack flag
+ st1 [r16]=r0 // clear current->thread.on_ustack flag
+ add r1=-IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 // set r1 for MINSTATE_START_SAVE_MIN_VIRT
+ ;;
+ invala
+
+ /* adjust return address so we skip over the break instruction: */
+
+ extr.u r8=r29,41,2 // extract ei field from cr.ipsr
+ ;;
+ cmp.eq p6,p7=2,r8 // isr.ei==2?
+ mov r2=r1 // setup r2 for ia64_syscall_setup
+ ;;
+(p6) mov r8=0 // clear ei to 0
+(p6) adds r28=16,r28 // switch cr.iip to next bundle cr.ipsr.ei wrapped
+(p7) adds r8=1,r8 // increment ei to next slot
+ ;;
+ cmp.eq pKStk,pUStk=r0,r17 // are we in kernel mode already?
+ dep r29=r8,r29,41,2 // insert new ei into cr.ipsr
+ ;;
+
+ // switch from user to kernel RBS:
+ MINSTATE_START_SAVE_MIN_VIRT
+ br.call.sptk.many b7=ia64_syscall_setup
+ ;;
+ MINSTATE_END_SAVE_MIN_VIRT // switch to bank 1
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collection is on
+ mov r3=NR_syscalls - 1
+ ;;
+(p15) ssm psr.i // restore psr.i
+ // p10==true means out registers are more than 8 or r15's Nat is true
+(p10) br.cond.spnt.many ia64_ret_from_syscall
+ ;;
+ movl r16=sys_call_table
+
+ adds r15=-1024,r15 // r15 contains the syscall number---subtract 1024
+ movl r2=ia64_ret_from_syscall
+ ;;
+ shladd r20=r15,3,r16 // r20 = sys_call_table + 8*(syscall-1024)
+ cmp.leu p6,p7=r15,r3 // (syscall > 0 && syscall < 1024 + NR_syscalls) ?
+ mov rp=r2 // set the real return addr
+ ;;
+(p6) ld8 r20=[r20] // load address of syscall entry point
+(p7) movl r20=sys_ni_syscall
+
+ add r2=TI_FLAGS+IA64_TASK_SIZE,r13
+ ;;
+ ld4 r2=[r2] // r2 = current_thread_info()->flags
+ ;;
+ and r2=_TIF_SYSCALL_TRACEAUDIT,r2 // mask trace or audit
+ ;;
+ cmp.eq p8,p0=r2,r0
+ mov b6=r20
+ ;;
+(p8) br.call.sptk.many b6=b6 // ignore this return addr
+ br.cond.sptk ia64_trace_syscall
+ // NOT REACHED
+END(break_fault)
+
+ .org ia64_ivt+0x3000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x3000 Entry 12 (size 64 bundles) External Interrupt (4)
+ENTRY(interrupt)
+ DBG_FAULT(12)
+ mov r31=pr // prepare to save predicates
+ ;;
+ SAVE_MIN_WITH_COVER // uses r31; defines r2 and r3
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ adds r3=8,r2 // set up second base pointer for SAVE_REST
+ srlz.i // ensure everybody knows psr.ic is back on
+ ;;
+ SAVE_REST
+ ;;
+ alloc r14=ar.pfs,0,0,2,0 // must be first in an insn group
+ mov out0=cr.ivr // pass cr.ivr as first arg
+ add out1=16,sp // pass pointer to pt_regs as second arg
+ ;;
+ srlz.d // make sure we see the effect of cr.ivr
+ movl r14=ia64_leave_kernel
+ ;;
+ mov rp=r14
+ br.call.sptk.many b6=ia64_handle_irq
+END(interrupt)
+
+ .org ia64_ivt+0x3400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x3400 Entry 13 (size 64 bundles) Reserved
+ DBG_FAULT(13)
+ FAULT(13)
+
+ .org ia64_ivt+0x3800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x3800 Entry 14 (size 64 bundles) Reserved
+ DBG_FAULT(14)
+ FAULT(14)
+
+ /*
+ * There is no particular reason for this code to be here, other than that
+ * there happens to be space here that would go unused otherwise. If this
+ * fault ever gets "unreserved", simply moved the following code to a more
+ * suitable spot...
+ *
+ * ia64_syscall_setup() is a separate subroutine so that it can
+ * allocate stacked registers so it can safely demine any
+ * potential NaT values from the input registers.
+ *
+ * On entry:
+ * - executing on bank 0 or bank 1 register set (doesn't matter)
+ * - r1: stack pointer
+ * - r2: current task pointer
+ * - r3: preserved
+ * - r11: original contents (saved ar.pfs to be saved)
+ * - r12: original contents (sp to be saved)
+ * - r13: original contents (tp to be saved)
+ * - r15: original contents (syscall # to be saved)
+ * - r18: saved bsp (after switching to kernel stack)
+ * - r19: saved b6
+ * - r20: saved r1 (gp)
+ * - r21: saved ar.fpsr
+ * - r22: kernel's register backing store base (krbs_base)
+ * - r23: saved ar.bspstore
+ * - r24: saved ar.rnat
+ * - r25: saved ar.unat
+ * - r26: saved ar.pfs
+ * - r27: saved ar.rsc
+ * - r28: saved cr.iip
+ * - r29: saved cr.ipsr
+ * - r31: saved pr
+ * - b0: original contents (to be saved)
+ * On exit:
+ * - executing on bank 1 registers
+ * - psr.ic enabled, interrupts restored
+ * - p10: TRUE if syscall is invoked with more than 8 out
+ * registers or r15's Nat is true
+ * - r1: kernel's gp
+ * - r3: preserved (same as on entry)
+ * - r8: -EINVAL if p10 is true
+ * - r12: points to kernel stack
+ * - r13: points to current task
+ * - p15: TRUE if interrupts need to be re-enabled
+ * - ar.fpsr: set to kernel settings
+ */
+GLOBAL_ENTRY(ia64_syscall_setup)
+#if PT(B6) != 0
+# error This code assumes that b6 is the first field in pt_regs.
+#endif
+ st8 [r1]=r19 // save b6
+ add r16=PT(CR_IPSR),r1 // initialize first base pointer
+ add r17=PT(R11),r1 // initialize second base pointer
+ ;;
+ alloc r19=ar.pfs,8,0,0,0 // ensure in0-in7 are writable
+ st8 [r16]=r29,PT(AR_PFS)-PT(CR_IPSR) // save cr.ipsr
+ tnat.nz p8,p0=in0
+
+ st8.spill [r17]=r11,PT(CR_IIP)-PT(R11) // save r11
+ tnat.nz p9,p0=in1
+(pKStk) mov r18=r0 // make sure r18 isn't NaT
+ ;;
+
+ st8 [r16]=r26,PT(CR_IFS)-PT(AR_PFS) // save ar.pfs
+ st8 [r17]=r28,PT(AR_UNAT)-PT(CR_IIP) // save cr.iip
+ mov r28=b0 // save b0 (2 cyc)
+ ;;
+
+ st8 [r17]=r25,PT(AR_RSC)-PT(AR_UNAT) // save ar.unat
+ dep r19=0,r19,38,26 // clear all bits but 0..37 [I0]
+(p8) mov in0=-1
+ ;;
+
+ st8 [r16]=r19,PT(AR_RNAT)-PT(CR_IFS) // store ar.pfs.pfm in cr.ifs
+ extr.u r11=r19,7,7 // I0 // get sol of ar.pfs
+ and r8=0x7f,r19 // A // get sof of ar.pfs
+
+ st8 [r17]=r27,PT(AR_BSPSTORE)-PT(AR_RSC)// save ar.rsc
+ tbit.nz p15,p0=r29,IA64_PSR_I_BIT // I0
+(p9) mov in1=-1
+ ;;
+
+(pUStk) sub r18=r18,r22 // r18=RSE.ndirty*8
+ tnat.nz p10,p0=in2
+ add r11=8,r11
+ ;;
+(pKStk) adds r16=PT(PR)-PT(AR_RNAT),r16 // skip over ar_rnat field
+(pKStk) adds r17=PT(B0)-PT(AR_BSPSTORE),r17 // skip over ar_bspstore field
+ tnat.nz p11,p0=in3
+ ;;
+(p10) mov in2=-1
+ tnat.nz p12,p0=in4 // [I0]
+(p11) mov in3=-1
+ ;;
+(pUStk) st8 [r16]=r24,PT(PR)-PT(AR_RNAT) // save ar.rnat
+(pUStk) st8 [r17]=r23,PT(B0)-PT(AR_BSPSTORE) // save ar.bspstore
+ shl r18=r18,16 // compute ar.rsc to be used for "loadrs"
+ ;;
+ st8 [r16]=r31,PT(LOADRS)-PT(PR) // save predicates
+ st8 [r17]=r28,PT(R1)-PT(B0) // save b0
+ tnat.nz p13,p0=in5 // [I0]
+ ;;
+ st8 [r16]=r18,PT(R12)-PT(LOADRS) // save ar.rsc value for "loadrs"
+ st8.spill [r17]=r20,PT(R13)-PT(R1) // save original r1
+(p12) mov in4=-1
+ ;;
+
+.mem.offset 0,0; st8.spill [r16]=r12,PT(AR_FPSR)-PT(R12) // save r12
+.mem.offset 8,0; st8.spill [r17]=r13,PT(R15)-PT(R13) // save r13
+(p13) mov in5=-1
+ ;;
+ st8 [r16]=r21,PT(R8)-PT(AR_FPSR) // save ar.fpsr
+ tnat.nz p14,p0=in6
+ cmp.lt p10,p9=r11,r8 // frame size can't be more than local+8
+ ;;
+ stf8 [r16]=f1 // ensure pt_regs.r8 != 0 (see handle_syscall_error)
+(p9) tnat.nz p10,p0=r15
+ adds r12=-16,r1 // switch to kernel memory stack (with 16 bytes of scratch)
+
+ st8.spill [r17]=r15 // save r15
+ tnat.nz p8,p0=in7
+ nop.i 0
+
+ mov r13=r2 // establish `current'
+ movl r1=__gp // establish kernel global pointer
+ ;;
+(p14) mov in6=-1
+(p8) mov in7=-1
+ nop.i 0
+
+ cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0
+ movl r17=FPSR_DEFAULT
+ ;;
+ mov.m ar.fpsr=r17 // set ar.fpsr to kernel default value
+(p10) mov r8=-EINVAL
+ br.ret.sptk.many b7
+END(ia64_syscall_setup)
+
+ .org ia64_ivt+0x3c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x3c00 Entry 15 (size 64 bundles) Reserved
+ DBG_FAULT(15)
+ FAULT(15)
+
+ /*
+ * Squatting in this space ...
+ *
+ * This special case dispatcher for illegal operation faults allows preserved
+ * registers to be modified through a callback function (asm only) that is handed
+ * back from the fault handler in r8. Up to three arguments can be passed to the
+ * callback function by returning an aggregate with the callback as its first
+ * element, followed by the arguments.
+ */
+ENTRY(dispatch_illegal_op_fault)
+ .prologue
+ .body
+ SAVE_MIN_WITH_COVER
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collection is on
+ ;;
+(p15) ssm psr.i // restore psr.i
+ adds r3=8,r2 // set up second base pointer for SAVE_REST
+ ;;
+ alloc r14=ar.pfs,0,0,1,0 // must be first in insn group
+ mov out0=ar.ec
+ ;;
+ SAVE_REST
+ PT_REGS_UNWIND_INFO(0)
+ ;;
+ br.call.sptk.many rp=ia64_illegal_op_fault
+.ret0: ;;
+ alloc r14=ar.pfs,0,0,3,0 // must be first in insn group
+ mov out0=r9
+ mov out1=r10
+ mov out2=r11
+ movl r15=ia64_leave_kernel
+ ;;
+ mov rp=r15
+ mov b6=r8
+ ;;
+ cmp.ne p6,p0=0,r8
+(p6) br.call.dpnt.many b6=b6 // call returns to ia64_leave_kernel
+ br.sptk.many ia64_leave_kernel
+END(dispatch_illegal_op_fault)
+
+ .org ia64_ivt+0x4000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x4000 Entry 16 (size 64 bundles) Reserved
+ DBG_FAULT(16)
+ FAULT(16)
+
+ .org ia64_ivt+0x4400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x4400 Entry 17 (size 64 bundles) Reserved
+ DBG_FAULT(17)
+ FAULT(17)
+
+ENTRY(non_syscall)
+ SAVE_MIN_WITH_COVER
+
+ // There is no particular reason for this code to be here, other than that
+ // there happens to be space here that would go unused otherwise. If this
+ // fault ever gets "unreserved", simply moved the following code to a more
+ // suitable spot...
+
+ alloc r14=ar.pfs,0,0,2,0
+ mov out0=cr.iim
+ add out1=16,sp
+ adds r3=8,r2 // set up second base pointer for SAVE_REST
+
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collection is on
+ ;;
+(p15) ssm psr.i // restore psr.i
+ movl r15=ia64_leave_kernel
+ ;;
+ SAVE_REST
+ mov rp=r15
+ ;;
+ br.call.sptk.many b6=ia64_bad_break // avoid WAW on CFM and ignore return addr
+END(non_syscall)
+
+ .org ia64_ivt+0x4800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x4800 Entry 18 (size 64 bundles) Reserved
+ DBG_FAULT(18)
+ FAULT(18)
+
+ /*
+ * There is no particular reason for this code to be here, other than that
+ * there happens to be space here that would go unused otherwise. If this
+ * fault ever gets "unreserved", simply moved the following code to a more
+ * suitable spot...
+ */
+
+ENTRY(dispatch_unaligned_handler)
+ SAVE_MIN_WITH_COVER
+ ;;
+ alloc r14=ar.pfs,0,0,2,0 // now it's safe (must be first in insn group!)
+ mov out0=cr.ifa
+ adds out1=16,sp
+
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collection is on
+ ;;
+(p15) ssm psr.i // restore psr.i
+ adds r3=8,r2 // set up second base pointer
+ ;;
+ SAVE_REST
+ movl r14=ia64_leave_kernel
+ ;;
+ mov rp=r14
+ br.sptk.many ia64_prepare_handle_unaligned
+END(dispatch_unaligned_handler)
+
+ .org ia64_ivt+0x4c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x4c00 Entry 19 (size 64 bundles) Reserved
+ DBG_FAULT(19)
+ FAULT(19)
+
+ /*
+ * There is no particular reason for this code to be here, other than that
+ * there happens to be space here that would go unused otherwise. If this
+ * fault ever gets "unreserved", simply moved the following code to a more
+ * suitable spot...
+ */
+
+ENTRY(dispatch_to_fault_handler)
+ /*
+ * Input:
+ * psr.ic: off
+ * r19: fault vector number (e.g., 24 for General Exception)
+ * r31: contains saved predicates (pr)
+ */
+ SAVE_MIN_WITH_COVER_R19
+ alloc r14=ar.pfs,0,0,5,0
+ mov out0=r15
+ mov out1=cr.isr
+ mov out2=cr.ifa
+ mov out3=cr.iim
+ mov out4=cr.itir
+ ;;
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collection is on
+ ;;
+(p15) ssm psr.i // restore psr.i
+ adds r3=8,r2 // set up second base pointer for SAVE_REST
+ ;;
+ SAVE_REST
+ movl r14=ia64_leave_kernel
+ ;;
+ mov rp=r14
+ br.call.sptk.many b6=ia64_fault
+END(dispatch_to_fault_handler)
+
+//
+// --- End of long entries, Beginning of short entries
+//
+
+ .org ia64_ivt+0x5000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5000 Entry 20 (size 16 bundles) Page Not Present (10,22,49)
+ENTRY(page_not_present)
+ DBG_FAULT(20)
+ mov r16=cr.ifa
+ rsm psr.dt
+ /*
+ * The Linux page fault handler doesn't expect non-present pages to be in
+ * the TLB. Flush the existing entry now, so we meet that expectation.
+ */
+ mov r17=PAGE_SHIFT<<2
+ ;;
+ ptc.l r16,r17
+ ;;
+ mov r31=pr
+ srlz.d
+ br.sptk.many page_fault
+END(page_not_present)
+
+ .org ia64_ivt+0x5100
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5100 Entry 21 (size 16 bundles) Key Permission (13,25,52)
+ENTRY(key_permission)
+ DBG_FAULT(21)
+ mov r16=cr.ifa
+ rsm psr.dt
+ mov r31=pr
+ ;;
+ srlz.d
+ br.sptk.many page_fault
+END(key_permission)
+
+ .org ia64_ivt+0x5200
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5200 Entry 22 (size 16 bundles) Instruction Access Rights (26)
+ENTRY(iaccess_rights)
+ DBG_FAULT(22)
+ mov r16=cr.ifa
+ rsm psr.dt
+ mov r31=pr
+ ;;
+ srlz.d
+ br.sptk.many page_fault
+END(iaccess_rights)
+
+ .org ia64_ivt+0x5300
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5300 Entry 23 (size 16 bundles) Data Access Rights (14,53)
+ENTRY(daccess_rights)
+ DBG_FAULT(23)
+ mov r16=cr.ifa
+ rsm psr.dt
+ mov r31=pr
+ ;;
+ srlz.d
+ br.sptk.many page_fault
+END(daccess_rights)
+
+ .org ia64_ivt+0x5400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5400 Entry 24 (size 16 bundles) General Exception (5,32,34,36,38,39)
+ENTRY(general_exception)
+ DBG_FAULT(24)
+ mov r16=cr.isr
+ mov r31=pr
+ ;;
+ cmp4.eq p6,p0=0,r16
+(p6) br.sptk.many dispatch_illegal_op_fault
+ ;;
+ mov r19=24 // fault number
+ br.sptk.many dispatch_to_fault_handler
+END(general_exception)
+
+ .org ia64_ivt+0x5500
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5500 Entry 25 (size 16 bundles) Disabled FP-Register (35)
+ENTRY(disabled_fp_reg)
+ DBG_FAULT(25)
+ rsm psr.dfh // ensure we can access fph
+ ;;
+ srlz.d
+ mov r31=pr
+ mov r19=25
+ br.sptk.many dispatch_to_fault_handler
+END(disabled_fp_reg)
+
+ .org ia64_ivt+0x5600
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5600 Entry 26 (size 16 bundles) Nat Consumption (11,23,37,50)
+ENTRY(nat_consumption)
+ DBG_FAULT(26)
+ FAULT(26)
+END(nat_consumption)
+
+ .org ia64_ivt+0x5700
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5700 Entry 27 (size 16 bundles) Speculation (40)
+ENTRY(speculation_vector)
+ DBG_FAULT(27)
+ /*
+ * A [f]chk.[as] instruction needs to take the branch to the recovery code but
+ * this part of the architecture is not implemented in hardware on some CPUs, such
+ * as Itanium. Thus, in general we need to emulate the behavior. IIM contains
+ * the relative target (not yet sign extended). So after sign extending it we
+ * simply add it to IIP. We also need to reset the EI field of the IPSR to zero,
+ * i.e., the slot to restart into.
+ *
+ * cr.imm contains zero_ext(imm21)
+ */
+ mov r18=cr.iim
+ ;;
+ mov r17=cr.iip
+ shl r18=r18,43 // put sign bit in position (43=64-21)
+ ;;
+
+ mov r16=cr.ipsr
+ shr r18=r18,39 // sign extend (39=43-4)
+ ;;
+
+ add r17=r17,r18 // now add the offset
+ ;;
+ mov cr.iip=r17
+ dep r16=0,r16,41,2 // clear EI
+ ;;
+
+ mov cr.ipsr=r16
+ ;;
+
+ rfi // and go back
+END(speculation_vector)
+
+ .org ia64_ivt+0x5800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5800 Entry 28 (size 16 bundles) Reserved
+ DBG_FAULT(28)
+ FAULT(28)
+
+ .org ia64_ivt+0x5900
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5900 Entry 29 (size 16 bundles) Debug (16,28,56)
+ENTRY(debug_vector)
+ DBG_FAULT(29)
+ FAULT(29)
+END(debug_vector)
+
+ .org ia64_ivt+0x5a00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5a00 Entry 30 (size 16 bundles) Unaligned Reference (57)
+ENTRY(unaligned_access)
+ DBG_FAULT(30)
+ mov r16=cr.ipsr
+ mov r31=pr // prepare to save predicates
+ ;;
+ br.sptk.many dispatch_unaligned_handler
+END(unaligned_access)
+
+ .org ia64_ivt+0x5b00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5b00 Entry 31 (size 16 bundles) Unsupported Data Reference (57)
+ENTRY(unsupported_data_reference)
+ DBG_FAULT(31)
+ FAULT(31)
+END(unsupported_data_reference)
+
+ .org ia64_ivt+0x5c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5c00 Entry 32 (size 16 bundles) Floating-Point Fault (64)
+ENTRY(floating_point_fault)
+ DBG_FAULT(32)
+ FAULT(32)
+END(floating_point_fault)
+
+ .org ia64_ivt+0x5d00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5d00 Entry 33 (size 16 bundles) Floating Point Trap (66)
+ENTRY(floating_point_trap)
+ DBG_FAULT(33)
+ FAULT(33)
+END(floating_point_trap)
+
+ .org ia64_ivt+0x5e00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5e00 Entry 34 (size 16 bundles) Lower Privilege Transfer Trap (66)
+ENTRY(lower_privilege_trap)
+ DBG_FAULT(34)
+ FAULT(34)
+END(lower_privilege_trap)
+
+ .org ia64_ivt+0x5f00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x5f00 Entry 35 (size 16 bundles) Taken Branch Trap (68)
+ENTRY(taken_branch_trap)
+ DBG_FAULT(35)
+ FAULT(35)
+END(taken_branch_trap)
+
+ .org ia64_ivt+0x6000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6000 Entry 36 (size 16 bundles) Single Step Trap (69)
+ENTRY(single_step_trap)
+ DBG_FAULT(36)
+ FAULT(36)
+END(single_step_trap)
+
+ .org ia64_ivt+0x6100
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6100 Entry 37 (size 16 bundles) Reserved
+ DBG_FAULT(37)
+ FAULT(37)
+
+ .org ia64_ivt+0x6200
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6200 Entry 38 (size 16 bundles) Reserved
+ DBG_FAULT(38)
+ FAULT(38)
+
+ .org ia64_ivt+0x6300
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6300 Entry 39 (size 16 bundles) Reserved
+ DBG_FAULT(39)
+ FAULT(39)
+
+ .org ia64_ivt+0x6400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6400 Entry 40 (size 16 bundles) Reserved
+ DBG_FAULT(40)
+ FAULT(40)
+
+ .org ia64_ivt+0x6500
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6500 Entry 41 (size 16 bundles) Reserved
+ DBG_FAULT(41)
+ FAULT(41)
+
+ .org ia64_ivt+0x6600
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6600 Entry 42 (size 16 bundles) Reserved
+ DBG_FAULT(42)
+ FAULT(42)
+
+ .org ia64_ivt+0x6700
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6700 Entry 43 (size 16 bundles) Reserved
+ DBG_FAULT(43)
+ FAULT(43)
+
+ .org ia64_ivt+0x6800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6800 Entry 44 (size 16 bundles) Reserved
+ DBG_FAULT(44)
+ FAULT(44)
+
+ .org ia64_ivt+0x6900
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6900 Entry 45 (size 16 bundles) IA-32 Exeception (17,18,29,41,42,43,44,58,60,61,62,72,73,75,76,77)
+ENTRY(ia32_exception)
+ DBG_FAULT(45)
+ FAULT(45)
+END(ia32_exception)
+
+ .org ia64_ivt+0x6a00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6a00 Entry 46 (size 16 bundles) IA-32 Intercept (30,31,59,70,71)
+ENTRY(ia32_intercept)
+ DBG_FAULT(46)
+#ifdef CONFIG_IA32_SUPPORT
+ mov r31=pr
+ mov r16=cr.isr
+ ;;
+ extr.u r17=r16,16,8 // get ISR.code
+ mov r18=ar.eflag
+ mov r19=cr.iim // old eflag value
+ ;;
+ cmp.ne p6,p0=2,r17
+(p6) br.cond.spnt 1f // not a system flag fault
+ xor r16=r18,r19
+ ;;
+ extr.u r17=r16,18,1 // get the eflags.ac bit
+ ;;
+ cmp.eq p6,p0=0,r17
+(p6) br.cond.spnt 1f // eflags.ac bit didn't change
+ ;;
+ mov pr=r31,-1 // restore predicate registers
+ rfi
+
+1:
+#endif // CONFIG_IA32_SUPPORT
+ FAULT(46)
+END(ia32_intercept)
+
+ .org ia64_ivt+0x6b00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6b00 Entry 47 (size 16 bundles) IA-32 Interrupt (74)
+ENTRY(ia32_interrupt)
+ DBG_FAULT(47)
+#ifdef CONFIG_IA32_SUPPORT
+ mov r31=pr
+ br.sptk.many dispatch_to_ia32_handler
+#else
+ FAULT(47)
+#endif
+END(ia32_interrupt)
+
+ .org ia64_ivt+0x6c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6c00 Entry 48 (size 16 bundles) Reserved
+ DBG_FAULT(48)
+ FAULT(48)
+
+ .org ia64_ivt+0x6d00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6d00 Entry 49 (size 16 bundles) Reserved
+ DBG_FAULT(49)
+ FAULT(49)
+
+ .org ia64_ivt+0x6e00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6e00 Entry 50 (size 16 bundles) Reserved
+ DBG_FAULT(50)
+ FAULT(50)
+
+ .org ia64_ivt+0x6f00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x6f00 Entry 51 (size 16 bundles) Reserved
+ DBG_FAULT(51)
+ FAULT(51)
+
+ .org ia64_ivt+0x7000
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7000 Entry 52 (size 16 bundles) Reserved
+ DBG_FAULT(52)
+ FAULT(52)
+
+ .org ia64_ivt+0x7100
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7100 Entry 53 (size 16 bundles) Reserved
+ DBG_FAULT(53)
+ FAULT(53)
+
+ .org ia64_ivt+0x7200
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7200 Entry 54 (size 16 bundles) Reserved
+ DBG_FAULT(54)
+ FAULT(54)
+
+ .org ia64_ivt+0x7300
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7300 Entry 55 (size 16 bundles) Reserved
+ DBG_FAULT(55)
+ FAULT(55)
+
+ .org ia64_ivt+0x7400
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7400 Entry 56 (size 16 bundles) Reserved
+ DBG_FAULT(56)
+ FAULT(56)
+
+ .org ia64_ivt+0x7500
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7500 Entry 57 (size 16 bundles) Reserved
+ DBG_FAULT(57)
+ FAULT(57)
+
+ .org ia64_ivt+0x7600
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7600 Entry 58 (size 16 bundles) Reserved
+ DBG_FAULT(58)
+ FAULT(58)
+
+ .org ia64_ivt+0x7700
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7700 Entry 59 (size 16 bundles) Reserved
+ DBG_FAULT(59)
+ FAULT(59)
+
+ .org ia64_ivt+0x7800
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7800 Entry 60 (size 16 bundles) Reserved
+ DBG_FAULT(60)
+ FAULT(60)
+
+ .org ia64_ivt+0x7900
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7900 Entry 61 (size 16 bundles) Reserved
+ DBG_FAULT(61)
+ FAULT(61)
+
+ .org ia64_ivt+0x7a00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7a00 Entry 62 (size 16 bundles) Reserved
+ DBG_FAULT(62)
+ FAULT(62)
+
+ .org ia64_ivt+0x7b00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7b00 Entry 63 (size 16 bundles) Reserved
+ DBG_FAULT(63)
+ FAULT(63)
+
+ .org ia64_ivt+0x7c00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7c00 Entry 64 (size 16 bundles) Reserved
+ DBG_FAULT(64)
+ FAULT(64)
+
+ .org ia64_ivt+0x7d00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7d00 Entry 65 (size 16 bundles) Reserved
+ DBG_FAULT(65)
+ FAULT(65)
+
+ .org ia64_ivt+0x7e00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7e00 Entry 66 (size 16 bundles) Reserved
+ DBG_FAULT(66)
+ FAULT(66)
+
+ .org ia64_ivt+0x7f00
+/////////////////////////////////////////////////////////////////////////////////////////
+// 0x7f00 Entry 67 (size 16 bundles) Reserved
+ DBG_FAULT(67)
+ FAULT(67)
+
+#ifdef CONFIG_IA32_SUPPORT
+
+ /*
+ * There is no particular reason for this code to be here, other than that
+ * there happens to be space here that would go unused otherwise. If this
+ * fault ever gets "unreserved", simply moved the following code to a more
+ * suitable spot...
+ */
+
+ // IA32 interrupt entry point
+
+ENTRY(dispatch_to_ia32_handler)
+ SAVE_MIN
+ ;;
+ mov r14=cr.isr
+ ssm psr.ic | PSR_DEFAULT_BITS
+ ;;
+ srlz.i // guarantee that interruption collection is on
+ ;;
+(p15) ssm psr.i
+ adds r3=8,r2 // Base pointer for SAVE_REST
+ ;;
+ SAVE_REST
+ ;;
+ mov r15=0x80
+ shr r14=r14,16 // Get interrupt number
+ ;;
+ cmp.ne p6,p0=r14,r15
+(p6) br.call.dpnt.many b6=non_ia32_syscall
+
+ adds r14=IA64_PT_REGS_R8_OFFSET + 16,sp // 16 byte hole per SW conventions
+ adds r15=IA64_PT_REGS_R1_OFFSET + 16,sp
+ ;;
+ cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0
+ ld8 r8=[r14] // get r8
+ ;;
+ st8 [r15]=r8 // save original EAX in r1 (IA32 procs don't use the GP)
+ ;;
+ alloc r15=ar.pfs,0,0,6,0 // must first in an insn group
+ ;;
+ ld4 r8=[r14],8 // r8 == eax (syscall number)
+ mov r15=IA32_NR_syscalls
+ ;;
+ cmp.ltu.unc p6,p7=r8,r15
+ ld4 out1=[r14],8 // r9 == ecx
+ ;;
+ ld4 out2=[r14],8 // r10 == edx
+ ;;
+ ld4 out0=[r14] // r11 == ebx
+ adds r14=(IA64_PT_REGS_R13_OFFSET) + 16,sp
+ ;;
+ ld4 out5=[r14],PT(R14)-PT(R13) // r13 == ebp
+ ;;
+ ld4 out3=[r14],PT(R15)-PT(R14) // r14 == esi
+ adds r2=TI_FLAGS+IA64_TASK_SIZE,r13
+ ;;
+ ld4 out4=[r14] // r15 == edi
+ movl r16=ia32_syscall_table
+ ;;
+(p6) shladd r16=r8,3,r16 // force ni_syscall if not valid syscall number
+ ld4 r2=[r2] // r2 = current_thread_info()->flags
+ ;;
+ ld8 r16=[r16]
+ and r2=_TIF_SYSCALL_TRACEAUDIT,r2 // mask trace or audit
+ ;;
+ mov b6=r16
+ movl r15=ia32_ret_from_syscall
+ cmp.eq p8,p0=r2,r0
+ ;;
+ mov rp=r15
+(p8) br.call.sptk.many b6=b6
+ br.cond.sptk ia32_trace_syscall
+
+non_ia32_syscall:
+ alloc r15=ar.pfs,0,0,2,0
+ mov out0=r14 // interrupt #
+ add out1=16,sp // pointer to pt_regs
+ ;; // avoid WAW on CFM
+ br.call.sptk.many rp=ia32_bad_interrupt
+.ret1: movl r15=ia64_leave_kernel
+ ;;
+ mov rp=r15
+ br.ret.sptk.many rp
+END(dispatch_to_ia32_handler)
+
+#endif /* CONFIG_IA32_SUPPORT */
diff --git a/arch/ia64/kernel/machvec.c b/arch/ia64/kernel/machvec.c
new file mode 100644
index 0000000..c3a04ee
--- /dev/null
+++ b/arch/ia64/kernel/machvec.c
@@ -0,0 +1,70 @@
+#include <linux/config.h>
+#include <linux/module.h>
+
+#include <asm/machvec.h>
+#include <asm/system.h>
+
+#ifdef CONFIG_IA64_GENERIC
+
+#include <linux/kernel.h>
+#include <linux/string.h>
+
+#include <asm/page.h>
+
+struct ia64_machine_vector ia64_mv;
+EXPORT_SYMBOL(ia64_mv);
+
+static struct ia64_machine_vector *
+lookup_machvec (const char *name)
+{
+ extern struct ia64_machine_vector machvec_start[];
+ extern struct ia64_machine_vector machvec_end[];
+ struct ia64_machine_vector *mv;
+
+ for (mv = machvec_start; mv < machvec_end; ++mv)
+ if (strcmp (mv->name, name) == 0)
+ return mv;
+
+ return 0;
+}
+
+void
+machvec_init (const char *name)
+{
+ struct ia64_machine_vector *mv;
+
+ mv = lookup_machvec(name);
+ if (!mv) {
+ panic("generic kernel failed to find machine vector for platform %s!", name);
+ }
+ ia64_mv = *mv;
+ printk(KERN_INFO "booting generic kernel on platform %s\n", name);
+}
+
+#endif /* CONFIG_IA64_GENERIC */
+
+void
+machvec_setup (char **arg)
+{
+}
+EXPORT_SYMBOL(machvec_setup);
+
+void
+machvec_timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
+{
+}
+EXPORT_SYMBOL(machvec_timer_interrupt);
+
+void
+machvec_dma_sync_single (struct device *hwdev, dma_addr_t dma_handle, size_t size, int dir)
+{
+ mb();
+}
+EXPORT_SYMBOL(machvec_dma_sync_single);
+
+void
+machvec_dma_sync_sg (struct device *hwdev, struct scatterlist *sg, int n, int dir)
+{
+ mb();
+}
+EXPORT_SYMBOL(machvec_dma_sync_sg);
diff --git a/arch/ia64/kernel/mca.c b/arch/ia64/kernel/mca.c
new file mode 100644
index 0000000..4d6c7b8f
--- /dev/null
+++ b/arch/ia64/kernel/mca.c
@@ -0,0 +1,1470 @@
+/*
+ * File: mca.c
+ * Purpose: Generic MCA handling layer
+ *
+ * Updated for latest kernel
+ * Copyright (C) 2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Copyright (C) 2002 Dell Inc.
+ * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
+ *
+ * Copyright (C) 2002 Intel
+ * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
+ *
+ * Copyright (C) 2001 Intel
+ * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
+ *
+ * Copyright (C) 2000 Intel
+ * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
+ *
+ * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
+ * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
+ *
+ * 03/04/15 D. Mosberger Added INIT backtrace support.
+ * 02/03/25 M. Domsch GUID cleanups
+ *
+ * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
+ * error flag, set SAL default return values, changed
+ * error record structure to linked list, added init call
+ * to sal_get_state_info_size().
+ *
+ * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
+ * platform errors, completed code for logging of
+ * corrected & uncorrected machine check errors, and
+ * updated for conformance with Nov. 2000 revision of the
+ * SAL 3.0 spec.
+ * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
+ * added min save state dump, added INIT handler.
+ *
+ * 2003-12-08 Keith Owens <kaos@sgi.com>
+ * smp_call_function() must not be called from interrupt context (can
+ * deadlock on tasklist_lock). Use keventd to call smp_call_function().
+ *
+ * 2004-02-01 Keith Owens <kaos@sgi.com>
+ * Avoid deadlock when using printk() for MCA and INIT records.
+ * Delete all record printing code, moved to salinfo_decode in user space.
+ * Mark variables and functions static where possible.
+ * Delete dead variables and functions.
+ * Reorder to remove the need for forward declarations and to consolidate
+ * related code.
+ */
+#include <linux/config.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kallsyms.h>
+#include <linux/smp_lock.h>
+#include <linux/bootmem.h>
+#include <linux/acpi.h>
+#include <linux/timer.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/smp.h>
+#include <linux/workqueue.h>
+
+#include <asm/delay.h>
+#include <asm/machvec.h>
+#include <asm/meminit.h>
+#include <asm/page.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+#include <asm/sal.h>
+#include <asm/mca.h>
+
+#include <asm/irq.h>
+#include <asm/hw_irq.h>
+
+#if defined(IA64_MCA_DEBUG_INFO)
+# define IA64_MCA_DEBUG(fmt...) printk(fmt)
+#else
+# define IA64_MCA_DEBUG(fmt...)
+#endif
+
+/* Used by mca_asm.S */
+ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
+ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
+u64 ia64_mca_serialize;
+DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
+DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
+DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
+DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
+
+unsigned long __per_cpu_mca[NR_CPUS];
+
+/* In mca_asm.S */
+extern void ia64_monarch_init_handler (void);
+extern void ia64_slave_init_handler (void);
+
+static ia64_mc_info_t ia64_mc_info;
+
+#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
+#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
+#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
+#define CPE_HISTORY_LENGTH 5
+#define CMC_HISTORY_LENGTH 5
+
+static struct timer_list cpe_poll_timer;
+static struct timer_list cmc_poll_timer;
+/*
+ * This variable tells whether we are currently in polling mode.
+ * Start with this in the wrong state so we won't play w/ timers
+ * before the system is ready.
+ */
+static int cmc_polling_enabled = 1;
+
+/*
+ * Clearing this variable prevents CPE polling from getting activated
+ * in mca_late_init. Use it if your system doesn't provide a CPEI,
+ * but encounters problems retrieving CPE logs. This should only be
+ * necessary for debugging.
+ */
+static int cpe_poll_enabled = 1;
+
+extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
+
+static int mca_init;
+
+/*
+ * IA64_MCA log support
+ */
+#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
+#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
+
+typedef struct ia64_state_log_s
+{
+ spinlock_t isl_lock;
+ int isl_index;
+ unsigned long isl_count;
+ ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
+} ia64_state_log_t;
+
+static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
+
+#define IA64_LOG_ALLOCATE(it, size) \
+ {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
+ (ia64_err_rec_t *)alloc_bootmem(size); \
+ ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
+ (ia64_err_rec_t *)alloc_bootmem(size);}
+#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
+#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
+#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
+#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
+#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
+#define IA64_LOG_INDEX_INC(it) \
+ {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
+ ia64_state_log[it].isl_count++;}
+#define IA64_LOG_INDEX_DEC(it) \
+ ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
+#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
+#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
+#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
+
+/*
+ * ia64_log_init
+ * Reset the OS ia64 log buffer
+ * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
+ * Outputs : None
+ */
+static void
+ia64_log_init(int sal_info_type)
+{
+ u64 max_size = 0;
+
+ IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
+ IA64_LOG_LOCK_INIT(sal_info_type);
+
+ // SAL will tell us the maximum size of any error record of this type
+ max_size = ia64_sal_get_state_info_size(sal_info_type);
+ if (!max_size)
+ /* alloc_bootmem() doesn't like zero-sized allocations! */
+ return;
+
+ // set up OS data structures to hold error info
+ IA64_LOG_ALLOCATE(sal_info_type, max_size);
+ memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
+ memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
+}
+
+/*
+ * ia64_log_get
+ *
+ * Get the current MCA log from SAL and copy it into the OS log buffer.
+ *
+ * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
+ * irq_safe whether you can use printk at this point
+ * Outputs : size (total record length)
+ * *buffer (ptr to error record)
+ *
+ */
+static u64
+ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
+{
+ sal_log_record_header_t *log_buffer;
+ u64 total_len = 0;
+ int s;
+
+ IA64_LOG_LOCK(sal_info_type);
+
+ /* Get the process state information */
+ log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
+
+ total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
+
+ if (total_len) {
+ IA64_LOG_INDEX_INC(sal_info_type);
+ IA64_LOG_UNLOCK(sal_info_type);
+ if (irq_safe) {
+ IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
+ "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
+ }
+ *buffer = (u8 *) log_buffer;
+ return total_len;
+ } else {
+ IA64_LOG_UNLOCK(sal_info_type);
+ return 0;
+ }
+}
+
+/*
+ * ia64_mca_log_sal_error_record
+ *
+ * This function retrieves a specified error record type from SAL
+ * and wakes up any processes waiting for error records.
+ *
+ * Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
+ */
+static void
+ia64_mca_log_sal_error_record(int sal_info_type)
+{
+ u8 *buffer;
+ sal_log_record_header_t *rh;
+ u64 size;
+ int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
+#ifdef IA64_MCA_DEBUG_INFO
+ static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
+#endif
+
+ size = ia64_log_get(sal_info_type, &buffer, irq_safe);
+ if (!size)
+ return;
+
+ salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
+
+ if (irq_safe)
+ IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
+ smp_processor_id(),
+ sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
+
+ /* Clear logs from corrected errors in case there's no user-level logger */
+ rh = (sal_log_record_header_t *)buffer;
+ if (rh->severity == sal_log_severity_corrected)
+ ia64_sal_clear_state_info(sal_info_type);
+}
+
+/*
+ * platform dependent error handling
+ */
+#ifndef PLATFORM_MCA_HANDLERS
+
+#ifdef CONFIG_ACPI
+
+static int cpe_vector = -1;
+
+static irqreturn_t
+ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
+{
+ static unsigned long cpe_history[CPE_HISTORY_LENGTH];
+ static int index;
+ static DEFINE_SPINLOCK(cpe_history_lock);
+
+ IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
+ __FUNCTION__, cpe_irq, smp_processor_id());
+
+ /* SAL spec states this should run w/ interrupts enabled */
+ local_irq_enable();
+
+ /* Get the CPE error record and log it */
+ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
+
+ spin_lock(&cpe_history_lock);
+ if (!cpe_poll_enabled && cpe_vector >= 0) {
+
+ int i, count = 1; /* we know 1 happened now */
+ unsigned long now = jiffies;
+
+ for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
+ if (now - cpe_history[i] <= HZ)
+ count++;
+ }
+
+ IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
+ if (count >= CPE_HISTORY_LENGTH) {
+
+ cpe_poll_enabled = 1;
+ spin_unlock(&cpe_history_lock);
+ disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
+
+ /*
+ * Corrected errors will still be corrected, but
+ * make sure there's a log somewhere that indicates
+ * something is generating more than we can handle.
+ */
+ printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
+
+ mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
+
+ /* lock already released, get out now */
+ return IRQ_HANDLED;
+ } else {
+ cpe_history[index++] = now;
+ if (index == CPE_HISTORY_LENGTH)
+ index = 0;
+ }
+ }
+ spin_unlock(&cpe_history_lock);
+ return IRQ_HANDLED;
+}
+
+#endif /* CONFIG_ACPI */
+
+static void
+show_min_state (pal_min_state_area_t *minstate)
+{
+ u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
+ u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
+
+ printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
+ printk("pr\t\t%016lx\n", minstate->pmsa_pr);
+ printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
+ printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
+ printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
+ printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
+ printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
+ printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
+ printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
+ printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
+ printk("b1\t\t%016lx ", minstate->pmsa_br1);
+ print_symbol("%s\n", minstate->pmsa_br1);
+
+ printk("\nstatic registers r0-r15:\n");
+ printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
+ 0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
+ printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_gr[3], minstate->pmsa_gr[4],
+ minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
+ printk(" r8-11 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_gr[7], minstate->pmsa_gr[8],
+ minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
+ printk("r12-15 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_gr[11], minstate->pmsa_gr[12],
+ minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
+
+ printk("\nbank 0:\n");
+ printk("r16-19 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
+ minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
+ printk("r20-23 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
+ minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
+ printk("r24-27 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
+ minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
+ printk("r28-31 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
+ minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
+
+ printk("\nbank 1:\n");
+ printk("r16-19 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
+ minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
+ printk("r20-23 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
+ minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
+ printk("r24-27 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
+ minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
+ printk("r28-31 %016lx %016lx %016lx %016lx\n",
+ minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
+ minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
+}
+
+static void
+fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
+{
+ u64 *dst_banked, *src_banked, bit, shift, nat_bits;
+ int i;
+
+ /*
+ * First, update the pt-regs and switch-stack structures with the contents stored
+ * in the min-state area:
+ */
+ if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
+ pt->cr_ipsr = ms->pmsa_xpsr;
+ pt->cr_iip = ms->pmsa_xip;
+ pt->cr_ifs = ms->pmsa_xfs;
+ } else {
+ pt->cr_ipsr = ms->pmsa_ipsr;
+ pt->cr_iip = ms->pmsa_iip;
+ pt->cr_ifs = ms->pmsa_ifs;
+ }
+ pt->ar_rsc = ms->pmsa_rsc;
+ pt->pr = ms->pmsa_pr;
+ pt->r1 = ms->pmsa_gr[0];
+ pt->r2 = ms->pmsa_gr[1];
+ pt->r3 = ms->pmsa_gr[2];
+ sw->r4 = ms->pmsa_gr[3];
+ sw->r5 = ms->pmsa_gr[4];
+ sw->r6 = ms->pmsa_gr[5];
+ sw->r7 = ms->pmsa_gr[6];
+ pt->r8 = ms->pmsa_gr[7];
+ pt->r9 = ms->pmsa_gr[8];
+ pt->r10 = ms->pmsa_gr[9];
+ pt->r11 = ms->pmsa_gr[10];
+ pt->r12 = ms->pmsa_gr[11];
+ pt->r13 = ms->pmsa_gr[12];
+ pt->r14 = ms->pmsa_gr[13];
+ pt->r15 = ms->pmsa_gr[14];
+ dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
+ src_banked = ms->pmsa_bank1_gr;
+ for (i = 0; i < 16; ++i)
+ dst_banked[i] = src_banked[i];
+ pt->b0 = ms->pmsa_br0;
+ sw->b1 = ms->pmsa_br1;
+
+ /* construct the NaT bits for the pt-regs structure: */
+# define PUT_NAT_BIT(dst, addr) \
+ do { \
+ bit = nat_bits & 1; nat_bits >>= 1; \
+ shift = ((unsigned long) addr >> 3) & 0x3f; \
+ dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
+ } while (0)
+
+ /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
+ shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
+ nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
+
+ PUT_NAT_BIT(sw->caller_unat, &pt->r1);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r2);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r3);
+ PUT_NAT_BIT(sw->ar_unat, &sw->r4);
+ PUT_NAT_BIT(sw->ar_unat, &sw->r5);
+ PUT_NAT_BIT(sw->ar_unat, &sw->r6);
+ PUT_NAT_BIT(sw->ar_unat, &sw->r7);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
+ nat_bits >>= 16; /* skip over bank0 NaT bits */
+ PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
+ PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
+}
+
+static void
+init_handler_platform (pal_min_state_area_t *ms,
+ struct pt_regs *pt, struct switch_stack *sw)
+{
+ struct unw_frame_info info;
+
+ /* if a kernel debugger is available call it here else just dump the registers */
+
+ /*
+ * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
+ * generated via the BMC's command-line interface, but since the console is on the
+ * same serial line, the user will need some time to switch out of the BMC before
+ * the dump begins.
+ */
+ printk("Delaying for 5 seconds...\n");
+ udelay(5*1000000);
+ show_min_state(ms);
+
+ printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
+ fetch_min_state(ms, pt, sw);
+ unw_init_from_interruption(&info, current, pt, sw);
+ ia64_do_show_stack(&info, NULL);
+
+#ifdef CONFIG_SMP
+ /* read_trylock() would be handy... */
+ if (!tasklist_lock.write_lock)
+ read_lock(&tasklist_lock);
+#endif
+ {
+ struct task_struct *g, *t;
+ do_each_thread (g, t) {
+ if (t == current)
+ continue;
+
+ printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
+ show_stack(t, NULL);
+ } while_each_thread (g, t);
+ }
+#ifdef CONFIG_SMP
+ if (!tasklist_lock.write_lock)
+ read_unlock(&tasklist_lock);
+#endif
+
+ printk("\nINIT dump complete. Please reboot now.\n");
+ while (1); /* hang city if no debugger */
+}
+
+#ifdef CONFIG_ACPI
+/*
+ * ia64_mca_register_cpev
+ *
+ * Register the corrected platform error vector with SAL.
+ *
+ * Inputs
+ * cpev Corrected Platform Error Vector number
+ *
+ * Outputs
+ * None
+ */
+static void
+ia64_mca_register_cpev (int cpev)
+{
+ /* Register the CPE interrupt vector with SAL */
+ struct ia64_sal_retval isrv;
+
+ isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
+ if (isrv.status) {
+ printk(KERN_ERR "Failed to register Corrected Platform "
+ "Error interrupt vector with SAL (status %ld)\n", isrv.status);
+ return;
+ }
+
+ IA64_MCA_DEBUG("%s: corrected platform error "
+ "vector %#x registered\n", __FUNCTION__, cpev);
+}
+#endif /* CONFIG_ACPI */
+
+#endif /* PLATFORM_MCA_HANDLERS */
+
+/*
+ * ia64_mca_cmc_vector_setup
+ *
+ * Setup the corrected machine check vector register in the processor.
+ * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
+ * This function is invoked on a per-processor basis.
+ *
+ * Inputs
+ * None
+ *
+ * Outputs
+ * None
+ */
+void
+ia64_mca_cmc_vector_setup (void)
+{
+ cmcv_reg_t cmcv;
+
+ cmcv.cmcv_regval = 0;
+ cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
+ cmcv.cmcv_vector = IA64_CMC_VECTOR;
+ ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
+
+ IA64_MCA_DEBUG("%s: CPU %d corrected "
+ "machine check vector %#x registered.\n",
+ __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
+
+ IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
+ __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
+}
+
+/*
+ * ia64_mca_cmc_vector_disable
+ *
+ * Mask the corrected machine check vector register in the processor.
+ * This function is invoked on a per-processor basis.
+ *
+ * Inputs
+ * dummy(unused)
+ *
+ * Outputs
+ * None
+ */
+static void
+ia64_mca_cmc_vector_disable (void *dummy)
+{
+ cmcv_reg_t cmcv;
+
+ cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
+
+ cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
+ ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
+
+ IA64_MCA_DEBUG("%s: CPU %d corrected "
+ "machine check vector %#x disabled.\n",
+ __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
+}
+
+/*
+ * ia64_mca_cmc_vector_enable
+ *
+ * Unmask the corrected machine check vector register in the processor.
+ * This function is invoked on a per-processor basis.
+ *
+ * Inputs
+ * dummy(unused)
+ *
+ * Outputs
+ * None
+ */
+static void
+ia64_mca_cmc_vector_enable (void *dummy)
+{
+ cmcv_reg_t cmcv;
+
+ cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
+
+ cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
+ ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
+
+ IA64_MCA_DEBUG("%s: CPU %d corrected "
+ "machine check vector %#x enabled.\n",
+ __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
+}
+
+/*
+ * ia64_mca_cmc_vector_disable_keventd
+ *
+ * Called via keventd (smp_call_function() is not safe in interrupt context) to
+ * disable the cmc interrupt vector.
+ */
+static void
+ia64_mca_cmc_vector_disable_keventd(void *unused)
+{
+ on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
+}
+
+/*
+ * ia64_mca_cmc_vector_enable_keventd
+ *
+ * Called via keventd (smp_call_function() is not safe in interrupt context) to
+ * enable the cmc interrupt vector.
+ */
+static void
+ia64_mca_cmc_vector_enable_keventd(void *unused)
+{
+ on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
+}
+
+/*
+ * ia64_mca_wakeup_ipi_wait
+ *
+ * Wait for the inter-cpu interrupt to be sent by the
+ * monarch processor once it is done with handling the
+ * MCA.
+ *
+ * Inputs : None
+ * Outputs : None
+ */
+static void
+ia64_mca_wakeup_ipi_wait(void)
+{
+ int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
+ int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
+ u64 irr = 0;
+
+ do {
+ switch(irr_num) {
+ case 0:
+ irr = ia64_getreg(_IA64_REG_CR_IRR0);
+ break;
+ case 1:
+ irr = ia64_getreg(_IA64_REG_CR_IRR1);
+ break;
+ case 2:
+ irr = ia64_getreg(_IA64_REG_CR_IRR2);
+ break;
+ case 3:
+ irr = ia64_getreg(_IA64_REG_CR_IRR3);
+ break;
+ }
+ cpu_relax();
+ } while (!(irr & (1UL << irr_bit))) ;
+}
+
+/*
+ * ia64_mca_wakeup
+ *
+ * Send an inter-cpu interrupt to wake-up a particular cpu
+ * and mark that cpu to be out of rendez.
+ *
+ * Inputs : cpuid
+ * Outputs : None
+ */
+static void
+ia64_mca_wakeup(int cpu)
+{
+ platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
+ ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
+
+}
+
+/*
+ * ia64_mca_wakeup_all
+ *
+ * Wakeup all the cpus which have rendez'ed previously.
+ *
+ * Inputs : None
+ * Outputs : None
+ */
+static void
+ia64_mca_wakeup_all(void)
+{
+ int cpu;
+
+ /* Clear the Rendez checkin flag for all cpus */
+ for(cpu = 0; cpu < NR_CPUS; cpu++) {
+ if (!cpu_online(cpu))
+ continue;
+ if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
+ ia64_mca_wakeup(cpu);
+ }
+
+}
+
+/*
+ * ia64_mca_rendez_interrupt_handler
+ *
+ * This is handler used to put slave processors into spinloop
+ * while the monarch processor does the mca handling and later
+ * wake each slave up once the monarch is done.
+ *
+ * Inputs : None
+ * Outputs : None
+ */
+static irqreturn_t
+ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
+{
+ unsigned long flags;
+ int cpu = smp_processor_id();
+
+ /* Mask all interrupts */
+ local_irq_save(flags);
+
+ ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
+ /* Register with the SAL monarch that the slave has
+ * reached SAL
+ */
+ ia64_sal_mc_rendez();
+
+ /* Wait for the wakeup IPI from the monarch
+ * This waiting is done by polling on the wakeup-interrupt
+ * vector bit in the processor's IRRs
+ */
+ ia64_mca_wakeup_ipi_wait();
+
+ /* Enable all interrupts */
+ local_irq_restore(flags);
+ return IRQ_HANDLED;
+}
+
+/*
+ * ia64_mca_wakeup_int_handler
+ *
+ * The interrupt handler for processing the inter-cpu interrupt to the
+ * slave cpu which was spinning in the rendez loop.
+ * Since this spinning is done by turning off the interrupts and
+ * polling on the wakeup-interrupt bit in the IRR, there is
+ * nothing useful to be done in the handler.
+ *
+ * Inputs : wakeup_irq (Wakeup-interrupt bit)
+ * arg (Interrupt handler specific argument)
+ * ptregs (Exception frame at the time of the interrupt)
+ * Outputs : None
+ *
+ */
+static irqreturn_t
+ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
+{
+ return IRQ_HANDLED;
+}
+
+/*
+ * ia64_return_to_sal_check
+ *
+ * This is function called before going back from the OS_MCA handler
+ * to the OS_MCA dispatch code which finally takes the control back
+ * to the SAL.
+ * The main purpose of this routine is to setup the OS_MCA to SAL
+ * return state which can be used by the OS_MCA dispatch code
+ * just before going back to SAL.
+ *
+ * Inputs : None
+ * Outputs : None
+ */
+
+static void
+ia64_return_to_sal_check(int recover)
+{
+
+ /* Copy over some relevant stuff from the sal_to_os_mca_handoff
+ * so that it can be used at the time of os_mca_to_sal_handoff
+ */
+ ia64_os_to_sal_handoff_state.imots_sal_gp =
+ ia64_sal_to_os_handoff_state.imsto_sal_gp;
+
+ ia64_os_to_sal_handoff_state.imots_sal_check_ra =
+ ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
+
+ if (recover)
+ ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
+ else
+ ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
+
+ /* Default = tell SAL to return to same context */
+ ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
+
+ ia64_os_to_sal_handoff_state.imots_new_min_state =
+ (u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
+
+}
+
+/* Function pointer for extra MCA recovery */
+int (*ia64_mca_ucmc_extension)
+ (void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
+ = NULL;
+
+int
+ia64_reg_MCA_extension(void *fn)
+{
+ if (ia64_mca_ucmc_extension)
+ return 1;
+
+ ia64_mca_ucmc_extension = fn;
+ return 0;
+}
+
+void
+ia64_unreg_MCA_extension(void)
+{
+ if (ia64_mca_ucmc_extension)
+ ia64_mca_ucmc_extension = NULL;
+}
+
+EXPORT_SYMBOL(ia64_reg_MCA_extension);
+EXPORT_SYMBOL(ia64_unreg_MCA_extension);
+
+/*
+ * ia64_mca_ucmc_handler
+ *
+ * This is uncorrectable machine check handler called from OS_MCA
+ * dispatch code which is in turn called from SAL_CHECK().
+ * This is the place where the core of OS MCA handling is done.
+ * Right now the logs are extracted and displayed in a well-defined
+ * format. This handler code is supposed to be run only on the
+ * monarch processor. Once the monarch is done with MCA handling
+ * further MCA logging is enabled by clearing logs.
+ * Monarch also has the duty of sending wakeup-IPIs to pull the
+ * slave processors out of rendezvous spinloop.
+ *
+ * Inputs : None
+ * Outputs : None
+ */
+void
+ia64_mca_ucmc_handler(void)
+{
+ pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
+ &ia64_sal_to_os_handoff_state.proc_state_param;
+ int recover;
+
+ /* Get the MCA error record and log it */
+ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
+
+ /* TLB error is only exist in this SAL error record */
+ recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
+ /* other error recovery */
+ || (ia64_mca_ucmc_extension
+ && ia64_mca_ucmc_extension(
+ IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
+ &ia64_sal_to_os_handoff_state,
+ &ia64_os_to_sal_handoff_state));
+
+ if (recover) {
+ sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
+ rh->severity = sal_log_severity_corrected;
+ ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
+ }
+ /*
+ * Wakeup all the processors which are spinning in the rendezvous
+ * loop.
+ */
+ ia64_mca_wakeup_all();
+
+ /* Return to SAL */
+ ia64_return_to_sal_check(recover);
+}
+
+static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
+static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
+
+/*
+ * ia64_mca_cmc_int_handler
+ *
+ * This is corrected machine check interrupt handler.
+ * Right now the logs are extracted and displayed in a well-defined
+ * format.
+ *
+ * Inputs
+ * interrupt number
+ * client data arg ptr
+ * saved registers ptr
+ *
+ * Outputs
+ * None
+ */
+static irqreturn_t
+ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
+{
+ static unsigned long cmc_history[CMC_HISTORY_LENGTH];
+ static int index;
+ static DEFINE_SPINLOCK(cmc_history_lock);
+
+ IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
+ __FUNCTION__, cmc_irq, smp_processor_id());
+
+ /* SAL spec states this should run w/ interrupts enabled */
+ local_irq_enable();
+
+ /* Get the CMC error record and log it */
+ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
+
+ spin_lock(&cmc_history_lock);
+ if (!cmc_polling_enabled) {
+ int i, count = 1; /* we know 1 happened now */
+ unsigned long now = jiffies;
+
+ for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
+ if (now - cmc_history[i] <= HZ)
+ count++;
+ }
+
+ IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
+ if (count >= CMC_HISTORY_LENGTH) {
+
+ cmc_polling_enabled = 1;
+ spin_unlock(&cmc_history_lock);
+ schedule_work(&cmc_disable_work);
+
+ /*
+ * Corrected errors will still be corrected, but
+ * make sure there's a log somewhere that indicates
+ * something is generating more than we can handle.
+ */
+ printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
+
+ mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
+
+ /* lock already released, get out now */
+ return IRQ_HANDLED;
+ } else {
+ cmc_history[index++] = now;
+ if (index == CMC_HISTORY_LENGTH)
+ index = 0;
+ }
+ }
+ spin_unlock(&cmc_history_lock);
+ return IRQ_HANDLED;
+}
+
+/*
+ * ia64_mca_cmc_int_caller
+ *
+ * Triggered by sw interrupt from CMC polling routine. Calls
+ * real interrupt handler and either triggers a sw interrupt
+ * on the next cpu or does cleanup at the end.
+ *
+ * Inputs
+ * interrupt number
+ * client data arg ptr
+ * saved registers ptr
+ * Outputs
+ * handled
+ */
+static irqreturn_t
+ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
+{
+ static int start_count = -1;
+ unsigned int cpuid;
+
+ cpuid = smp_processor_id();
+
+ /* If first cpu, update count */
+ if (start_count == -1)
+ start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
+
+ ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
+
+ for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
+
+ if (cpuid < NR_CPUS) {
+ platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
+ } else {
+ /* If no log record, switch out of polling mode */
+ if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
+
+ printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
+ schedule_work(&cmc_enable_work);
+ cmc_polling_enabled = 0;
+
+ } else {
+
+ mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
+ }
+
+ start_count = -1;
+ }
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * ia64_mca_cmc_poll
+ *
+ * Poll for Corrected Machine Checks (CMCs)
+ *
+ * Inputs : dummy(unused)
+ * Outputs : None
+ *
+ */
+static void
+ia64_mca_cmc_poll (unsigned long dummy)
+{
+ /* Trigger a CMC interrupt cascade */
+ platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
+}
+
+/*
+ * ia64_mca_cpe_int_caller
+ *
+ * Triggered by sw interrupt from CPE polling routine. Calls
+ * real interrupt handler and either triggers a sw interrupt
+ * on the next cpu or does cleanup at the end.
+ *
+ * Inputs
+ * interrupt number
+ * client data arg ptr
+ * saved registers ptr
+ * Outputs
+ * handled
+ */
+#ifdef CONFIG_ACPI
+
+static irqreturn_t
+ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
+{
+ static int start_count = -1;
+ static int poll_time = MIN_CPE_POLL_INTERVAL;
+ unsigned int cpuid;
+
+ cpuid = smp_processor_id();
+
+ /* If first cpu, update count */
+ if (start_count == -1)
+ start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
+
+ ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
+
+ for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
+
+ if (cpuid < NR_CPUS) {
+ platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
+ } else {
+ /*
+ * If a log was recorded, increase our polling frequency,
+ * otherwise, backoff or return to interrupt mode.
+ */
+ if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
+ poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
+ } else if (cpe_vector < 0) {
+ poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
+ } else {
+ poll_time = MIN_CPE_POLL_INTERVAL;
+
+ printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
+ enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
+ cpe_poll_enabled = 0;
+ }
+
+ if (cpe_poll_enabled)
+ mod_timer(&cpe_poll_timer, jiffies + poll_time);
+ start_count = -1;
+ }
+
+ return IRQ_HANDLED;
+}
+
+#endif /* CONFIG_ACPI */
+
+/*
+ * ia64_mca_cpe_poll
+ *
+ * Poll for Corrected Platform Errors (CPEs), trigger interrupt
+ * on first cpu, from there it will trickle through all the cpus.
+ *
+ * Inputs : dummy(unused)
+ * Outputs : None
+ *
+ */
+static void
+ia64_mca_cpe_poll (unsigned long dummy)
+{
+ /* Trigger a CPE interrupt cascade */
+ platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
+}
+
+/*
+ * C portion of the OS INIT handler
+ *
+ * Called from ia64_monarch_init_handler
+ *
+ * Inputs: pointer to pt_regs where processor info was saved.
+ *
+ * Returns:
+ * 0 if SAL must warm boot the System
+ * 1 if SAL must return to interrupted context using PAL_MC_RESUME
+ *
+ */
+void
+ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
+{
+ pal_min_state_area_t *ms;
+
+ oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */
+ console_loglevel = 15; /* make sure printks make it to console */
+
+ printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
+ ia64_sal_to_os_handoff_state.proc_state_param);
+
+ /*
+ * Address of minstate area provided by PAL is physical,
+ * uncacheable (bit 63 set). Convert to Linux virtual
+ * address in region 6.
+ */
+ ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
+
+ init_handler_platform(ms, pt, sw); /* call platform specific routines */
+}
+
+static int __init
+ia64_mca_disable_cpe_polling(char *str)
+{
+ cpe_poll_enabled = 0;
+ return 1;
+}
+
+__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
+
+static struct irqaction cmci_irqaction = {
+ .handler = ia64_mca_cmc_int_handler,
+ .flags = SA_INTERRUPT,
+ .name = "cmc_hndlr"
+};
+
+static struct irqaction cmcp_irqaction = {
+ .handler = ia64_mca_cmc_int_caller,
+ .flags = SA_INTERRUPT,
+ .name = "cmc_poll"
+};
+
+static struct irqaction mca_rdzv_irqaction = {
+ .handler = ia64_mca_rendez_int_handler,
+ .flags = SA_INTERRUPT,
+ .name = "mca_rdzv"
+};
+
+static struct irqaction mca_wkup_irqaction = {
+ .handler = ia64_mca_wakeup_int_handler,
+ .flags = SA_INTERRUPT,
+ .name = "mca_wkup"
+};
+
+#ifdef CONFIG_ACPI
+static struct irqaction mca_cpe_irqaction = {
+ .handler = ia64_mca_cpe_int_handler,
+ .flags = SA_INTERRUPT,
+ .name = "cpe_hndlr"
+};
+
+static struct irqaction mca_cpep_irqaction = {
+ .handler = ia64_mca_cpe_int_caller,
+ .flags = SA_INTERRUPT,
+ .name = "cpe_poll"
+};
+#endif /* CONFIG_ACPI */
+
+/* Do per-CPU MCA-related initialization. */
+
+void __devinit
+ia64_mca_cpu_init(void *cpu_data)
+{
+ void *pal_vaddr;
+
+ if (smp_processor_id() == 0) {
+ void *mca_data;
+ int cpu;
+
+ mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
+ * NR_CPUS);
+ for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ __per_cpu_mca[cpu] = __pa(mca_data);
+ mca_data += sizeof(struct ia64_mca_cpu);
+ }
+ }
+
+ /*
+ * The MCA info structure was allocated earlier and its
+ * physical address saved in __per_cpu_mca[cpu]. Copy that
+ * address * to ia64_mca_data so we can access it as a per-CPU
+ * variable.
+ */
+ __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
+
+ /*
+ * Stash away a copy of the PTE needed to map the per-CPU page.
+ * We may need it during MCA recovery.
+ */
+ __get_cpu_var(ia64_mca_per_cpu_pte) =
+ pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
+
+ /*
+ * Also, stash away a copy of the PAL address and the PTE
+ * needed to map it.
+ */
+ pal_vaddr = efi_get_pal_addr();
+ if (!pal_vaddr)
+ return;
+ __get_cpu_var(ia64_mca_pal_base) =
+ GRANULEROUNDDOWN((unsigned long) pal_vaddr);
+ __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
+ PAGE_KERNEL));
+}
+
+/*
+ * ia64_mca_init
+ *
+ * Do all the system level mca specific initialization.
+ *
+ * 1. Register spinloop and wakeup request interrupt vectors
+ *
+ * 2. Register OS_MCA handler entry point
+ *
+ * 3. Register OS_INIT handler entry point
+ *
+ * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
+ *
+ * Note that this initialization is done very early before some kernel
+ * services are available.
+ *
+ * Inputs : None
+ *
+ * Outputs : None
+ */
+void __init
+ia64_mca_init(void)
+{
+ ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
+ ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
+ ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
+ int i;
+ s64 rc;
+ struct ia64_sal_retval isrv;
+ u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
+
+ IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
+
+ /* Clear the Rendez checkin flag for all cpus */
+ for(i = 0 ; i < NR_CPUS; i++)
+ ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
+
+ /*
+ * Register the rendezvous spinloop and wakeup mechanism with SAL
+ */
+
+ /* Register the rendezvous interrupt vector with SAL */
+ while (1) {
+ isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
+ SAL_MC_PARAM_MECHANISM_INT,
+ IA64_MCA_RENDEZ_VECTOR,
+ timeout,
+ SAL_MC_PARAM_RZ_ALWAYS);
+ rc = isrv.status;
+ if (rc == 0)
+ break;
+ if (rc == -2) {
+ printk(KERN_INFO "Increasing MCA rendezvous timeout from "
+ "%ld to %ld milliseconds\n", timeout, isrv.v0);
+ timeout = isrv.v0;
+ continue;
+ }
+ printk(KERN_ERR "Failed to register rendezvous interrupt "
+ "with SAL (status %ld)\n", rc);
+ return;
+ }
+
+ /* Register the wakeup interrupt vector with SAL */
+ isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
+ SAL_MC_PARAM_MECHANISM_INT,
+ IA64_MCA_WAKEUP_VECTOR,
+ 0, 0);
+ rc = isrv.status;
+ if (rc) {
+ printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
+ "(status %ld)\n", rc);
+ return;
+ }
+
+ IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
+
+ ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
+ /*
+ * XXX - disable SAL checksum by setting size to 0; should be
+ * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
+ */
+ ia64_mc_info.imi_mca_handler_size = 0;
+
+ /* Register the os mca handler with SAL */
+ if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
+ ia64_mc_info.imi_mca_handler,
+ ia64_tpa(mca_hldlr_ptr->gp),
+ ia64_mc_info.imi_mca_handler_size,
+ 0, 0, 0)))
+ {
+ printk(KERN_ERR "Failed to register OS MCA handler with SAL "
+ "(status %ld)\n", rc);
+ return;
+ }
+
+ IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
+ ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
+
+ /*
+ * XXX - disable SAL checksum by setting size to 0, should be
+ * size of the actual init handler in mca_asm.S.
+ */
+ ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
+ ia64_mc_info.imi_monarch_init_handler_size = 0;
+ ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
+ ia64_mc_info.imi_slave_init_handler_size = 0;
+
+ IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
+ ia64_mc_info.imi_monarch_init_handler);
+
+ /* Register the os init handler with SAL */
+ if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
+ ia64_mc_info.imi_monarch_init_handler,
+ ia64_tpa(ia64_getreg(_IA64_REG_GP)),
+ ia64_mc_info.imi_monarch_init_handler_size,
+ ia64_mc_info.imi_slave_init_handler,
+ ia64_tpa(ia64_getreg(_IA64_REG_GP)),
+ ia64_mc_info.imi_slave_init_handler_size)))
+ {
+ printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
+ "(status %ld)\n", rc);
+ return;
+ }
+
+ IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
+
+ /*
+ * Configure the CMCI/P vector and handler. Interrupts for CMC are
+ * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
+ */
+ register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
+ register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
+ ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
+
+ /* Setup the MCA rendezvous interrupt vector */
+ register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
+
+ /* Setup the MCA wakeup interrupt vector */
+ register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
+
+#ifdef CONFIG_ACPI
+ /* Setup the CPEI/P vector and handler */
+ cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
+ register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
+#endif
+
+ /* Initialize the areas set aside by the OS to buffer the
+ * platform/processor error states for MCA/INIT/CMC
+ * handling.
+ */
+ ia64_log_init(SAL_INFO_TYPE_MCA);
+ ia64_log_init(SAL_INFO_TYPE_INIT);
+ ia64_log_init(SAL_INFO_TYPE_CMC);
+ ia64_log_init(SAL_INFO_TYPE_CPE);
+
+ mca_init = 1;
+ printk(KERN_INFO "MCA related initialization done\n");
+}
+
+/*
+ * ia64_mca_late_init
+ *
+ * Opportunity to setup things that require initialization later
+ * than ia64_mca_init. Setup a timer to poll for CPEs if the
+ * platform doesn't support an interrupt driven mechanism.
+ *
+ * Inputs : None
+ * Outputs : Status
+ */
+static int __init
+ia64_mca_late_init(void)
+{
+ if (!mca_init)
+ return 0;
+
+ /* Setup the CMCI/P vector and handler */
+ init_timer(&cmc_poll_timer);
+ cmc_poll_timer.function = ia64_mca_cmc_poll;
+
+ /* Unmask/enable the vector */
+ cmc_polling_enabled = 0;
+ schedule_work(&cmc_enable_work);
+
+ IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
+
+#ifdef CONFIG_ACPI
+ /* Setup the CPEI/P vector and handler */
+ init_timer(&cpe_poll_timer);
+ cpe_poll_timer.function = ia64_mca_cpe_poll;
+
+ {
+ irq_desc_t *desc;
+ unsigned int irq;
+
+ if (cpe_vector >= 0) {
+ /* If platform supports CPEI, enable the irq. */
+ cpe_poll_enabled = 0;
+ for (irq = 0; irq < NR_IRQS; ++irq)
+ if (irq_to_vector(irq) == cpe_vector) {
+ desc = irq_descp(irq);
+ desc->status |= IRQ_PER_CPU;
+ setup_irq(irq, &mca_cpe_irqaction);
+ }
+ ia64_mca_register_cpev(cpe_vector);
+ IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
+ } else {
+ /* If platform doesn't support CPEI, get the timer going. */
+ if (cpe_poll_enabled) {
+ ia64_mca_cpe_poll(0UL);
+ IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
+ }
+ }
+ }
+#endif
+
+ return 0;
+}
+
+device_initcall(ia64_mca_late_init);
diff --git a/arch/ia64/kernel/mca_asm.S b/arch/ia64/kernel/mca_asm.S
new file mode 100644
index 0000000..cf3f8014
--- /dev/null
+++ b/arch/ia64/kernel/mca_asm.S
@@ -0,0 +1,928 @@
+//
+// assembly portion of the IA64 MCA handling
+//
+// Mods by cfleck to integrate into kernel build
+// 00/03/15 davidm Added various stop bits to get a clean compile
+//
+// 00/03/29 cfleck Added code to save INIT handoff state in pt_regs format, switch to temp
+// kstack, switch modes, jump to C INIT handler
+//
+// 02/01/04 J.Hall <jenna.s.hall@intel.com>
+// Before entering virtual mode code:
+// 1. Check for TLB CPU error
+// 2. Restore current thread pointer to kr6
+// 3. Move stack ptr 16 bytes to conform to C calling convention
+//
+// 04/11/12 Russ Anderson <rja@sgi.com>
+// Added per cpu MCA/INIT stack save areas.
+//
+#include <linux/config.h>
+#include <linux/threads.h>
+
+#include <asm/asmmacro.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/mca_asm.h>
+#include <asm/mca.h>
+
+/*
+ * When we get a machine check, the kernel stack pointer is no longer
+ * valid, so we need to set a new stack pointer.
+ */
+#define MINSTATE_PHYS /* Make sure stack access is physical for MINSTATE */
+
+/*
+ * Needed for return context to SAL
+ */
+#define IA64_MCA_SAME_CONTEXT 0
+#define IA64_MCA_COLD_BOOT -2
+
+#include "minstate.h"
+
+/*
+ * SAL_TO_OS_MCA_HANDOFF_STATE (SAL 3.0 spec)
+ * 1. GR1 = OS GP
+ * 2. GR8 = PAL_PROC physical address
+ * 3. GR9 = SAL_PROC physical address
+ * 4. GR10 = SAL GP (physical)
+ * 5. GR11 = Rendez state
+ * 6. GR12 = Return address to location within SAL_CHECK
+ */
+#define SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(_tmp) \
+ LOAD_PHYSICAL(p0, _tmp, ia64_sal_to_os_handoff_state);; \
+ st8 [_tmp]=r1,0x08;; \
+ st8 [_tmp]=r8,0x08;; \
+ st8 [_tmp]=r9,0x08;; \
+ st8 [_tmp]=r10,0x08;; \
+ st8 [_tmp]=r11,0x08;; \
+ st8 [_tmp]=r12,0x08;; \
+ st8 [_tmp]=r17,0x08;; \
+ st8 [_tmp]=r18,0x08
+
+/*
+ * OS_MCA_TO_SAL_HANDOFF_STATE (SAL 3.0 spec)
+ * (p6) is executed if we never entered virtual mode (TLB error)
+ * (p7) is executed if we entered virtual mode as expected (normal case)
+ * 1. GR8 = OS_MCA return status
+ * 2. GR9 = SAL GP (physical)
+ * 3. GR10 = 0/1 returning same/new context
+ * 4. GR22 = New min state save area pointer
+ * returns ptr to SAL rtn save loc in _tmp
+ */
+#define OS_MCA_TO_SAL_HANDOFF_STATE_RESTORE(_tmp) \
+ movl _tmp=ia64_os_to_sal_handoff_state;; \
+ DATA_VA_TO_PA(_tmp);; \
+ ld8 r8=[_tmp],0x08;; \
+ ld8 r9=[_tmp],0x08;; \
+ ld8 r10=[_tmp],0x08;; \
+ ld8 r22=[_tmp],0x08;;
+ // now _tmp is pointing to SAL rtn save location
+
+/*
+ * COLD_BOOT_HANDOFF_STATE() sets ia64_mca_os_to_sal_state
+ * imots_os_status=IA64_MCA_COLD_BOOT
+ * imots_sal_gp=SAL GP
+ * imots_context=IA64_MCA_SAME_CONTEXT
+ * imots_new_min_state=Min state save area pointer
+ * imots_sal_check_ra=Return address to location within SAL_CHECK
+ *
+ */
+#define COLD_BOOT_HANDOFF_STATE(sal_to_os_handoff,os_to_sal_handoff,tmp)\
+ movl tmp=IA64_MCA_COLD_BOOT; \
+ movl sal_to_os_handoff=__pa(ia64_sal_to_os_handoff_state); \
+ movl os_to_sal_handoff=__pa(ia64_os_to_sal_handoff_state);; \
+ st8 [os_to_sal_handoff]=tmp,8;; \
+ ld8 tmp=[sal_to_os_handoff],48;; \
+ st8 [os_to_sal_handoff]=tmp,8;; \
+ movl tmp=IA64_MCA_SAME_CONTEXT;; \
+ st8 [os_to_sal_handoff]=tmp,8;; \
+ ld8 tmp=[sal_to_os_handoff],-8;; \
+ st8 [os_to_sal_handoff]=tmp,8;; \
+ ld8 tmp=[sal_to_os_handoff];; \
+ st8 [os_to_sal_handoff]=tmp;;
+
+#define GET_IA64_MCA_DATA(reg) \
+ GET_THIS_PADDR(reg, ia64_mca_data) \
+ ;; \
+ ld8 reg=[reg]
+
+ .global ia64_os_mca_dispatch
+ .global ia64_os_mca_dispatch_end
+ .global ia64_sal_to_os_handoff_state
+ .global ia64_os_to_sal_handoff_state
+
+ .text
+ .align 16
+
+ia64_os_mca_dispatch:
+
+ // Serialize all MCA processing
+ mov r3=1;;
+ LOAD_PHYSICAL(p0,r2,ia64_mca_serialize);;
+ia64_os_mca_spin:
+ xchg8 r4=[r2],r3;;
+ cmp.ne p6,p0=r4,r0
+(p6) br ia64_os_mca_spin
+
+ // Save the SAL to OS MCA handoff state as defined
+ // by SAL SPEC 3.0
+ // NOTE : The order in which the state gets saved
+ // is dependent on the way the C-structure
+ // for ia64_mca_sal_to_os_state_t has been
+ // defined in include/asm/mca.h
+ SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(r2)
+ ;;
+
+ // LOG PROCESSOR STATE INFO FROM HERE ON..
+begin_os_mca_dump:
+ br ia64_os_mca_proc_state_dump;;
+
+ia64_os_mca_done_dump:
+
+ LOAD_PHYSICAL(p0,r16,ia64_sal_to_os_handoff_state+56)
+ ;;
+ ld8 r18=[r16] // Get processor state parameter on existing PALE_CHECK.
+ ;;
+ tbit.nz p6,p7=r18,60
+(p7) br.spnt done_tlb_purge_and_reload
+
+ // The following code purges TC and TR entries. Then reload all TC entries.
+ // Purge percpu data TC entries.
+begin_tlb_purge_and_reload:
+
+#define O(member) IA64_CPUINFO_##member##_OFFSET
+
+ GET_THIS_PADDR(r2, cpu_info) // load phys addr of cpu_info into r2
+ ;;
+ addl r17=O(PTCE_STRIDE),r2
+ addl r2=O(PTCE_BASE),r2
+ ;;
+ ld8 r18=[r2],(O(PTCE_COUNT)-O(PTCE_BASE));; // r18=ptce_base
+ ld4 r19=[r2],4 // r19=ptce_count[0]
+ ld4 r21=[r17],4 // r21=ptce_stride[0]
+ ;;
+ ld4 r20=[r2] // r20=ptce_count[1]
+ ld4 r22=[r17] // r22=ptce_stride[1]
+ mov r24=0
+ ;;
+ adds r20=-1,r20
+ ;;
+#undef O
+
+2:
+ cmp.ltu p6,p7=r24,r19
+(p7) br.cond.dpnt.few 4f
+ mov ar.lc=r20
+3:
+ ptc.e r18
+ ;;
+ add r18=r22,r18
+ br.cloop.sptk.few 3b
+ ;;
+ add r18=r21,r18
+ add r24=1,r24
+ ;;
+ br.sptk.few 2b
+4:
+ srlz.i // srlz.i implies srlz.d
+ ;;
+
+ // Now purge addresses formerly mapped by TR registers
+ // 1. Purge ITR&DTR for kernel.
+ movl r16=KERNEL_START
+ mov r18=KERNEL_TR_PAGE_SHIFT<<2
+ ;;
+ ptr.i r16, r18
+ ptr.d r16, r18
+ ;;
+ srlz.i
+ ;;
+ srlz.d
+ ;;
+ // 2. Purge DTR for PERCPU data.
+ movl r16=PERCPU_ADDR
+ mov r18=PERCPU_PAGE_SHIFT<<2
+ ;;
+ ptr.d r16,r18
+ ;;
+ srlz.d
+ ;;
+ // 3. Purge ITR for PAL code.
+ GET_THIS_PADDR(r2, ia64_mca_pal_base)
+ ;;
+ ld8 r16=[r2]
+ mov r18=IA64_GRANULE_SHIFT<<2
+ ;;
+ ptr.i r16,r18
+ ;;
+ srlz.i
+ ;;
+ // 4. Purge DTR for stack.
+ mov r16=IA64_KR(CURRENT_STACK)
+ ;;
+ shl r16=r16,IA64_GRANULE_SHIFT
+ movl r19=PAGE_OFFSET
+ ;;
+ add r16=r19,r16
+ mov r18=IA64_GRANULE_SHIFT<<2
+ ;;
+ ptr.d r16,r18
+ ;;
+ srlz.i
+ ;;
+ // Finally reload the TR registers.
+ // 1. Reload DTR/ITR registers for kernel.
+ mov r18=KERNEL_TR_PAGE_SHIFT<<2
+ movl r17=KERNEL_START
+ ;;
+ mov cr.itir=r18
+ mov cr.ifa=r17
+ mov r16=IA64_TR_KERNEL
+ mov r19=ip
+ movl r18=PAGE_KERNEL
+ ;;
+ dep r17=0,r19,0, KERNEL_TR_PAGE_SHIFT
+ ;;
+ or r18=r17,r18
+ ;;
+ itr.i itr[r16]=r18
+ ;;
+ itr.d dtr[r16]=r18
+ ;;
+ srlz.i
+ srlz.d
+ ;;
+ // 2. Reload DTR register for PERCPU data.
+ GET_THIS_PADDR(r2, ia64_mca_per_cpu_pte)
+ ;;
+ movl r16=PERCPU_ADDR // vaddr
+ movl r18=PERCPU_PAGE_SHIFT<<2
+ ;;
+ mov cr.itir=r18
+ mov cr.ifa=r16
+ ;;
+ ld8 r18=[r2] // load per-CPU PTE
+ mov r16=IA64_TR_PERCPU_DATA;
+ ;;
+ itr.d dtr[r16]=r18
+ ;;
+ srlz.d
+ ;;
+ // 3. Reload ITR for PAL code.
+ GET_THIS_PADDR(r2, ia64_mca_pal_pte)
+ ;;
+ ld8 r18=[r2] // load PAL PTE
+ ;;
+ GET_THIS_PADDR(r2, ia64_mca_pal_base)
+ ;;
+ ld8 r16=[r2] // load PAL vaddr
+ mov r19=IA64_GRANULE_SHIFT<<2
+ ;;
+ mov cr.itir=r19
+ mov cr.ifa=r16
+ mov r20=IA64_TR_PALCODE
+ ;;
+ itr.i itr[r20]=r18
+ ;;
+ srlz.i
+ ;;
+ // 4. Reload DTR for stack.
+ mov r16=IA64_KR(CURRENT_STACK)
+ ;;
+ shl r16=r16,IA64_GRANULE_SHIFT
+ movl r19=PAGE_OFFSET
+ ;;
+ add r18=r19,r16
+ movl r20=PAGE_KERNEL
+ ;;
+ add r16=r20,r16
+ mov r19=IA64_GRANULE_SHIFT<<2
+ ;;
+ mov cr.itir=r19
+ mov cr.ifa=r18
+ mov r20=IA64_TR_CURRENT_STACK
+ ;;
+ itr.d dtr[r20]=r16
+ ;;
+ srlz.d
+ ;;
+ br.sptk.many done_tlb_purge_and_reload
+err:
+ COLD_BOOT_HANDOFF_STATE(r20,r21,r22)
+ br.sptk.many ia64_os_mca_done_restore
+
+done_tlb_purge_and_reload:
+
+ // Setup new stack frame for OS_MCA handling
+ GET_IA64_MCA_DATA(r2)
+ ;;
+ add r3 = IA64_MCA_CPU_STACKFRAME_OFFSET, r2
+ add r2 = IA64_MCA_CPU_RBSTORE_OFFSET, r2
+ ;;
+ rse_switch_context(r6,r3,r2);; // RSC management in this new context
+
+ GET_IA64_MCA_DATA(r2)
+ ;;
+ add r2 = IA64_MCA_CPU_STACK_OFFSET+IA64_MCA_STACK_SIZE-16, r2
+ ;;
+ mov r12=r2 // establish new stack-pointer
+
+ // Enter virtual mode from physical mode
+ VIRTUAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_begin, r4)
+ia64_os_mca_virtual_begin:
+
+ // Call virtual mode handler
+ movl r2=ia64_mca_ucmc_handler;;
+ mov b6=r2;;
+ br.call.sptk.many b0=b6;;
+.ret0:
+ // Revert back to physical mode before going back to SAL
+ PHYSICAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_end, r4)
+ia64_os_mca_virtual_end:
+
+ // restore the original stack frame here
+ GET_IA64_MCA_DATA(r2)
+ ;;
+ add r2 = IA64_MCA_CPU_STACKFRAME_OFFSET, r2
+ ;;
+ movl r4=IA64_PSR_MC
+ ;;
+ rse_return_context(r4,r3,r2) // switch from interrupt context for RSE
+
+ // let us restore all the registers from our PSI structure
+ mov r8=gp
+ ;;
+begin_os_mca_restore:
+ br ia64_os_mca_proc_state_restore;;
+
+ia64_os_mca_done_restore:
+ OS_MCA_TO_SAL_HANDOFF_STATE_RESTORE(r2);;
+ // branch back to SALE_CHECK
+ ld8 r3=[r2];;
+ mov b0=r3;; // SAL_CHECK return address
+
+ // release lock
+ movl r3=ia64_mca_serialize;;
+ DATA_VA_TO_PA(r3);;
+ st8.rel [r3]=r0
+
+ br b0
+ ;;
+ia64_os_mca_dispatch_end:
+//EndMain//////////////////////////////////////////////////////////////////////
+
+
+//++
+// Name:
+// ia64_os_mca_proc_state_dump()
+//
+// Stub Description:
+//
+// This stub dumps the processor state during MCHK to a data area
+//
+//--
+
+ia64_os_mca_proc_state_dump:
+// Save bank 1 GRs 16-31 which will be used by c-language code when we switch
+// to virtual addressing mode.
+ GET_IA64_MCA_DATA(r2)
+ ;;
+ add r2 = IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET, r2
+ ;;
+// save ar.NaT
+ mov r5=ar.unat // ar.unat
+
+// save banked GRs 16-31 along with NaT bits
+ bsw.1;;
+ st8.spill [r2]=r16,8;;
+ st8.spill [r2]=r17,8;;
+ st8.spill [r2]=r18,8;;
+ st8.spill [r2]=r19,8;;
+ st8.spill [r2]=r20,8;;
+ st8.spill [r2]=r21,8;;
+ st8.spill [r2]=r22,8;;
+ st8.spill [r2]=r23,8;;
+ st8.spill [r2]=r24,8;;
+ st8.spill [r2]=r25,8;;
+ st8.spill [r2]=r26,8;;
+ st8.spill [r2]=r27,8;;
+ st8.spill [r2]=r28,8;;
+ st8.spill [r2]=r29,8;;
+ st8.spill [r2]=r30,8;;
+ st8.spill [r2]=r31,8;;
+
+ mov r4=ar.unat;;
+ st8 [r2]=r4,8 // save User NaT bits for r16-r31
+ mov ar.unat=r5 // restore original unat
+ bsw.0;;
+
+//save BRs
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2 // duplicate r2 in r4
+
+ mov r3=b0
+ mov r5=b1
+ mov r7=b2;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=b3
+ mov r5=b4
+ mov r7=b5;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=b6
+ mov r5=b7;;
+ st8 [r2]=r3,2*8
+ st8 [r4]=r5,2*8;;
+
+cSaveCRs:
+// save CRs
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2 // duplicate r2 in r4
+
+ mov r3=cr.dcr
+ mov r5=cr.itm
+ mov r7=cr.iva;;
+
+ st8 [r2]=r3,8*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;; // 48 byte rements
+
+ mov r3=cr.pta;;
+ st8 [r2]=r3,8*8;; // 64 byte rements
+
+// if PSR.ic=0, reading interruption registers causes an illegal operation fault
+ mov r3=psr;;
+ tbit.nz.unc p6,p0=r3,PSR_IC;; // PSI Valid Log bit pos. test
+(p6) st8 [r2]=r0,9*8+160 // increment by 232 byte inc.
+begin_skip_intr_regs:
+(p6) br SkipIntrRegs;;
+
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2 // duplicate r2 in r6
+
+ mov r3=cr.ipsr
+ mov r5=cr.isr
+ mov r7=r0;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=cr.iip
+ mov r5=cr.ifa
+ mov r7=cr.itir;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=cr.iipa
+ mov r5=cr.ifs
+ mov r7=cr.iim;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=cr25;; // cr.iha
+ st8 [r2]=r3,160;; // 160 byte rement
+
+SkipIntrRegs:
+ st8 [r2]=r0,152;; // another 152 byte .
+
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2 // duplicate r2 in r6
+
+ mov r3=cr.lid
+// mov r5=cr.ivr // cr.ivr, don't read it
+ mov r7=cr.tpr;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=r0 // cr.eoi => cr67
+ mov r5=r0 // cr.irr0 => cr68
+ mov r7=r0;; // cr.irr1 => cr69
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=r0 // cr.irr2 => cr70
+ mov r5=r0 // cr.irr3 => cr71
+ mov r7=cr.itv;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=cr.pmv
+ mov r5=cr.cmcv;;
+ st8 [r2]=r3,7*8
+ st8 [r4]=r5,7*8;;
+
+ mov r3=r0 // cr.lrr0 => cr80
+ mov r5=r0;; // cr.lrr1 => cr81
+ st8 [r2]=r3,23*8
+ st8 [r4]=r5,23*8;;
+
+ adds r2=25*8,r2;;
+
+cSaveARs:
+// save ARs
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2 // duplicate r2 in r6
+
+ mov r3=ar.k0
+ mov r5=ar.k1
+ mov r7=ar.k2;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=ar.k3
+ mov r5=ar.k4
+ mov r7=ar.k5;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=ar.k6
+ mov r5=ar.k7
+ mov r7=r0;; // ar.kr8
+ st8 [r2]=r3,10*8
+ st8 [r4]=r5,10*8
+ st8 [r6]=r7,10*8;; // rement by 72 bytes
+
+ mov r3=ar.rsc
+ mov ar.rsc=r0 // put RSE in enforced lazy mode
+ mov r5=ar.bsp
+ ;;
+ mov r7=ar.bspstore;;
+ st8 [r2]=r3,3*8
+ st8 [r4]=r5,3*8
+ st8 [r6]=r7,3*8;;
+
+ mov r3=ar.rnat;;
+ st8 [r2]=r3,8*13 // increment by 13x8 bytes
+
+ mov r3=ar.ccv;;
+ st8 [r2]=r3,8*4
+
+ mov r3=ar.unat;;
+ st8 [r2]=r3,8*4
+
+ mov r3=ar.fpsr;;
+ st8 [r2]=r3,8*4
+
+ mov r3=ar.itc;;
+ st8 [r2]=r3,160 // 160
+
+ mov r3=ar.pfs;;
+ st8 [r2]=r3,8
+
+ mov r3=ar.lc;;
+ st8 [r2]=r3,8
+
+ mov r3=ar.ec;;
+ st8 [r2]=r3
+ add r2=8*62,r2 //padding
+
+// save RRs
+ mov ar.lc=0x08-1
+ movl r4=0x00;;
+
+cStRR:
+ dep.z r5=r4,61,3;;
+ mov r3=rr[r5];;
+ st8 [r2]=r3,8
+ add r4=1,r4
+ br.cloop.sptk.few cStRR
+ ;;
+end_os_mca_dump:
+ br ia64_os_mca_done_dump;;
+
+//EndStub//////////////////////////////////////////////////////////////////////
+
+
+//++
+// Name:
+// ia64_os_mca_proc_state_restore()
+//
+// Stub Description:
+//
+// This is a stub to restore the saved processor state during MCHK
+//
+//--
+
+ia64_os_mca_proc_state_restore:
+
+// Restore bank1 GR16-31
+ GET_IA64_MCA_DATA(r2)
+ ;;
+ add r2 = IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET, r2
+
+restore_GRs: // restore bank-1 GRs 16-31
+ bsw.1;;
+ add r3=16*8,r2;; // to get to NaT of GR 16-31
+ ld8 r3=[r3];;
+ mov ar.unat=r3;; // first restore NaT
+
+ ld8.fill r16=[r2],8;;
+ ld8.fill r17=[r2],8;;
+ ld8.fill r18=[r2],8;;
+ ld8.fill r19=[r2],8;;
+ ld8.fill r20=[r2],8;;
+ ld8.fill r21=[r2],8;;
+ ld8.fill r22=[r2],8;;
+ ld8.fill r23=[r2],8;;
+ ld8.fill r24=[r2],8;;
+ ld8.fill r25=[r2],8;;
+ ld8.fill r26=[r2],8;;
+ ld8.fill r27=[r2],8;;
+ ld8.fill r28=[r2],8;;
+ ld8.fill r29=[r2],8;;
+ ld8.fill r30=[r2],8;;
+ ld8.fill r31=[r2],8;;
+
+ ld8 r3=[r2],8;; // increment to skip NaT
+ bsw.0;;
+
+restore_BRs:
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2;; // duplicate r2 in r4
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov b0=r3
+ mov b1=r5
+ mov b2=r7;;
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov b3=r3
+ mov b4=r5
+ mov b5=r7;;
+
+ ld8 r3=[r2],2*8
+ ld8 r5=[r4],2*8;;
+ mov b6=r3
+ mov b7=r5;;
+
+restore_CRs:
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2;; // duplicate r2 in r4
+
+ ld8 r3=[r2],8*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;; // 48 byte increments
+ mov cr.dcr=r3
+ mov cr.itm=r5
+ mov cr.iva=r7;;
+
+ ld8 r3=[r2],8*8;; // 64 byte increments
+// mov cr.pta=r3
+
+
+// if PSR.ic=1, reading interruption registers causes an illegal operation fault
+ mov r3=psr;;
+ tbit.nz.unc p6,p0=r3,PSR_IC;; // PSI Valid Log bit pos. test
+(p6) st8 [r2]=r0,9*8+160 // increment by 232 byte inc.
+
+begin_rskip_intr_regs:
+(p6) br rSkipIntrRegs;;
+
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2;; // duplicate r2 in r4
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov cr.ipsr=r3
+// mov cr.isr=r5 // cr.isr is read only
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov cr.iip=r3
+ mov cr.ifa=r5
+ mov cr.itir=r7;;
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov cr.iipa=r3
+ mov cr.ifs=r5
+ mov cr.iim=r7
+
+ ld8 r3=[r2],160;; // 160 byte increment
+ mov cr.iha=r3
+
+rSkipIntrRegs:
+ ld8 r3=[r2],152;; // another 152 byte inc.
+
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2;; // duplicate r2 in r6
+
+ ld8 r3=[r2],8*3
+ ld8 r5=[r4],8*3
+ ld8 r7=[r6],8*3;;
+ mov cr.lid=r3
+// mov cr.ivr=r5 // cr.ivr is read only
+ mov cr.tpr=r7;;
+
+ ld8 r3=[r2],8*3
+ ld8 r5=[r4],8*3
+ ld8 r7=[r6],8*3;;
+// mov cr.eoi=r3
+// mov cr.irr0=r5 // cr.irr0 is read only
+// mov cr.irr1=r7;; // cr.irr1 is read only
+
+ ld8 r3=[r2],8*3
+ ld8 r5=[r4],8*3
+ ld8 r7=[r6],8*3;;
+// mov cr.irr2=r3 // cr.irr2 is read only
+// mov cr.irr3=r5 // cr.irr3 is read only
+ mov cr.itv=r7;;
+
+ ld8 r3=[r2],8*7
+ ld8 r5=[r4],8*7;;
+ mov cr.pmv=r3
+ mov cr.cmcv=r5;;
+
+ ld8 r3=[r2],8*23
+ ld8 r5=[r4],8*23;;
+ adds r2=8*23,r2
+ adds r4=8*23,r4;;
+// mov cr.lrr0=r3
+// mov cr.lrr1=r5
+
+ adds r2=8*2,r2;;
+
+restore_ARs:
+ add r4=8,r2 // duplicate r2 in r4
+ add r6=2*8,r2;; // duplicate r2 in r4
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov ar.k0=r3
+ mov ar.k1=r5
+ mov ar.k2=r7;;
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+ mov ar.k3=r3
+ mov ar.k4=r5
+ mov ar.k5=r7;;
+
+ ld8 r3=[r2],10*8
+ ld8 r5=[r4],10*8
+ ld8 r7=[r6],10*8;;
+ mov ar.k6=r3
+ mov ar.k7=r5
+ ;;
+
+ ld8 r3=[r2],3*8
+ ld8 r5=[r4],3*8
+ ld8 r7=[r6],3*8;;
+// mov ar.rsc=r3
+// mov ar.bsp=r5 // ar.bsp is read only
+ mov ar.rsc=r0 // make sure that RSE is in enforced lazy mode
+ ;;
+ mov ar.bspstore=r7;;
+
+ ld8 r9=[r2],8*13;;
+ mov ar.rnat=r9
+
+ mov ar.rsc=r3
+ ld8 r3=[r2],8*4;;
+ mov ar.ccv=r3
+
+ ld8 r3=[r2],8*4;;
+ mov ar.unat=r3
+
+ ld8 r3=[r2],8*4;;
+ mov ar.fpsr=r3
+
+ ld8 r3=[r2],160;; // 160
+// mov ar.itc=r3
+
+ ld8 r3=[r2],8;;
+ mov ar.pfs=r3
+
+ ld8 r3=[r2],8;;
+ mov ar.lc=r3
+
+ ld8 r3=[r2];;
+ mov ar.ec=r3
+ add r2=8*62,r2;; // padding
+
+restore_RRs:
+ mov r5=ar.lc
+ mov ar.lc=0x08-1
+ movl r4=0x00;;
+cStRRr:
+ dep.z r7=r4,61,3
+ ld8 r3=[r2],8;;
+ mov rr[r7]=r3 // what are its access previledges?
+ add r4=1,r4
+ br.cloop.sptk.few cStRRr
+ ;;
+ mov ar.lc=r5
+ ;;
+end_os_mca_restore:
+ br ia64_os_mca_done_restore;;
+
+//EndStub//////////////////////////////////////////////////////////////////////
+
+
+// ok, the issue here is that we need to save state information so
+// it can be useable by the kernel debugger and show regs routines.
+// In order to do this, our best bet is save the current state (plus
+// the state information obtain from the MIN_STATE_AREA) into a pt_regs
+// format. This way we can pass it on in a useable format.
+//
+
+//
+// SAL to OS entry point for INIT on the monarch processor
+// This has been defined for registration purposes with SAL
+// as a part of ia64_mca_init.
+//
+// When we get here, the following registers have been
+// set by the SAL for our use
+//
+// 1. GR1 = OS INIT GP
+// 2. GR8 = PAL_PROC physical address
+// 3. GR9 = SAL_PROC physical address
+// 4. GR10 = SAL GP (physical)
+// 5. GR11 = Init Reason
+// 0 = Received INIT for event other than crash dump switch
+// 1 = Received wakeup at the end of an OS_MCA corrected machine check
+// 2 = Received INIT dude to CrashDump switch assertion
+//
+// 6. GR12 = Return address to location within SAL_INIT procedure
+
+
+GLOBAL_ENTRY(ia64_monarch_init_handler)
+ .prologue
+ // stash the information the SAL passed to os
+ SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(r2)
+ ;;
+ SAVE_MIN_WITH_COVER
+ ;;
+ mov r8=cr.ifa
+ mov r9=cr.isr
+ adds r3=8,r2 // set up second base pointer
+ ;;
+ SAVE_REST
+
+// ok, enough should be saved at this point to be dangerous, and supply
+// information for a dump
+// We need to switch to Virtual mode before hitting the C functions.
+
+ movl r2=IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN
+ mov r3=psr // get the current psr, minimum enabled at this point
+ ;;
+ or r2=r2,r3
+ ;;
+ movl r3=IVirtual_Switch
+ ;;
+ mov cr.iip=r3 // short return to set the appropriate bits
+ mov cr.ipsr=r2 // need to do an rfi to set appropriate bits
+ ;;
+ rfi
+ ;;
+IVirtual_Switch:
+ //
+ // We should now be running virtual
+ //
+ // Let's call the C handler to get the rest of the state info
+ //
+ alloc r14=ar.pfs,0,0,2,0 // now it's safe (must be first in insn group!)
+ ;;
+ adds out0=16,sp // out0 = pointer to pt_regs
+ ;;
+ DO_SAVE_SWITCH_STACK
+ .body
+ adds out1=16,sp // out0 = pointer to switch_stack
+
+ br.call.sptk.many rp=ia64_init_handler
+.ret1:
+
+return_from_init:
+ br.sptk return_from_init
+END(ia64_monarch_init_handler)
+
+//
+// SAL to OS entry point for INIT on the slave processor
+// This has been defined for registration purposes with SAL
+// as a part of ia64_mca_init.
+//
+
+GLOBAL_ENTRY(ia64_slave_init_handler)
+1: br.sptk 1b
+END(ia64_slave_init_handler)
diff --git a/arch/ia64/kernel/mca_drv.c b/arch/ia64/kernel/mca_drv.c
new file mode 100644
index 0000000..ab47817
--- /dev/null
+++ b/arch/ia64/kernel/mca_drv.c
@@ -0,0 +1,639 @@
+/*
+ * File: mca_drv.c
+ * Purpose: Generic MCA handling layer
+ *
+ * Copyright (C) 2004 FUJITSU LIMITED
+ * Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com)
+ */
+#include <linux/config.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kallsyms.h>
+#include <linux/smp_lock.h>
+#include <linux/bootmem.h>
+#include <linux/acpi.h>
+#include <linux/timer.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/smp.h>
+#include <linux/workqueue.h>
+#include <linux/mm.h>
+
+#include <asm/delay.h>
+#include <asm/machvec.h>
+#include <asm/page.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+#include <asm/sal.h>
+#include <asm/mca.h>
+
+#include <asm/irq.h>
+#include <asm/hw_irq.h>
+
+#include "mca_drv.h"
+
+/* max size of SAL error record (default) */
+static int sal_rec_max = 10000;
+
+/* from mca.c */
+static ia64_mca_sal_to_os_state_t *sal_to_os_handoff_state;
+static ia64_mca_os_to_sal_state_t *os_to_sal_handoff_state;
+
+/* from mca_drv_asm.S */
+extern void *mca_handler_bhhook(void);
+
+static DEFINE_SPINLOCK(mca_bh_lock);
+
+typedef enum {
+ MCA_IS_LOCAL = 0,
+ MCA_IS_GLOBAL = 1
+} mca_type_t;
+
+#define MAX_PAGE_ISOLATE 1024
+
+static struct page *page_isolate[MAX_PAGE_ISOLATE];
+static int num_page_isolate = 0;
+
+typedef enum {
+ ISOLATE_NG = 0,
+ ISOLATE_OK = 1
+} isolate_status_t;
+
+/*
+ * This pool keeps pointers to the section part of SAL error record
+ */
+static struct {
+ slidx_list_t *buffer; /* section pointer list pool */
+ int cur_idx; /* Current index of section pointer list pool */
+ int max_idx; /* Maximum index of section pointer list pool */
+} slidx_pool;
+
+/**
+ * mca_page_isolate - isolate a poisoned page in order not to use it later
+ * @paddr: poisoned memory location
+ *
+ * Return value:
+ * ISOLATE_OK / ISOLATE_NG
+ */
+
+static isolate_status_t
+mca_page_isolate(unsigned long paddr)
+{
+ int i;
+ struct page *p;
+
+ /* whether physical address is valid or not */
+ if ( !ia64_phys_addr_valid(paddr) )
+ return ISOLATE_NG;
+
+ /* convert physical address to physical page number */
+ p = pfn_to_page(paddr>>PAGE_SHIFT);
+
+ /* check whether a page number have been already registered or not */
+ for( i = 0; i < num_page_isolate; i++ )
+ if( page_isolate[i] == p )
+ return ISOLATE_OK; /* already listed */
+
+ /* limitation check */
+ if( num_page_isolate == MAX_PAGE_ISOLATE )
+ return ISOLATE_NG;
+
+ /* kick pages having attribute 'SLAB' or 'Reserved' */
+ if( PageSlab(p) || PageReserved(p) )
+ return ISOLATE_NG;
+
+ /* add attribute 'Reserved' and register the page */
+ SetPageReserved(p);
+ page_isolate[num_page_isolate++] = p;
+
+ return ISOLATE_OK;
+}
+
+/**
+ * mca_hanlder_bh - Kill the process which occurred memory read error
+ * @paddr: poisoned address received from MCA Handler
+ */
+
+void
+mca_handler_bh(unsigned long paddr)
+{
+ printk(KERN_DEBUG "OS_MCA: process [pid: %d](%s) encounters MCA.\n",
+ current->pid, current->comm);
+
+ spin_lock(&mca_bh_lock);
+ if (mca_page_isolate(paddr) == ISOLATE_OK) {
+ printk(KERN_DEBUG "Page isolation: ( %lx ) success.\n", paddr);
+ } else {
+ printk(KERN_DEBUG "Page isolation: ( %lx ) failure.\n", paddr);
+ }
+ spin_unlock(&mca_bh_lock);
+
+ /* This process is about to be killed itself */
+ force_sig(SIGKILL, current);
+ schedule();
+}
+
+/**
+ * mca_make_peidx - Make index of processor error section
+ * @slpi: pointer to record of processor error section
+ * @peidx: pointer to index of processor error section
+ */
+
+static void
+mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
+{
+ /*
+ * calculate the start address of
+ * "struct cpuid_info" and "sal_processor_static_info_t".
+ */
+ u64 total_check_num = slpi->valid.num_cache_check
+ + slpi->valid.num_tlb_check
+ + slpi->valid.num_bus_check
+ + slpi->valid.num_reg_file_check
+ + slpi->valid.num_ms_check;
+ u64 head_size = sizeof(sal_log_mod_error_info_t) * total_check_num
+ + sizeof(sal_log_processor_info_t);
+ u64 mid_size = slpi->valid.cpuid_info * sizeof(struct sal_cpuid_info);
+
+ peidx_head(peidx) = slpi;
+ peidx_mid(peidx) = (struct sal_cpuid_info *)
+ (slpi->valid.cpuid_info ? ((char*)slpi + head_size) : NULL);
+ peidx_bottom(peidx) = (sal_processor_static_info_t *)
+ (slpi->valid.psi_static_struct ?
+ ((char*)slpi + head_size + mid_size) : NULL);
+}
+
+/**
+ * mca_make_slidx - Make index of SAL error record
+ * @buffer: pointer to SAL error record
+ * @slidx: pointer to index of SAL error record
+ *
+ * Return value:
+ * 1 if record has platform error / 0 if not
+ */
+#define LOG_INDEX_ADD_SECT_PTR(sect, ptr) \
+ { slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \
+ hl->hdr = ptr; \
+ list_add(&hl->list, &(sect)); \
+ slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; }
+
+static int
+mca_make_slidx(void *buffer, slidx_table_t *slidx)
+{
+ int platform_err = 0;
+ int record_len = ((sal_log_record_header_t*)buffer)->len;
+ u32 ercd_pos;
+ int sects;
+ sal_log_section_hdr_t *sp;
+
+ /*
+ * Initialize index referring current record
+ */
+ INIT_LIST_HEAD(&(slidx->proc_err));
+ INIT_LIST_HEAD(&(slidx->mem_dev_err));
+ INIT_LIST_HEAD(&(slidx->sel_dev_err));
+ INIT_LIST_HEAD(&(slidx->pci_bus_err));
+ INIT_LIST_HEAD(&(slidx->smbios_dev_err));
+ INIT_LIST_HEAD(&(slidx->pci_comp_err));
+ INIT_LIST_HEAD(&(slidx->plat_specific_err));
+ INIT_LIST_HEAD(&(slidx->host_ctlr_err));
+ INIT_LIST_HEAD(&(slidx->plat_bus_err));
+ INIT_LIST_HEAD(&(slidx->unsupported));
+
+ /*
+ * Extract a Record Header
+ */
+ slidx->header = buffer;
+
+ /*
+ * Extract each section records
+ * (arranged from "int ia64_log_platform_info_print()")
+ */
+ for (ercd_pos = sizeof(sal_log_record_header_t), sects = 0;
+ ercd_pos < record_len; ercd_pos += sp->len, sects++) {
+ sp = (sal_log_section_hdr_t *)((char*)buffer + ercd_pos);
+ if (!efi_guidcmp(sp->guid, SAL_PROC_DEV_ERR_SECT_GUID)) {
+ LOG_INDEX_ADD_SECT_PTR(slidx->proc_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->mem_dev_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->sel_dev_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->pci_bus_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->smbios_dev_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->pci_comp_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->plat_specific_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->host_ctlr_err, sp);
+ } else if (!efi_guidcmp(sp->guid, SAL_PLAT_BUS_ERR_SECT_GUID)) {
+ platform_err = 1;
+ LOG_INDEX_ADD_SECT_PTR(slidx->plat_bus_err, sp);
+ } else {
+ LOG_INDEX_ADD_SECT_PTR(slidx->unsupported, sp);
+ }
+ }
+ slidx->n_sections = sects;
+
+ return platform_err;
+}
+
+/**
+ * init_record_index_pools - Initialize pool of lists for SAL record index
+ *
+ * Return value:
+ * 0 on Success / -ENOMEM on Failure
+ */
+static int
+init_record_index_pools(void)
+{
+ int i;
+ int rec_max_size; /* Maximum size of SAL error records */
+ int sect_min_size; /* Minimum size of SAL error sections */
+ /* minimum size table of each section */
+ static int sal_log_sect_min_sizes[] = {
+ sizeof(sal_log_processor_info_t) + sizeof(sal_processor_static_info_t),
+ sizeof(sal_log_mem_dev_err_info_t),
+ sizeof(sal_log_sel_dev_err_info_t),
+ sizeof(sal_log_pci_bus_err_info_t),
+ sizeof(sal_log_smbios_dev_err_info_t),
+ sizeof(sal_log_pci_comp_err_info_t),
+ sizeof(sal_log_plat_specific_err_info_t),
+ sizeof(sal_log_host_ctlr_err_info_t),
+ sizeof(sal_log_plat_bus_err_info_t),
+ };
+
+ /*
+ * MCA handler cannot allocate new memory on flight,
+ * so we preallocate enough memory to handle a SAL record.
+ *
+ * Initialize a handling set of slidx_pool:
+ * 1. Pick up the max size of SAL error records
+ * 2. Pick up the min size of SAL error sections
+ * 3. Allocate the pool as enough to 2 SAL records
+ * (now we can estimate the maxinum of section in a record.)
+ */
+
+ /* - 1 - */
+ rec_max_size = sal_rec_max;
+
+ /* - 2 - */
+ sect_min_size = sal_log_sect_min_sizes[0];
+ for (i = 1; i < sizeof sal_log_sect_min_sizes/sizeof(size_t); i++)
+ if (sect_min_size > sal_log_sect_min_sizes[i])
+ sect_min_size = sal_log_sect_min_sizes[i];
+
+ /* - 3 - */
+ slidx_pool.max_idx = (rec_max_size/sect_min_size) * 2 + 1;
+ slidx_pool.buffer = (slidx_list_t *) kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL);
+
+ return slidx_pool.buffer ? 0 : -ENOMEM;
+}
+
+
+/*****************************************************************************
+ * Recovery functions *
+ *****************************************************************************/
+
+/**
+ * is_mca_global - Check whether this MCA is global or not
+ * @peidx: pointer of index of processor error section
+ * @pbci: pointer to pal_bus_check_info_t
+ *
+ * Return value:
+ * MCA_IS_LOCAL / MCA_IS_GLOBAL
+ */
+
+static mca_type_t
+is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci)
+{
+ pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
+
+ /*
+ * PAL can request a rendezvous, if the MCA has a global scope.
+ * If "rz_always" flag is set, SAL requests MCA rendezvous
+ * in spite of global MCA.
+ * Therefore it is local MCA when rendezvous has not been requested.
+ * Failed to rendezvous, the system must be down.
+ */
+ switch (sal_to_os_handoff_state->imsto_rendez_state) {
+ case -1: /* SAL rendezvous unsuccessful */
+ return MCA_IS_GLOBAL;
+ case 0: /* SAL rendezvous not required */
+ return MCA_IS_LOCAL;
+ case 1: /* SAL rendezvous successful int */
+ case 2: /* SAL rendezvous successful int with init */
+ default:
+ break;
+ }
+
+ /*
+ * If One or more Cache/TLB/Reg_File/Uarch_Check is here,
+ * it would be a local MCA. (i.e. processor internal error)
+ */
+ if (psp->tc || psp->cc || psp->rc || psp->uc)
+ return MCA_IS_LOCAL;
+
+ /*
+ * Bus_Check structure with Bus_Check.ib (internal bus error) flag set
+ * would be a global MCA. (e.g. a system bus address parity error)
+ */
+ if (!pbci || pbci->ib)
+ return MCA_IS_GLOBAL;
+
+ /*
+ * Bus_Check structure with Bus_Check.eb (external bus error) flag set
+ * could be either a local MCA or a global MCA.
+ *
+ * Referring Bus_Check.bsi:
+ * 0: Unknown/unclassified
+ * 1: BERR#
+ * 2: BINIT#
+ * 3: Hard Fail
+ * (FIXME: Are these SGI specific or generic bsi values?)
+ */
+ if (pbci->eb)
+ switch (pbci->bsi) {
+ case 0:
+ /* e.g. a load from poisoned memory */
+ return MCA_IS_LOCAL;
+ case 1:
+ case 2:
+ case 3:
+ return MCA_IS_GLOBAL;
+ }
+
+ return MCA_IS_GLOBAL;
+}
+
+/**
+ * recover_from_read_error - Try to recover the errors which type are "read"s.
+ * @slidx: pointer of index of SAL error record
+ * @peidx: pointer of index of processor error section
+ * @pbci: pointer of pal_bus_check_info
+ *
+ * Return value:
+ * 1 on Success / 0 on Failure
+ */
+
+static int
+recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci)
+{
+ sal_log_mod_error_info_t *smei;
+ pal_min_state_area_t *pmsa;
+ struct ia64_psr *psr1, *psr2;
+ ia64_fptr_t *mca_hdlr_bh = (ia64_fptr_t*)mca_handler_bhhook;
+
+ /* Is target address valid? */
+ if (!pbci->tv)
+ return 0;
+
+ /*
+ * cpu read or memory-mapped io read
+ *
+ * offending process affected process OS MCA do
+ * kernel mode kernel mode down system
+ * kernel mode user mode kill the process
+ * user mode kernel mode down system (*)
+ * user mode user mode kill the process
+ *
+ * (*) You could terminate offending user-mode process
+ * if (pbci->pv && pbci->pl != 0) *and* if you sure
+ * the process not have any locks of kernel.
+ */
+
+ psr1 =(struct ia64_psr *)&(peidx_minstate_area(peidx)->pmsa_ipsr);
+
+ /*
+ * Check the privilege level of interrupted context.
+ * If it is user-mode, then terminate affected process.
+ */
+ if (psr1->cpl != 0) {
+ smei = peidx_bus_check(peidx, 0);
+ if (smei->valid.target_identifier) {
+ /*
+ * setup for resume to bottom half of MCA,
+ * "mca_handler_bhhook"
+ */
+ pmsa = (pal_min_state_area_t *)(sal_to_os_handoff_state->pal_min_state | (6ul<<61));
+ /* pass to bhhook as 1st argument (gr8) */
+ pmsa->pmsa_gr[8-1] = smei->target_identifier;
+ /* set interrupted return address (but no use) */
+ pmsa->pmsa_br0 = pmsa->pmsa_iip;
+ /* change resume address to bottom half */
+ pmsa->pmsa_iip = mca_hdlr_bh->fp;
+ pmsa->pmsa_gr[1-1] = mca_hdlr_bh->gp;
+ /* set cpl with kernel mode */
+ psr2 = (struct ia64_psr *)&pmsa->pmsa_ipsr;
+ psr2->cpl = 0;
+ psr2->ri = 0;
+
+ return 1;
+ }
+
+ }
+
+ return 0;
+}
+
+/**
+ * recover_from_platform_error - Recover from platform error.
+ * @slidx: pointer of index of SAL error record
+ * @peidx: pointer of index of processor error section
+ * @pbci: pointer of pal_bus_check_info
+ *
+ * Return value:
+ * 1 on Success / 0 on Failure
+ */
+
+static int
+recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci)
+{
+ int status = 0;
+ pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
+
+ if (psp->bc && pbci->eb && pbci->bsi == 0) {
+ switch(pbci->type) {
+ case 1: /* partial read */
+ case 3: /* full line(cpu) read */
+ case 9: /* I/O space read */
+ status = recover_from_read_error(slidx, peidx, pbci);
+ break;
+ case 0: /* unknown */
+ case 2: /* partial write */
+ case 4: /* full line write */
+ case 5: /* implicit or explicit write-back operation */
+ case 6: /* snoop probe */
+ case 7: /* incoming or outgoing ptc.g */
+ case 8: /* write coalescing transactions */
+ case 10: /* I/O space write */
+ case 11: /* inter-processor interrupt message(IPI) */
+ case 12: /* interrupt acknowledge or external task priority cycle */
+ default:
+ break;
+ }
+ }
+
+ return status;
+}
+
+/**
+ * recover_from_processor_error
+ * @platform: whether there are some platform error section or not
+ * @slidx: pointer of index of SAL error record
+ * @peidx: pointer of index of processor error section
+ * @pbci: pointer of pal_bus_check_info
+ *
+ * Return value:
+ * 1 on Success / 0 on Failure
+ */
+/*
+ * Later we try to recover when below all conditions are satisfied.
+ * 1. Only one processor error section is exist.
+ * 2. BUS_CHECK is exist and the others are not exist.(Except TLB_CHECK)
+ * 3. The entry of BUS_CHECK_INFO is 1.
+ * 4. "External bus error" flag is set and the others are not set.
+ */
+
+static int
+recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci)
+{
+ pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
+
+ /*
+ * We cannot recover errors with other than bus_check.
+ */
+ if (psp->cc || psp->rc || psp->uc)
+ return 0;
+
+ /*
+ * If there is no bus error, record is weird but we need not to recover.
+ */
+ if (psp->bc == 0 || pbci == NULL)
+ return 1;
+
+ /*
+ * Sorry, we cannot handle so many.
+ */
+ if (peidx_bus_check_num(peidx) > 1)
+ return 0;
+ /*
+ * Well, here is only one bus error.
+ */
+ if (pbci->ib || pbci->cc)
+ return 0;
+ if (pbci->eb && pbci->bsi > 0)
+ return 0;
+ if (psp->ci == 0)
+ return 0;
+
+ /*
+ * This is a local MCA and estimated as recoverble external bus error.
+ * (e.g. a load from poisoned memory)
+ * This means "there are some platform errors".
+ */
+ if (platform)
+ return recover_from_platform_error(slidx, peidx, pbci);
+ /*
+ * On account of strange SAL error record, we cannot recover.
+ */
+ return 0;
+}
+
+/**
+ * mca_try_to_recover - Try to recover from MCA
+ * @rec: pointer to a SAL error record
+ *
+ * Return value:
+ * 1 on Success / 0 on Failure
+ */
+
+static int
+mca_try_to_recover(void *rec,
+ ia64_mca_sal_to_os_state_t *sal_to_os_state,
+ ia64_mca_os_to_sal_state_t *os_to_sal_state)
+{
+ int platform_err;
+ int n_proc_err;
+ slidx_table_t slidx;
+ peidx_table_t peidx;
+ pal_bus_check_info_t pbci;
+
+ /* handoff state from/to mca.c */
+ sal_to_os_handoff_state = sal_to_os_state;
+ os_to_sal_handoff_state = os_to_sal_state;
+
+ /* Make index of SAL error record */
+ platform_err = mca_make_slidx(rec, &slidx);
+
+ /* Count processor error sections */
+ n_proc_err = slidx_count(&slidx, proc_err);
+
+ /* Now, OS can recover when there is one processor error section */
+ if (n_proc_err > 1)
+ return 0;
+ else if (n_proc_err == 0) {
+ /* Weird SAL record ... We need not to recover */
+
+ return 1;
+ }
+
+ /* Make index of processor error section */
+ mca_make_peidx((sal_log_processor_info_t*)slidx_first_entry(&slidx.proc_err)->hdr, &peidx);
+
+ /* Extract Processor BUS_CHECK[0] */
+ *((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0);
+
+ /* Check whether MCA is global or not */
+ if (is_mca_global(&peidx, &pbci))
+ return 0;
+
+ /* Try to recover a processor error */
+ return recover_from_processor_error(platform_err, &slidx, &peidx, &pbci);
+}
+
+/*
+ * =============================================================================
+ */
+
+int __init mca_external_handler_init(void)
+{
+ if (init_record_index_pools())
+ return -ENOMEM;
+
+ /* register external mca handlers */
+ if (ia64_reg_MCA_extension(mca_try_to_recover)){
+ printk(KERN_ERR "ia64_reg_MCA_extension failed.\n");
+ kfree(slidx_pool.buffer);
+ return -EFAULT;
+ }
+ return 0;
+}
+
+void __exit mca_external_handler_exit(void)
+{
+ /* unregister external mca handlers */
+ ia64_unreg_MCA_extension();
+ kfree(slidx_pool.buffer);
+}
+
+module_init(mca_external_handler_init);
+module_exit(mca_external_handler_exit);
+
+module_param(sal_rec_max, int, 0644);
+MODULE_PARM_DESC(sal_rec_max, "Max size of SAL error record");
+
+MODULE_DESCRIPTION("ia64 platform dependent mca handler driver");
+MODULE_LICENSE("GPL");
diff --git a/arch/ia64/kernel/mca_drv.h b/arch/ia64/kernel/mca_drv.h
new file mode 100644
index 0000000..0227b76
--- /dev/null
+++ b/arch/ia64/kernel/mca_drv.h
@@ -0,0 +1,113 @@
+/*
+ * File: mca_drv.h
+ * Purpose: Define helpers for Generic MCA handling
+ *
+ * Copyright (C) 2004 FUJITSU LIMITED
+ * Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com)
+ */
+/*
+ * Processor error section:
+ *
+ * +-sal_log_processor_info_t *info-------------+
+ * | sal_log_section_hdr_t header; |
+ * | ... |
+ * | sal_log_mod_error_info_t info[0]; |
+ * +-+----------------+-------------------------+
+ * | CACHE_CHECK | ^ num_cache_check v
+ * +----------------+
+ * | TLB_CHECK | ^ num_tlb_check v
+ * +----------------+
+ * | BUS_CHECK | ^ num_bus_check v
+ * +----------------+
+ * | REG_FILE_CHECK | ^ num_reg_file_check v
+ * +----------------+
+ * | MS_CHECK | ^ num_ms_check v
+ * +-struct cpuid_info *id----------------------+
+ * | regs[5]; |
+ * | reserved; |
+ * +-sal_processor_static_info_t *regs----------+
+ * | valid; |
+ * | ... |
+ * | fr[128]; |
+ * +--------------------------------------------+
+ */
+
+/* peidx: index of processor error section */
+typedef struct peidx_table {
+ sal_log_processor_info_t *info;
+ struct sal_cpuid_info *id;
+ sal_processor_static_info_t *regs;
+} peidx_table_t;
+
+#define peidx_head(p) (((p)->info))
+#define peidx_mid(p) (((p)->id))
+#define peidx_bottom(p) (((p)->regs))
+
+#define peidx_psp(p) (&(peidx_head(p)->proc_state_parameter))
+#define peidx_field_valid(p) (&(peidx_head(p)->valid))
+#define peidx_minstate_area(p) (&(peidx_bottom(p)->min_state_area))
+
+#define peidx_cache_check_num(p) (peidx_head(p)->valid.num_cache_check)
+#define peidx_tlb_check_num(p) (peidx_head(p)->valid.num_tlb_check)
+#define peidx_bus_check_num(p) (peidx_head(p)->valid.num_bus_check)
+#define peidx_reg_file_check_num(p) (peidx_head(p)->valid.num_reg_file_check)
+#define peidx_ms_check_num(p) (peidx_head(p)->valid.num_ms_check)
+
+#define peidx_cache_check_idx(p, n) (n)
+#define peidx_tlb_check_idx(p, n) (peidx_cache_check_idx(p, peidx_cache_check_num(p)) + n)
+#define peidx_bus_check_idx(p, n) (peidx_tlb_check_idx(p, peidx_tlb_check_num(p)) + n)
+#define peidx_reg_file_check_idx(p, n) (peidx_bus_check_idx(p, peidx_bus_check_num(p)) + n)
+#define peidx_ms_check_idx(p, n) (peidx_reg_file_check_idx(p, peidx_reg_file_check_num(p)) + n)
+
+#define peidx_mod_error_info(p, name, n) \
+({ int __idx = peidx_##name##_idx(p, n); \
+ sal_log_mod_error_info_t *__ret = NULL; \
+ if (peidx_##name##_num(p) > n) /*BUG*/ \
+ __ret = &(peidx_head(p)->info[__idx]); \
+ __ret; })
+
+#define peidx_cache_check(p, n) peidx_mod_error_info(p, cache_check, n)
+#define peidx_tlb_check(p, n) peidx_mod_error_info(p, tlb_check, n)
+#define peidx_bus_check(p, n) peidx_mod_error_info(p, bus_check, n)
+#define peidx_reg_file_check(p, n) peidx_mod_error_info(p, reg_file_check, n)
+#define peidx_ms_check(p, n) peidx_mod_error_info(p, ms_check, n)
+
+#define peidx_check_info(proc, name, n) \
+({ \
+ sal_log_mod_error_info_t *__info = peidx_mod_error_info(proc, name, n);\
+ u64 __temp = __info && __info->valid.check_info \
+ ? __info->check_info : 0; \
+ __temp; })
+
+/* slidx: index of SAL log error record */
+
+typedef struct slidx_list {
+ struct list_head list;
+ sal_log_section_hdr_t *hdr;
+} slidx_list_t;
+
+typedef struct slidx_table {
+ sal_log_record_header_t *header;
+ int n_sections; /* # of section headers */
+ struct list_head proc_err;
+ struct list_head mem_dev_err;
+ struct list_head sel_dev_err;
+ struct list_head pci_bus_err;
+ struct list_head smbios_dev_err;
+ struct list_head pci_comp_err;
+ struct list_head plat_specific_err;
+ struct list_head host_ctlr_err;
+ struct list_head plat_bus_err;
+ struct list_head unsupported; /* list of unsupported sections */
+} slidx_table_t;
+
+#define slidx_foreach_entry(pos, head) \
+ list_for_each_entry(pos, head, list)
+#define slidx_first_entry(head) \
+ (((head)->next != (head)) ? list_entry((head)->next, typeof(slidx_list_t), list) : NULL)
+#define slidx_count(slidx, sec) \
+({ int __count = 0; \
+ slidx_list_t *__pos; \
+ slidx_foreach_entry(__pos, &((slidx)->sec)) { __count++; }\
+ __count; })
+
diff --git a/arch/ia64/kernel/mca_drv_asm.S b/arch/ia64/kernel/mca_drv_asm.S
new file mode 100644
index 0000000..bcfa05a
--- /dev/null
+++ b/arch/ia64/kernel/mca_drv_asm.S
@@ -0,0 +1,45 @@
+/*
+ * File: mca_drv_asm.S
+ * Purpose: Assembly portion of Generic MCA handling
+ *
+ * Copyright (C) 2004 FUJITSU LIMITED
+ * Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com)
+ */
+#include <linux/config.h>
+#include <linux/threads.h>
+
+#include <asm/asmmacro.h>
+#include <asm/processor.h>
+
+GLOBAL_ENTRY(mca_handler_bhhook)
+ invala // clear RSE ?
+ ;; //
+ cover //
+ ;; //
+ clrrrb //
+ ;;
+ alloc r16=ar.pfs,0,2,1,0 // make a new frame
+ ;;
+ mov r13=IA64_KR(CURRENT) // current task pointer
+ ;;
+ adds r12=IA64_TASK_THREAD_KSP_OFFSET,r13
+ ;;
+ ld8 r12=[r12] // stack pointer
+ ;;
+ mov loc0=r16
+ movl loc1=mca_handler_bh // recovery C function
+ ;;
+ mov out0=r8 // poisoned address
+ mov b6=loc1
+ ;;
+ mov loc1=rp
+ ;;
+ br.call.sptk.many rp=b6 // not return ...
+ ;;
+ mov ar.pfs=loc0
+ mov rp=loc1
+ ;;
+ mov r8=r0
+ br.ret.sptk.many rp
+ ;;
+END(mca_handler_bhhook)
diff --git a/arch/ia64/kernel/minstate.h b/arch/ia64/kernel/minstate.h
new file mode 100644
index 0000000..1dbc7b2
--- /dev/null
+++ b/arch/ia64/kernel/minstate.h
@@ -0,0 +1,251 @@
+#include <linux/config.h>
+
+#include <asm/cache.h>
+
+#include "entry.h"
+
+/*
+ * For ivt.s we want to access the stack virtually so we don't have to disable translation
+ * on interrupts.
+ *
+ * On entry:
+ * r1: pointer to current task (ar.k6)
+ */
+#define MINSTATE_START_SAVE_MIN_VIRT \
+(pUStk) mov ar.rsc=0; /* set enforced lazy mode, pl 0, little-endian, loadrs=0 */ \
+ ;; \
+(pUStk) mov.m r24=ar.rnat; \
+(pUStk) addl r22=IA64_RBS_OFFSET,r1; /* compute base of RBS */ \
+(pKStk) mov r1=sp; /* get sp */ \
+ ;; \
+(pUStk) lfetch.fault.excl.nt1 [r22]; \
+(pUStk) addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r1; /* compute base of memory stack */ \
+(pUStk) mov r23=ar.bspstore; /* save ar.bspstore */ \
+ ;; \
+(pUStk) mov ar.bspstore=r22; /* switch to kernel RBS */ \
+(pKStk) addl r1=-IA64_PT_REGS_SIZE,r1; /* if in kernel mode, use sp (r12) */ \
+ ;; \
+(pUStk) mov r18=ar.bsp; \
+(pUStk) mov ar.rsc=0x3; /* set eager mode, pl 0, little-endian, loadrs=0 */
+
+#define MINSTATE_END_SAVE_MIN_VIRT \
+ bsw.1; /* switch back to bank 1 (must be last in insn group) */ \
+ ;;
+
+/*
+ * For mca_asm.S we want to access the stack physically since the state is saved before we
+ * go virtual and don't want to destroy the iip or ipsr.
+ */
+#define MINSTATE_START_SAVE_MIN_PHYS \
+(pKStk) mov r3=IA64_KR(PER_CPU_DATA);; \
+(pKStk) addl r3=THIS_CPU(ia64_mca_data),r3;; \
+(pKStk) ld8 r3 = [r3];; \
+(pKStk) addl r3=IA64_MCA_CPU_INIT_STACK_OFFSET,r3;; \
+(pKStk) addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r3; \
+(pUStk) mov ar.rsc=0; /* set enforced lazy mode, pl 0, little-endian, loadrs=0 */ \
+(pUStk) addl r22=IA64_RBS_OFFSET,r1; /* compute base of register backing store */ \
+ ;; \
+(pUStk) mov r24=ar.rnat; \
+(pUStk) addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r1; /* compute base of memory stack */ \
+(pUStk) mov r23=ar.bspstore; /* save ar.bspstore */ \
+(pUStk) dep r22=-1,r22,61,3; /* compute kernel virtual addr of RBS */ \
+ ;; \
+(pKStk) addl r1=-IA64_PT_REGS_SIZE,r1; /* if in kernel mode, use sp (r12) */ \
+(pUStk) mov ar.bspstore=r22; /* switch to kernel RBS */ \
+ ;; \
+(pUStk) mov r18=ar.bsp; \
+(pUStk) mov ar.rsc=0x3; /* set eager mode, pl 0, little-endian, loadrs=0 */ \
+
+#define MINSTATE_END_SAVE_MIN_PHYS \
+ dep r12=-1,r12,61,3; /* make sp a kernel virtual address */ \
+ ;;
+
+#ifdef MINSTATE_VIRT
+# define MINSTATE_GET_CURRENT(reg) mov reg=IA64_KR(CURRENT)
+# define MINSTATE_START_SAVE_MIN MINSTATE_START_SAVE_MIN_VIRT
+# define MINSTATE_END_SAVE_MIN MINSTATE_END_SAVE_MIN_VIRT
+#endif
+
+#ifdef MINSTATE_PHYS
+# define MINSTATE_GET_CURRENT(reg) mov reg=IA64_KR(CURRENT);; tpa reg=reg
+# define MINSTATE_START_SAVE_MIN MINSTATE_START_SAVE_MIN_PHYS
+# define MINSTATE_END_SAVE_MIN MINSTATE_END_SAVE_MIN_PHYS
+#endif
+
+/*
+ * DO_SAVE_MIN switches to the kernel stacks (if necessary) and saves
+ * the minimum state necessary that allows us to turn psr.ic back
+ * on.
+ *
+ * Assumed state upon entry:
+ * psr.ic: off
+ * r31: contains saved predicates (pr)
+ *
+ * Upon exit, the state is as follows:
+ * psr.ic: off
+ * r2 = points to &pt_regs.r16
+ * r8 = contents of ar.ccv
+ * r9 = contents of ar.csd
+ * r10 = contents of ar.ssd
+ * r11 = FPSR_DEFAULT
+ * r12 = kernel sp (kernel virtual address)
+ * r13 = points to current task_struct (kernel virtual address)
+ * p15 = TRUE if psr.i is set in cr.ipsr
+ * predicate registers (other than p2, p3, and p15), b6, r3, r14, r15:
+ * preserved
+ *
+ * Note that psr.ic is NOT turned on by this macro. This is so that
+ * we can pass interruption state as arguments to a handler.
+ */
+#define DO_SAVE_MIN(COVER,SAVE_IFS,EXTRA) \
+ MINSTATE_GET_CURRENT(r16); /* M (or M;;I) */ \
+ mov r27=ar.rsc; /* M */ \
+ mov r20=r1; /* A */ \
+ mov r25=ar.unat; /* M */ \
+ mov r29=cr.ipsr; /* M */ \
+ mov r26=ar.pfs; /* I */ \
+ mov r28=cr.iip; /* M */ \
+ mov r21=ar.fpsr; /* M */ \
+ COVER; /* B;; (or nothing) */ \
+ ;; \
+ adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16; \
+ ;; \
+ ld1 r17=[r16]; /* load current->thread.on_ustack flag */ \
+ st1 [r16]=r0; /* clear current->thread.on_ustack flag */ \
+ adds r1=-IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 \
+ /* switch from user to kernel RBS: */ \
+ ;; \
+ invala; /* M */ \
+ SAVE_IFS; \
+ cmp.eq pKStk,pUStk=r0,r17; /* are we in kernel mode already? */ \
+ ;; \
+ MINSTATE_START_SAVE_MIN \
+ adds r17=2*L1_CACHE_BYTES,r1; /* really: biggest cache-line size */ \
+ adds r16=PT(CR_IPSR),r1; \
+ ;; \
+ lfetch.fault.excl.nt1 [r17],L1_CACHE_BYTES; \
+ st8 [r16]=r29; /* save cr.ipsr */ \
+ ;; \
+ lfetch.fault.excl.nt1 [r17]; \
+ tbit.nz p15,p0=r29,IA64_PSR_I_BIT; \
+ mov r29=b0 \
+ ;; \
+ adds r16=PT(R8),r1; /* initialize first base pointer */ \
+ adds r17=PT(R9),r1; /* initialize second base pointer */ \
+(pKStk) mov r18=r0; /* make sure r18 isn't NaT */ \
+ ;; \
+.mem.offset 0,0; st8.spill [r16]=r8,16; \
+.mem.offset 8,0; st8.spill [r17]=r9,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r16]=r10,24; \
+.mem.offset 8,0; st8.spill [r17]=r11,24; \
+ ;; \
+ st8 [r16]=r28,16; /* save cr.iip */ \
+ st8 [r17]=r30,16; /* save cr.ifs */ \
+(pUStk) sub r18=r18,r22; /* r18=RSE.ndirty*8 */ \
+ mov r8=ar.ccv; \
+ mov r9=ar.csd; \
+ mov r10=ar.ssd; \
+ movl r11=FPSR_DEFAULT; /* L-unit */ \
+ ;; \
+ st8 [r16]=r25,16; /* save ar.unat */ \
+ st8 [r17]=r26,16; /* save ar.pfs */ \
+ shl r18=r18,16; /* compute ar.rsc to be used for "loadrs" */ \
+ ;; \
+ st8 [r16]=r27,16; /* save ar.rsc */ \
+(pUStk) st8 [r17]=r24,16; /* save ar.rnat */ \
+(pKStk) adds r17=16,r17; /* skip over ar_rnat field */ \
+ ;; /* avoid RAW on r16 & r17 */ \
+(pUStk) st8 [r16]=r23,16; /* save ar.bspstore */ \
+ st8 [r17]=r31,16; /* save predicates */ \
+(pKStk) adds r16=16,r16; /* skip over ar_bspstore field */ \
+ ;; \
+ st8 [r16]=r29,16; /* save b0 */ \
+ st8 [r17]=r18,16; /* save ar.rsc value for "loadrs" */ \
+ cmp.eq pNonSys,pSys=r0,r0 /* initialize pSys=0, pNonSys=1 */ \
+ ;; \
+.mem.offset 0,0; st8.spill [r16]=r20,16; /* save original r1 */ \
+.mem.offset 8,0; st8.spill [r17]=r12,16; \
+ adds r12=-16,r1; /* switch to kernel memory stack (with 16 bytes of scratch) */ \
+ ;; \
+.mem.offset 0,0; st8.spill [r16]=r13,16; \
+.mem.offset 8,0; st8.spill [r17]=r21,16; /* save ar.fpsr */ \
+ mov r13=IA64_KR(CURRENT); /* establish `current' */ \
+ ;; \
+.mem.offset 0,0; st8.spill [r16]=r15,16; \
+.mem.offset 8,0; st8.spill [r17]=r14,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r16]=r2,16; \
+.mem.offset 8,0; st8.spill [r17]=r3,16; \
+ adds r2=IA64_PT_REGS_R16_OFFSET,r1; \
+ ;; \
+ EXTRA; \
+ movl r1=__gp; /* establish kernel global pointer */ \
+ ;; \
+ MINSTATE_END_SAVE_MIN
+
+/*
+ * SAVE_REST saves the remainder of pt_regs (with psr.ic on).
+ *
+ * Assumed state upon entry:
+ * psr.ic: on
+ * r2: points to &pt_regs.r16
+ * r3: points to &pt_regs.r17
+ * r8: contents of ar.ccv
+ * r9: contents of ar.csd
+ * r10: contents of ar.ssd
+ * r11: FPSR_DEFAULT
+ *
+ * Registers r14 and r15 are guaranteed not to be touched by SAVE_REST.
+ */
+#define SAVE_REST \
+.mem.offset 0,0; st8.spill [r2]=r16,16; \
+.mem.offset 8,0; st8.spill [r3]=r17,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r18,16; \
+.mem.offset 8,0; st8.spill [r3]=r19,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r20,16; \
+.mem.offset 8,0; st8.spill [r3]=r21,16; \
+ mov r18=b6; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r22,16; \
+.mem.offset 8,0; st8.spill [r3]=r23,16; \
+ mov r19=b7; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r24,16; \
+.mem.offset 8,0; st8.spill [r3]=r25,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r26,16; \
+.mem.offset 8,0; st8.spill [r3]=r27,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r28,16; \
+.mem.offset 8,0; st8.spill [r3]=r29,16; \
+ ;; \
+.mem.offset 0,0; st8.spill [r2]=r30,16; \
+.mem.offset 8,0; st8.spill [r3]=r31,32; \
+ ;; \
+ mov ar.fpsr=r11; /* M-unit */ \
+ st8 [r2]=r8,8; /* ar.ccv */ \
+ adds r24=PT(B6)-PT(F7),r3; \
+ ;; \
+ stf.spill [r2]=f6,32; \
+ stf.spill [r3]=f7,32; \
+ ;; \
+ stf.spill [r2]=f8,32; \
+ stf.spill [r3]=f9,32; \
+ ;; \
+ stf.spill [r2]=f10; \
+ stf.spill [r3]=f11; \
+ adds r25=PT(B7)-PT(F11),r3; \
+ ;; \
+ st8 [r24]=r18,16; /* b6 */ \
+ st8 [r25]=r19,16; /* b7 */ \
+ ;; \
+ st8 [r24]=r9; /* ar.csd */ \
+ st8 [r25]=r10; /* ar.ssd */ \
+ ;;
+
+#define SAVE_MIN_WITH_COVER DO_SAVE_MIN(cover, mov r30=cr.ifs,)
+#define SAVE_MIN_WITH_COVER_R19 DO_SAVE_MIN(cover, mov r30=cr.ifs, mov r15=r19)
+#define SAVE_MIN DO_SAVE_MIN( , mov r30=r0, )
diff --git a/arch/ia64/kernel/module.c b/arch/ia64/kernel/module.c
new file mode 100644
index 0000000..febc091
--- /dev/null
+++ b/arch/ia64/kernel/module.c
@@ -0,0 +1,952 @@
+/*
+ * IA-64-specific support for kernel module loader.
+ *
+ * Copyright (C) 2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Loosely based on patch by Rusty Russell.
+ */
+
+/* relocs tested so far:
+
+ DIR64LSB
+ FPTR64LSB
+ GPREL22
+ LDXMOV
+ LDXMOV
+ LTOFF22
+ LTOFF22X
+ LTOFF22X
+ LTOFF_FPTR22
+ PCREL21B (for br.call only; br.cond is not supported out of modules!)
+ PCREL60B (for brl.cond only; brl.call is not supported for modules!)
+ PCREL64LSB
+ SECREL32LSB
+ SEGREL64LSB
+ */
+
+#include <linux/config.h>
+
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/elf.h>
+#include <linux/moduleloader.h>
+#include <linux/string.h>
+#include <linux/vmalloc.h>
+
+#include <asm/patch.h>
+#include <asm/unaligned.h>
+
+#define ARCH_MODULE_DEBUG 0
+
+#if ARCH_MODULE_DEBUG
+# define DEBUGP printk
+# define inline
+#else
+# define DEBUGP(fmt , a...)
+#endif
+
+#ifdef CONFIG_ITANIUM
+# define USE_BRL 0
+#else
+# define USE_BRL 1
+#endif
+
+#define MAX_LTOFF ((uint64_t) (1 << 22)) /* max. allowable linkage-table offset */
+
+/* Define some relocation helper macros/types: */
+
+#define FORMAT_SHIFT 0
+#define FORMAT_BITS 3
+#define FORMAT_MASK ((1 << FORMAT_BITS) - 1)
+#define VALUE_SHIFT 3
+#define VALUE_BITS 5
+#define VALUE_MASK ((1 << VALUE_BITS) - 1)
+
+enum reloc_target_format {
+ /* direct encoded formats: */
+ RF_NONE = 0,
+ RF_INSN14 = 1,
+ RF_INSN22 = 2,
+ RF_INSN64 = 3,
+ RF_32MSB = 4,
+ RF_32LSB = 5,
+ RF_64MSB = 6,
+ RF_64LSB = 7,
+
+ /* formats that cannot be directly decoded: */
+ RF_INSN60,
+ RF_INSN21B, /* imm21 form 1 */
+ RF_INSN21M, /* imm21 form 2 */
+ RF_INSN21F /* imm21 form 3 */
+};
+
+enum reloc_value_formula {
+ RV_DIRECT = 4, /* S + A */
+ RV_GPREL = 5, /* @gprel(S + A) */
+ RV_LTREL = 6, /* @ltoff(S + A) */
+ RV_PLTREL = 7, /* @pltoff(S + A) */
+ RV_FPTR = 8, /* @fptr(S + A) */
+ RV_PCREL = 9, /* S + A - P */
+ RV_LTREL_FPTR = 10, /* @ltoff(@fptr(S + A)) */
+ RV_SEGREL = 11, /* @segrel(S + A) */
+ RV_SECREL = 12, /* @secrel(S + A) */
+ RV_BDREL = 13, /* BD + A */
+ RV_LTV = 14, /* S + A (like RV_DIRECT, except frozen at static link-time) */
+ RV_PCREL2 = 15, /* S + A - P */
+ RV_SPECIAL = 16, /* various (see below) */
+ RV_RSVD17 = 17,
+ RV_TPREL = 18, /* @tprel(S + A) */
+ RV_LTREL_TPREL = 19, /* @ltoff(@tprel(S + A)) */
+ RV_DTPMOD = 20, /* @dtpmod(S + A) */
+ RV_LTREL_DTPMOD = 21, /* @ltoff(@dtpmod(S + A)) */
+ RV_DTPREL = 22, /* @dtprel(S + A) */
+ RV_LTREL_DTPREL = 23, /* @ltoff(@dtprel(S + A)) */
+ RV_RSVD24 = 24,
+ RV_RSVD25 = 25,
+ RV_RSVD26 = 26,
+ RV_RSVD27 = 27
+ /* 28-31 reserved for implementation-specific purposes. */
+};
+
+#define N(reloc) [R_IA64_##reloc] = #reloc
+
+static const char *reloc_name[256] = {
+ N(NONE), N(IMM14), N(IMM22), N(IMM64),
+ N(DIR32MSB), N(DIR32LSB), N(DIR64MSB), N(DIR64LSB),
+ N(GPREL22), N(GPREL64I), N(GPREL32MSB), N(GPREL32LSB),
+ N(GPREL64MSB), N(GPREL64LSB), N(LTOFF22), N(LTOFF64I),
+ N(PLTOFF22), N(PLTOFF64I), N(PLTOFF64MSB), N(PLTOFF64LSB),
+ N(FPTR64I), N(FPTR32MSB), N(FPTR32LSB), N(FPTR64MSB),
+ N(FPTR64LSB), N(PCREL60B), N(PCREL21B), N(PCREL21M),
+ N(PCREL21F), N(PCREL32MSB), N(PCREL32LSB), N(PCREL64MSB),
+ N(PCREL64LSB), N(LTOFF_FPTR22), N(LTOFF_FPTR64I), N(LTOFF_FPTR32MSB),
+ N(LTOFF_FPTR32LSB), N(LTOFF_FPTR64MSB), N(LTOFF_FPTR64LSB), N(SEGREL32MSB),
+ N(SEGREL32LSB), N(SEGREL64MSB), N(SEGREL64LSB), N(SECREL32MSB),
+ N(SECREL32LSB), N(SECREL64MSB), N(SECREL64LSB), N(REL32MSB),
+ N(REL32LSB), N(REL64MSB), N(REL64LSB), N(LTV32MSB),
+ N(LTV32LSB), N(LTV64MSB), N(LTV64LSB), N(PCREL21BI),
+ N(PCREL22), N(PCREL64I), N(IPLTMSB), N(IPLTLSB),
+ N(COPY), N(LTOFF22X), N(LDXMOV), N(TPREL14),
+ N(TPREL22), N(TPREL64I), N(TPREL64MSB), N(TPREL64LSB),
+ N(LTOFF_TPREL22), N(DTPMOD64MSB), N(DTPMOD64LSB), N(LTOFF_DTPMOD22),
+ N(DTPREL14), N(DTPREL22), N(DTPREL64I), N(DTPREL32MSB),
+ N(DTPREL32LSB), N(DTPREL64MSB), N(DTPREL64LSB), N(LTOFF_DTPREL22)
+};
+
+#undef N
+
+struct got_entry {
+ uint64_t val;
+};
+
+struct fdesc {
+ uint64_t ip;
+ uint64_t gp;
+};
+
+/* Opaque struct for insns, to protect against derefs. */
+struct insn;
+
+static inline uint64_t
+bundle (const struct insn *insn)
+{
+ return (uint64_t) insn & ~0xfUL;
+}
+
+static inline int
+slot (const struct insn *insn)
+{
+ return (uint64_t) insn & 0x3;
+}
+
+static int
+apply_imm64 (struct module *mod, struct insn *insn, uint64_t val)
+{
+ if (slot(insn) != 2) {
+ printk(KERN_ERR "%s: invalid slot number %d for IMM64\n",
+ mod->name, slot(insn));
+ return 0;
+ }
+ ia64_patch_imm64((u64) insn, val);
+ return 1;
+}
+
+static int
+apply_imm60 (struct module *mod, struct insn *insn, uint64_t val)
+{
+ if (slot(insn) != 2) {
+ printk(KERN_ERR "%s: invalid slot number %d for IMM60\n",
+ mod->name, slot(insn));
+ return 0;
+ }
+ if (val + ((uint64_t) 1 << 59) >= (1UL << 60)) {
+ printk(KERN_ERR "%s: value %ld out of IMM60 range\n", mod->name, (int64_t) val);
+ return 0;
+ }
+ ia64_patch_imm60((u64) insn, val);
+ return 1;
+}
+
+static int
+apply_imm22 (struct module *mod, struct insn *insn, uint64_t val)
+{
+ if (val + (1 << 21) >= (1 << 22)) {
+ printk(KERN_ERR "%s: value %li out of IMM22 range\n", mod->name, (int64_t)val);
+ return 0;
+ }
+ ia64_patch((u64) insn, 0x01fffcfe000UL, ( ((val & 0x200000UL) << 15) /* bit 21 -> 36 */
+ | ((val & 0x1f0000UL) << 6) /* bit 16 -> 22 */
+ | ((val & 0x00ff80UL) << 20) /* bit 7 -> 27 */
+ | ((val & 0x00007fUL) << 13) /* bit 0 -> 13 */));
+ return 1;
+}
+
+static int
+apply_imm21b (struct module *mod, struct insn *insn, uint64_t val)
+{
+ if (val + (1 << 20) >= (1 << 21)) {
+ printk(KERN_ERR "%s: value %li out of IMM21b range\n", mod->name, (int64_t)val);
+ return 0;
+ }
+ ia64_patch((u64) insn, 0x11ffffe000UL, ( ((val & 0x100000UL) << 16) /* bit 20 -> 36 */
+ | ((val & 0x0fffffUL) << 13) /* bit 0 -> 13 */));
+ return 1;
+}
+
+#if USE_BRL
+
+struct plt_entry {
+ /* Three instruction bundles in PLT. */
+ unsigned char bundle[2][16];
+};
+
+static const struct plt_entry ia64_plt_template = {
+ {
+ {
+ 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, /* movl gp=TARGET_GP */
+ 0x00, 0x00, 0x00, 0x60
+ },
+ {
+ 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.many gp=TARGET_GP */
+ 0x08, 0x00, 0x00, 0xc0
+ }
+ }
+};
+
+static int
+patch_plt (struct module *mod, struct plt_entry *plt, long target_ip, unsigned long target_gp)
+{
+ if (apply_imm64(mod, (struct insn *) (plt->bundle[0] + 2), target_gp)
+ && apply_imm60(mod, (struct insn *) (plt->bundle[1] + 2),
+ (target_ip - (int64_t) plt->bundle[1]) / 16))
+ return 1;
+ return 0;
+}
+
+unsigned long
+plt_target (struct plt_entry *plt)
+{
+ uint64_t b0, b1, *b = (uint64_t *) plt->bundle[1];
+ long off;
+
+ b0 = b[0]; b1 = b[1];
+ off = ( ((b1 & 0x00fffff000000000UL) >> 36) /* imm20b -> bit 0 */
+ | ((b0 >> 48) << 20) | ((b1 & 0x7fffffUL) << 36) /* imm39 -> bit 20 */
+ | ((b1 & 0x0800000000000000UL) << 0)); /* i -> bit 59 */
+ return (long) plt->bundle[1] + 16*off;
+}
+
+#else /* !USE_BRL */
+
+struct plt_entry {
+ /* Three instruction bundles in PLT. */
+ unsigned char bundle[3][16];
+};
+
+static const struct plt_entry ia64_plt_template = {
+ {
+ {
+ 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* movl r16=TARGET_IP */
+ 0x02, 0x00, 0x00, 0x60
+ },
+ {
+ 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, /* movl gp=TARGET_GP */
+ 0x00, 0x00, 0x00, 0x60
+ },
+ {
+ 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
+ 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
+ 0x60, 0x00, 0x80, 0x00 /* br.few b6 */
+ }
+ }
+};
+
+static int
+patch_plt (struct module *mod, struct plt_entry *plt, long target_ip, unsigned long target_gp)
+{
+ if (apply_imm64(mod, (struct insn *) (plt->bundle[0] + 2), target_ip)
+ && apply_imm64(mod, (struct insn *) (plt->bundle[1] + 2), target_gp))
+ return 1;
+ return 0;
+}
+
+unsigned long
+plt_target (struct plt_entry *plt)
+{
+ uint64_t b0, b1, *b = (uint64_t *) plt->bundle[0];
+
+ b0 = b[0]; b1 = b[1];
+ return ( ((b1 & 0x000007f000000000) >> 36) /* imm7b -> bit 0 */
+ | ((b1 & 0x07fc000000000000) >> 43) /* imm9d -> bit 7 */
+ | ((b1 & 0x0003e00000000000) >> 29) /* imm5c -> bit 16 */
+ | ((b1 & 0x0000100000000000) >> 23) /* ic -> bit 21 */
+ | ((b0 >> 46) << 22) | ((b1 & 0x7fffff) << 40) /* imm41 -> bit 22 */
+ | ((b1 & 0x0800000000000000) << 4)); /* i -> bit 63 */
+}
+
+#endif /* !USE_BRL */
+
+void *
+module_alloc (unsigned long size)
+{
+ if (!size)
+ return NULL;
+ return vmalloc(size);
+}
+
+void
+module_free (struct module *mod, void *module_region)
+{
+ if (mod->arch.init_unw_table && module_region == mod->module_init) {
+ unw_remove_unwind_table(mod->arch.init_unw_table);
+ mod->arch.init_unw_table = NULL;
+ }
+ vfree(module_region);
+}
+
+/* Have we already seen one of these relocations? */
+/* FIXME: we could look in other sections, too --RR */
+static int
+duplicate_reloc (const Elf64_Rela *rela, unsigned int num)
+{
+ unsigned int i;
+
+ for (i = 0; i < num; i++) {
+ if (rela[i].r_info == rela[num].r_info && rela[i].r_addend == rela[num].r_addend)
+ return 1;
+ }
+ return 0;
+}
+
+/* Count how many GOT entries we may need */
+static unsigned int
+count_gots (const Elf64_Rela *rela, unsigned int num)
+{
+ unsigned int i, ret = 0;
+
+ /* Sure, this is order(n^2), but it's usually short, and not
+ time critical */
+ for (i = 0; i < num; i++) {
+ switch (ELF64_R_TYPE(rela[i].r_info)) {
+ case R_IA64_LTOFF22:
+ case R_IA64_LTOFF22X:
+ case R_IA64_LTOFF64I:
+ case R_IA64_LTOFF_FPTR22:
+ case R_IA64_LTOFF_FPTR64I:
+ case R_IA64_LTOFF_FPTR32MSB:
+ case R_IA64_LTOFF_FPTR32LSB:
+ case R_IA64_LTOFF_FPTR64MSB:
+ case R_IA64_LTOFF_FPTR64LSB:
+ if (!duplicate_reloc(rela, i))
+ ret++;
+ break;
+ }
+ }
+ return ret;
+}
+
+/* Count how many PLT entries we may need */
+static unsigned int
+count_plts (const Elf64_Rela *rela, unsigned int num)
+{
+ unsigned int i, ret = 0;
+
+ /* Sure, this is order(n^2), but it's usually short, and not
+ time critical */
+ for (i = 0; i < num; i++) {
+ switch (ELF64_R_TYPE(rela[i].r_info)) {
+ case R_IA64_PCREL21B:
+ case R_IA64_PLTOFF22:
+ case R_IA64_PLTOFF64I:
+ case R_IA64_PLTOFF64MSB:
+ case R_IA64_PLTOFF64LSB:
+ case R_IA64_IPLTMSB:
+ case R_IA64_IPLTLSB:
+ if (!duplicate_reloc(rela, i))
+ ret++;
+ break;
+ }
+ }
+ return ret;
+}
+
+/* We need to create an function-descriptors for any internal function
+ which is referenced. */
+static unsigned int
+count_fdescs (const Elf64_Rela *rela, unsigned int num)
+{
+ unsigned int i, ret = 0;
+
+ /* Sure, this is order(n^2), but it's usually short, and not time critical. */
+ for (i = 0; i < num; i++) {
+ switch (ELF64_R_TYPE(rela[i].r_info)) {
+ case R_IA64_FPTR64I:
+ case R_IA64_FPTR32LSB:
+ case R_IA64_FPTR32MSB:
+ case R_IA64_FPTR64LSB:
+ case R_IA64_FPTR64MSB:
+ case R_IA64_LTOFF_FPTR22:
+ case R_IA64_LTOFF_FPTR32LSB:
+ case R_IA64_LTOFF_FPTR32MSB:
+ case R_IA64_LTOFF_FPTR64I:
+ case R_IA64_LTOFF_FPTR64LSB:
+ case R_IA64_LTOFF_FPTR64MSB:
+ case R_IA64_IPLTMSB:
+ case R_IA64_IPLTLSB:
+ /*
+ * Jumps to static functions sometimes go straight to their
+ * offset. Of course, that may not be possible if the jump is
+ * from init -> core or vice. versa, so we need to generate an
+ * FDESC (and PLT etc) for that.
+ */
+ case R_IA64_PCREL21B:
+ if (!duplicate_reloc(rela, i))
+ ret++;
+ break;
+ }
+ }
+ return ret;
+}
+
+int
+module_frob_arch_sections (Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, char *secstrings,
+ struct module *mod)
+{
+ unsigned long core_plts = 0, init_plts = 0, gots = 0, fdescs = 0;
+ Elf64_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
+
+ /*
+ * To store the PLTs and function-descriptors, we expand the .text section for
+ * core module-code and the .init.text section for initialization code.
+ */
+ for (s = sechdrs; s < sechdrs_end; ++s)
+ if (strcmp(".core.plt", secstrings + s->sh_name) == 0)
+ mod->arch.core_plt = s;
+ else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
+ mod->arch.init_plt = s;
+ else if (strcmp(".got", secstrings + s->sh_name) == 0)
+ mod->arch.got = s;
+ else if (strcmp(".opd", secstrings + s->sh_name) == 0)
+ mod->arch.opd = s;
+ else if (strcmp(".IA_64.unwind", secstrings + s->sh_name) == 0)
+ mod->arch.unwind = s;
+
+ if (!mod->arch.core_plt || !mod->arch.init_plt || !mod->arch.got || !mod->arch.opd) {
+ printk(KERN_ERR "%s: sections missing\n", mod->name);
+ return -ENOEXEC;
+ }
+
+ /* GOT and PLTs can occur in any relocated section... */
+ for (s = sechdrs + 1; s < sechdrs_end; ++s) {
+ const Elf64_Rela *rels = (void *)ehdr + s->sh_offset;
+ unsigned long numrels = s->sh_size/sizeof(Elf64_Rela);
+
+ if (s->sh_type != SHT_RELA)
+ continue;
+
+ gots += count_gots(rels, numrels);
+ fdescs += count_fdescs(rels, numrels);
+ if (strstr(secstrings + s->sh_name, ".init"))
+ init_plts += count_plts(rels, numrels);
+ else
+ core_plts += count_plts(rels, numrels);
+ }
+
+ mod->arch.core_plt->sh_type = SHT_NOBITS;
+ mod->arch.core_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
+ mod->arch.core_plt->sh_addralign = 16;
+ mod->arch.core_plt->sh_size = core_plts * sizeof(struct plt_entry);
+ mod->arch.init_plt->sh_type = SHT_NOBITS;
+ mod->arch.init_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
+ mod->arch.init_plt->sh_addralign = 16;
+ mod->arch.init_plt->sh_size = init_plts * sizeof(struct plt_entry);
+ mod->arch.got->sh_type = SHT_NOBITS;
+ mod->arch.got->sh_flags = ARCH_SHF_SMALL | SHF_ALLOC;
+ mod->arch.got->sh_addralign = 8;
+ mod->arch.got->sh_size = gots * sizeof(struct got_entry);
+ mod->arch.opd->sh_type = SHT_NOBITS;
+ mod->arch.opd->sh_flags = SHF_ALLOC;
+ mod->arch.opd->sh_addralign = 8;
+ mod->arch.opd->sh_size = fdescs * sizeof(struct fdesc);
+ DEBUGP("%s: core.plt=%lx, init.plt=%lx, got=%lx, fdesc=%lx\n",
+ __FUNCTION__, mod->arch.core_plt->sh_size, mod->arch.init_plt->sh_size,
+ mod->arch.got->sh_size, mod->arch.opd->sh_size);
+ return 0;
+}
+
+static inline int
+in_init (const struct module *mod, uint64_t addr)
+{
+ return addr - (uint64_t) mod->module_init < mod->init_size;
+}
+
+static inline int
+in_core (const struct module *mod, uint64_t addr)
+{
+ return addr - (uint64_t) mod->module_core < mod->core_size;
+}
+
+static inline int
+is_internal (const struct module *mod, uint64_t value)
+{
+ return in_init(mod, value) || in_core(mod, value);
+}
+
+/*
+ * Get gp-relative offset for the linkage-table entry of VALUE.
+ */
+static uint64_t
+get_ltoff (struct module *mod, uint64_t value, int *okp)
+{
+ struct got_entry *got, *e;
+
+ if (!*okp)
+ return 0;
+
+ got = (void *) mod->arch.got->sh_addr;
+ for (e = got; e < got + mod->arch.next_got_entry; ++e)
+ if (e->val == value)
+ goto found;
+
+ /* Not enough GOT entries? */
+ if (e >= (struct got_entry *) (mod->arch.got->sh_addr + mod->arch.got->sh_size))
+ BUG();
+
+ e->val = value;
+ ++mod->arch.next_got_entry;
+ found:
+ return (uint64_t) e - mod->arch.gp;
+}
+
+static inline int
+gp_addressable (struct module *mod, uint64_t value)
+{
+ return value - mod->arch.gp + MAX_LTOFF/2 < MAX_LTOFF;
+}
+
+/* Get PC-relative PLT entry for this value. Returns 0 on failure. */
+static uint64_t
+get_plt (struct module *mod, const struct insn *insn, uint64_t value, int *okp)
+{
+ struct plt_entry *plt, *plt_end;
+ uint64_t target_ip, target_gp;
+
+ if (!*okp)
+ return 0;
+
+ if (in_init(mod, (uint64_t) insn)) {
+ plt = (void *) mod->arch.init_plt->sh_addr;
+ plt_end = (void *) plt + mod->arch.init_plt->sh_size;
+ } else {
+ plt = (void *) mod->arch.core_plt->sh_addr;
+ plt_end = (void *) plt + mod->arch.core_plt->sh_size;
+ }
+
+ /* "value" is a pointer to a function-descriptor; fetch the target ip/gp from it: */
+ target_ip = ((uint64_t *) value)[0];
+ target_gp = ((uint64_t *) value)[1];
+
+ /* Look for existing PLT entry. */
+ while (plt->bundle[0][0]) {
+ if (plt_target(plt) == target_ip)
+ goto found;
+ if (++plt >= plt_end)
+ BUG();
+ }
+ *plt = ia64_plt_template;
+ if (!patch_plt(mod, plt, target_ip, target_gp)) {
+ *okp = 0;
+ return 0;
+ }
+#if ARCH_MODULE_DEBUG
+ if (plt_target(plt) != target_ip) {
+ printk("%s: mistargeted PLT: wanted %lx, got %lx\n",
+ __FUNCTION__, target_ip, plt_target(plt));
+ *okp = 0;
+ return 0;
+ }
+#endif
+ found:
+ return (uint64_t) plt;
+}
+
+/* Get function descriptor for VALUE. */
+static uint64_t
+get_fdesc (struct module *mod, uint64_t value, int *okp)
+{
+ struct fdesc *fdesc = (void *) mod->arch.opd->sh_addr;
+
+ if (!*okp)
+ return 0;
+
+ if (!value) {
+ printk(KERN_ERR "%s: fdesc for zero requested!\n", mod->name);
+ return 0;
+ }
+
+ if (!is_internal(mod, value))
+ /*
+ * If it's not a module-local entry-point, "value" already points to a
+ * function-descriptor.
+ */
+ return value;
+
+ /* Look for existing function descriptor. */
+ while (fdesc->ip) {
+ if (fdesc->ip == value)
+ return (uint64_t)fdesc;
+ if ((uint64_t) ++fdesc >= mod->arch.opd->sh_addr + mod->arch.opd->sh_size)
+ BUG();
+ }
+
+ /* Create new one */
+ fdesc->ip = value;
+ fdesc->gp = mod->arch.gp;
+ return (uint64_t) fdesc;
+}
+
+static inline int
+do_reloc (struct module *mod, uint8_t r_type, Elf64_Sym *sym, uint64_t addend,
+ Elf64_Shdr *sec, void *location)
+{
+ enum reloc_target_format format = (r_type >> FORMAT_SHIFT) & FORMAT_MASK;
+ enum reloc_value_formula formula = (r_type >> VALUE_SHIFT) & VALUE_MASK;
+ uint64_t val;
+ int ok = 1;
+
+ val = sym->st_value + addend;
+
+ switch (formula) {
+ case RV_SEGREL: /* segment base is arbitrarily chosen to be 0 for kernel modules */
+ case RV_DIRECT:
+ break;
+
+ case RV_GPREL: val -= mod->arch.gp; break;
+ case RV_LTREL: val = get_ltoff(mod, val, &ok); break;
+ case RV_PLTREL: val = get_plt(mod, location, val, &ok); break;
+ case RV_FPTR: val = get_fdesc(mod, val, &ok); break;
+ case RV_SECREL: val -= sec->sh_addr; break;
+ case RV_LTREL_FPTR: val = get_ltoff(mod, get_fdesc(mod, val, &ok), &ok); break;
+
+ case RV_PCREL:
+ switch (r_type) {
+ case R_IA64_PCREL21B:
+ if ((in_init(mod, val) && in_core(mod, (uint64_t)location)) ||
+ (in_core(mod, val) && in_init(mod, (uint64_t)location))) {
+ /*
+ * Init section may have been allocated far away from core,
+ * if the branch won't reach, then allocate a plt for it.
+ */
+ uint64_t delta = ((int64_t)val - (int64_t)location) / 16;
+ if (delta + (1 << 20) >= (1 << 21)) {
+ val = get_fdesc(mod, val, &ok);
+ val = get_plt(mod, location, val, &ok);
+ }
+ } else if (!is_internal(mod, val))
+ val = get_plt(mod, location, val, &ok);
+ /* FALL THROUGH */
+ default:
+ val -= bundle(location);
+ break;
+
+ case R_IA64_PCREL32MSB:
+ case R_IA64_PCREL32LSB:
+ case R_IA64_PCREL64MSB:
+ case R_IA64_PCREL64LSB:
+ val -= (uint64_t) location;
+ break;
+
+ }
+ switch (r_type) {
+ case R_IA64_PCREL60B: format = RF_INSN60; break;
+ case R_IA64_PCREL21B: format = RF_INSN21B; break;
+ case R_IA64_PCREL21M: format = RF_INSN21M; break;
+ case R_IA64_PCREL21F: format = RF_INSN21F; break;
+ default: break;
+ }
+ break;
+
+ case RV_BDREL:
+ val -= (uint64_t) (in_init(mod, val) ? mod->module_init : mod->module_core);
+ break;
+
+ case RV_LTV:
+ /* can link-time value relocs happen here? */
+ BUG();
+ break;
+
+ case RV_PCREL2:
+ if (r_type == R_IA64_PCREL21BI) {
+ if (!is_internal(mod, val)) {
+ printk(KERN_ERR "%s: %s reloc against non-local symbol (%lx)\n",
+ __FUNCTION__, reloc_name[r_type], val);
+ return -ENOEXEC;
+ }
+ format = RF_INSN21B;
+ }
+ val -= bundle(location);
+ break;
+
+ case RV_SPECIAL:
+ switch (r_type) {
+ case R_IA64_IPLTMSB:
+ case R_IA64_IPLTLSB:
+ val = get_fdesc(mod, get_plt(mod, location, val, &ok), &ok);
+ format = RF_64LSB;
+ if (r_type == R_IA64_IPLTMSB)
+ format = RF_64MSB;
+ break;
+
+ case R_IA64_SUB:
+ val = addend - sym->st_value;
+ format = RF_INSN64;
+ break;
+
+ case R_IA64_LTOFF22X:
+ if (gp_addressable(mod, val))
+ val -= mod->arch.gp;
+ else
+ val = get_ltoff(mod, val, &ok);
+ format = RF_INSN22;
+ break;
+
+ case R_IA64_LDXMOV:
+ if (gp_addressable(mod, val)) {
+ /* turn "ld8" into "mov": */
+ DEBUGP("%s: patching ld8 at %p to mov\n", __FUNCTION__, location);
+ ia64_patch((u64) location, 0x1fff80fe000UL, 0x10000000000UL);
+ }
+ return 0;
+
+ default:
+ if (reloc_name[r_type])
+ printk(KERN_ERR "%s: special reloc %s not supported",
+ mod->name, reloc_name[r_type]);
+ else
+ printk(KERN_ERR "%s: unknown special reloc %x\n",
+ mod->name, r_type);
+ return -ENOEXEC;
+ }
+ break;
+
+ case RV_TPREL:
+ case RV_LTREL_TPREL:
+ case RV_DTPMOD:
+ case RV_LTREL_DTPMOD:
+ case RV_DTPREL:
+ case RV_LTREL_DTPREL:
+ printk(KERN_ERR "%s: %s reloc not supported\n",
+ mod->name, reloc_name[r_type] ? reloc_name[r_type] : "?");
+ return -ENOEXEC;
+
+ default:
+ printk(KERN_ERR "%s: unknown reloc %x\n", mod->name, r_type);
+ return -ENOEXEC;
+ }
+
+ if (!ok)
+ return -ENOEXEC;
+
+ DEBUGP("%s: [%p]<-%016lx = %s(%lx)\n", __FUNCTION__, location, val,
+ reloc_name[r_type] ? reloc_name[r_type] : "?", sym->st_value + addend);
+
+ switch (format) {
+ case RF_INSN21B: ok = apply_imm21b(mod, location, (int64_t) val / 16); break;
+ case RF_INSN22: ok = apply_imm22(mod, location, val); break;
+ case RF_INSN64: ok = apply_imm64(mod, location, val); break;
+ case RF_INSN60: ok = apply_imm60(mod, location, (int64_t) val / 16); break;
+ case RF_32LSB: put_unaligned(val, (uint32_t *) location); break;
+ case RF_64LSB: put_unaligned(val, (uint64_t *) location); break;
+ case RF_32MSB: /* ia64 Linux is little-endian... */
+ case RF_64MSB: /* ia64 Linux is little-endian... */
+ case RF_INSN14: /* must be within-module, i.e., resolved by "ld -r" */
+ case RF_INSN21M: /* must be within-module, i.e., resolved by "ld -r" */
+ case RF_INSN21F: /* must be within-module, i.e., resolved by "ld -r" */
+ printk(KERN_ERR "%s: format %u needed by %s reloc is not supported\n",
+ mod->name, format, reloc_name[r_type] ? reloc_name[r_type] : "?");
+ return -ENOEXEC;
+
+ default:
+ printk(KERN_ERR "%s: relocation %s resulted in unknown format %u\n",
+ mod->name, reloc_name[r_type] ? reloc_name[r_type] : "?", format);
+ return -ENOEXEC;
+ }
+ return ok ? 0 : -ENOEXEC;
+}
+
+int
+apply_relocate_add (Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex,
+ unsigned int relsec, struct module *mod)
+{
+ unsigned int i, n = sechdrs[relsec].sh_size / sizeof(Elf64_Rela);
+ Elf64_Rela *rela = (void *) sechdrs[relsec].sh_addr;
+ Elf64_Shdr *target_sec;
+ int ret;
+
+ DEBUGP("%s: applying section %u (%u relocs) to %u\n", __FUNCTION__,
+ relsec, n, sechdrs[relsec].sh_info);
+
+ target_sec = sechdrs + sechdrs[relsec].sh_info;
+
+ if (target_sec->sh_entsize == ~0UL)
+ /*
+ * If target section wasn't allocated, we don't need to relocate it.
+ * Happens, e.g., for debug sections.
+ */
+ return 0;
+
+ if (!mod->arch.gp) {
+ /*
+ * XXX Should have an arch-hook for running this after final section
+ * addresses have been selected...
+ */
+ /* See if gp can cover the entire core module: */
+ uint64_t gp = (uint64_t) mod->module_core + MAX_LTOFF / 2;
+ if (mod->core_size >= MAX_LTOFF)
+ /*
+ * This takes advantage of fact that SHF_ARCH_SMALL gets allocated
+ * at the end of the module.
+ */
+ gp = (uint64_t) mod->module_core + mod->core_size - MAX_LTOFF / 2;
+ mod->arch.gp = gp;
+ DEBUGP("%s: placing gp at 0x%lx\n", __FUNCTION__, gp);
+ }
+
+ for (i = 0; i < n; i++) {
+ ret = do_reloc(mod, ELF64_R_TYPE(rela[i].r_info),
+ ((Elf64_Sym *) sechdrs[symindex].sh_addr
+ + ELF64_R_SYM(rela[i].r_info)),
+ rela[i].r_addend, target_sec,
+ (void *) target_sec->sh_addr + rela[i].r_offset);
+ if (ret < 0)
+ return ret;
+ }
+ return 0;
+}
+
+int
+apply_relocate (Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex,
+ unsigned int relsec, struct module *mod)
+{
+ printk(KERN_ERR "module %s: REL relocs in section %u unsupported\n", mod->name, relsec);
+ return -ENOEXEC;
+}
+
+/*
+ * Modules contain a single unwind table which covers both the core and the init text
+ * sections but since the two are not contiguous, we need to split this table up such that
+ * we can register (and unregister) each "segment" seperately. Fortunately, this sounds
+ * more complicated than it really is.
+ */
+static void
+register_unwind_table (struct module *mod)
+{
+ struct unw_table_entry *start = (void *) mod->arch.unwind->sh_addr;
+ struct unw_table_entry *end = start + mod->arch.unwind->sh_size / sizeof (*start);
+ struct unw_table_entry tmp, *e1, *e2, *core, *init;
+ unsigned long num_init = 0, num_core = 0;
+
+ /* First, count how many init and core unwind-table entries there are. */
+ for (e1 = start; e1 < end; ++e1)
+ if (in_init(mod, e1->start_offset))
+ ++num_init;
+ else
+ ++num_core;
+ /*
+ * Second, sort the table such that all unwind-table entries for the init and core
+ * text sections are nicely separated. We do this with a stupid bubble sort
+ * (unwind tables don't get ridiculously huge).
+ */
+ for (e1 = start; e1 < end; ++e1) {
+ for (e2 = e1 + 1; e2 < end; ++e2) {
+ if (e2->start_offset < e1->start_offset) {
+ tmp = *e1;
+ *e1 = *e2;
+ *e2 = tmp;
+ }
+ }
+ }
+ /*
+ * Third, locate the init and core segments in the unwind table:
+ */
+ if (in_init(mod, start->start_offset)) {
+ init = start;
+ core = start + num_init;
+ } else {
+ core = start;
+ init = start + num_core;
+ }
+
+ DEBUGP("%s: name=%s, gp=%lx, num_init=%lu, num_core=%lu\n", __FUNCTION__,
+ mod->name, mod->arch.gp, num_init, num_core);
+
+ /*
+ * Fourth, register both tables (if not empty).
+ */
+ if (num_core > 0) {
+ mod->arch.core_unw_table = unw_add_unwind_table(mod->name, 0, mod->arch.gp,
+ core, core + num_core);
+ DEBUGP("%s: core: handle=%p [%p-%p)\n", __FUNCTION__,
+ mod->arch.core_unw_table, core, core + num_core);
+ }
+ if (num_init > 0) {
+ mod->arch.init_unw_table = unw_add_unwind_table(mod->name, 0, mod->arch.gp,
+ init, init + num_init);
+ DEBUGP("%s: init: handle=%p [%p-%p)\n", __FUNCTION__,
+ mod->arch.init_unw_table, init, init + num_init);
+ }
+}
+
+int
+module_finalize (const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod)
+{
+ DEBUGP("%s: init: entry=%p\n", __FUNCTION__, mod->init);
+ if (mod->arch.unwind)
+ register_unwind_table(mod);
+ return 0;
+}
+
+void
+module_arch_cleanup (struct module *mod)
+{
+ if (mod->arch.init_unw_table)
+ unw_remove_unwind_table(mod->arch.init_unw_table);
+ if (mod->arch.core_unw_table)
+ unw_remove_unwind_table(mod->arch.core_unw_table);
+}
+
+#ifdef CONFIG_SMP
+void
+percpu_modcopy (void *pcpudst, const void *src, unsigned long size)
+{
+ unsigned int i;
+ for (i = 0; i < NR_CPUS; i++)
+ if (cpu_possible(i))
+ memcpy(pcpudst + __per_cpu_offset[i], src, size);
+}
+#endif /* CONFIG_SMP */
diff --git a/arch/ia64/kernel/pal.S b/arch/ia64/kernel/pal.S
new file mode 100644
index 0000000..5018c7f
--- /dev/null
+++ b/arch/ia64/kernel/pal.S
@@ -0,0 +1,302 @@
+/*
+ * PAL Firmware support
+ * IA-64 Processor Programmers Reference Vol 2
+ *
+ * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999-2001, 2003 Hewlett-Packard Co
+ * David Mosberger <davidm@hpl.hp.com>
+ * Stephane Eranian <eranian@hpl.hp.com>
+ *
+ * 05/22/2000 eranian Added support for stacked register calls
+ * 05/24/2000 eranian Added support for physical mode static calls
+ */
+
+#include <asm/asmmacro.h>
+#include <asm/processor.h>
+
+ .data
+pal_entry_point:
+ data8 ia64_pal_default_handler
+ .text
+
+/*
+ * Set the PAL entry point address. This could be written in C code, but we do it here
+ * to keep it all in one module (besides, it's so trivial that it's
+ * not a big deal).
+ *
+ * in0 Address of the PAL entry point (text address, NOT a function descriptor).
+ */
+GLOBAL_ENTRY(ia64_pal_handler_init)
+ alloc r3=ar.pfs,1,0,0,0
+ movl r2=pal_entry_point
+ ;;
+ st8 [r2]=in0
+ br.ret.sptk.many rp
+END(ia64_pal_handler_init)
+
+/*
+ * Default PAL call handler. This needs to be coded in assembly because it uses
+ * the static calling convention, i.e., the RSE may not be used and calls are
+ * done via "br.cond" (not "br.call").
+ */
+GLOBAL_ENTRY(ia64_pal_default_handler)
+ mov r8=-1
+ br.cond.sptk.many rp
+END(ia64_pal_default_handler)
+
+/*
+ * Make a PAL call using the static calling convention.
+ *
+ * in0 Index of PAL service
+ * in1 - in3 Remaining PAL arguments
+ * in4 1 ==> clear psr.ic, 0 ==> don't clear psr.ic
+ *
+ */
+GLOBAL_ENTRY(ia64_pal_call_static)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(5)
+ alloc loc1 = ar.pfs,5,5,0,0
+ movl loc2 = pal_entry_point
+1: {
+ mov r28 = in0
+ mov r29 = in1
+ mov r8 = ip
+ }
+ ;;
+ ld8 loc2 = [loc2] // loc2 <- entry point
+ tbit.nz p6,p7 = in4, 0
+ adds r8 = 1f-1b,r8
+ mov loc4=ar.rsc // save RSE configuration
+ ;;
+ mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ mov loc3 = psr
+ mov loc0 = rp
+ .body
+ mov r30 = in2
+
+(p6) rsm psr.i | psr.ic
+ mov r31 = in3
+ mov b7 = loc2
+
+(p7) rsm psr.i
+ ;;
+(p6) srlz.i
+ mov rp = r8
+ br.cond.sptk.many b7
+1: mov psr.l = loc3
+ mov ar.rsc = loc4 // restore RSE configuration
+ mov ar.pfs = loc1
+ mov rp = loc0
+ ;;
+ srlz.d // seralize restoration of psr.l
+ br.ret.sptk.many b0
+END(ia64_pal_call_static)
+
+/*
+ * Make a PAL call using the stacked registers calling convention.
+ *
+ * Inputs:
+ * in0 Index of PAL service
+ * in2 - in3 Remaning PAL arguments
+ */
+GLOBAL_ENTRY(ia64_pal_call_stacked)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(4)
+ alloc loc1 = ar.pfs,4,4,4,0
+ movl loc2 = pal_entry_point
+
+ mov r28 = in0 // Index MUST be copied to r28
+ mov out0 = in0 // AND in0 of PAL function
+ mov loc0 = rp
+ .body
+ ;;
+ ld8 loc2 = [loc2] // loc2 <- entry point
+ mov out1 = in1
+ mov out2 = in2
+ mov out3 = in3
+ mov loc3 = psr
+ ;;
+ rsm psr.i
+ mov b7 = loc2
+ ;;
+ br.call.sptk.many rp=b7 // now make the call
+.ret0: mov psr.l = loc3
+ mov ar.pfs = loc1
+ mov rp = loc0
+ ;;
+ srlz.d // serialize restoration of psr.l
+ br.ret.sptk.many b0
+END(ia64_pal_call_stacked)
+
+/*
+ * Make a physical mode PAL call using the static registers calling convention.
+ *
+ * Inputs:
+ * in0 Index of PAL service
+ * in2 - in3 Remaning PAL arguments
+ *
+ * PSR_LP, PSR_TB, PSR_ID, PSR_DA are never set by the kernel.
+ * So we don't need to clear them.
+ */
+#define PAL_PSR_BITS_TO_CLEAR \
+ (IA64_PSR_I | IA64_PSR_IT | IA64_PSR_DT | IA64_PSR_DB | IA64_PSR_RT | \
+ IA64_PSR_DD | IA64_PSR_SS | IA64_PSR_RI | IA64_PSR_ED | \
+ IA64_PSR_DFL | IA64_PSR_DFH)
+
+#define PAL_PSR_BITS_TO_SET \
+ (IA64_PSR_BN)
+
+
+GLOBAL_ENTRY(ia64_pal_call_phys_static)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(4)
+ alloc loc1 = ar.pfs,4,7,0,0
+ movl loc2 = pal_entry_point
+1: {
+ mov r28 = in0 // copy procedure index
+ mov r8 = ip // save ip to compute branch
+ mov loc0 = rp // save rp
+ }
+ .body
+ ;;
+ ld8 loc2 = [loc2] // loc2 <- entry point
+ mov r29 = in1 // first argument
+ mov r30 = in2 // copy arg2
+ mov r31 = in3 // copy arg3
+ ;;
+ mov loc3 = psr // save psr
+ adds r8 = 1f-1b,r8 // calculate return address for call
+ ;;
+ mov loc4=ar.rsc // save RSE configuration
+ dep.z loc2=loc2,0,61 // convert pal entry point to physical
+ tpa r8=r8 // convert rp to physical
+ ;;
+ mov b7 = loc2 // install target to branch reg
+ mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ movl r16=PAL_PSR_BITS_TO_CLEAR
+ movl r17=PAL_PSR_BITS_TO_SET
+ ;;
+ or loc3=loc3,r17 // add in psr the bits to set
+ ;;
+ andcm r16=loc3,r16 // removes bits to clear from psr
+ br.call.sptk.many rp=ia64_switch_mode_phys
+.ret1: mov rp = r8 // install return address (physical)
+ mov loc5 = r19
+ mov loc6 = r20
+ br.cond.sptk.many b7
+1:
+ mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ mov r16=loc3 // r16= original psr
+ mov r19=loc5
+ mov r20=loc6
+ br.call.sptk.many rp=ia64_switch_mode_virt // return to virtual mode
+.ret2:
+ mov psr.l = loc3 // restore init PSR
+
+ mov ar.pfs = loc1
+ mov rp = loc0
+ ;;
+ mov ar.rsc=loc4 // restore RSE configuration
+ srlz.d // seralize restoration of psr.l
+ br.ret.sptk.many b0
+END(ia64_pal_call_phys_static)
+
+/*
+ * Make a PAL call using the stacked registers in physical mode.
+ *
+ * Inputs:
+ * in0 Index of PAL service
+ * in2 - in3 Remaning PAL arguments
+ */
+GLOBAL_ENTRY(ia64_pal_call_phys_stacked)
+ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(5)
+ alloc loc1 = ar.pfs,5,7,4,0
+ movl loc2 = pal_entry_point
+1: {
+ mov r28 = in0 // copy procedure index
+ mov loc0 = rp // save rp
+ }
+ .body
+ ;;
+ ld8 loc2 = [loc2] // loc2 <- entry point
+ mov out0 = in0 // first argument
+ mov out1 = in1 // copy arg2
+ mov out2 = in2 // copy arg3
+ mov out3 = in3 // copy arg3
+ ;;
+ mov loc3 = psr // save psr
+ ;;
+ mov loc4=ar.rsc // save RSE configuration
+ dep.z loc2=loc2,0,61 // convert pal entry point to physical
+ ;;
+ mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ movl r16=PAL_PSR_BITS_TO_CLEAR
+ movl r17=PAL_PSR_BITS_TO_SET
+ ;;
+ or loc3=loc3,r17 // add in psr the bits to set
+ mov b7 = loc2 // install target to branch reg
+ ;;
+ andcm r16=loc3,r16 // removes bits to clear from psr
+ br.call.sptk.many rp=ia64_switch_mode_phys
+.ret6:
+ mov loc5 = r19
+ mov loc6 = r20
+ br.call.sptk.many rp=b7 // now make the call
+.ret7:
+ mov ar.rsc=0 // put RSE in enforced lazy, LE mode
+ mov r16=loc3 // r16= original psr
+ mov r19=loc5
+ mov r20=loc6
+ br.call.sptk.many rp=ia64_switch_mode_virt // return to virtual mode
+
+.ret8: mov psr.l = loc3 // restore init PSR
+ mov ar.pfs = loc1
+ mov rp = loc0
+ ;;
+ mov ar.rsc=loc4 // restore RSE configuration
+ srlz.d // seralize restoration of psr.l
+ br.ret.sptk.many b0
+END(ia64_pal_call_phys_stacked)
+
+/*
+ * Save scratch fp scratch regs which aren't saved in pt_regs already (fp10-fp15).
+ *
+ * NOTE: We need to do this since firmware (SAL and PAL) may use any of the scratch
+ * regs fp-low partition.
+ *
+ * Inputs:
+ * in0 Address of stack storage for fp regs
+ */
+GLOBAL_ENTRY(ia64_save_scratch_fpregs)
+ alloc r3=ar.pfs,1,0,0,0
+ add r2=16,in0
+ ;;
+ stf.spill [in0] = f10,32
+ stf.spill [r2] = f11,32
+ ;;
+ stf.spill [in0] = f12,32
+ stf.spill [r2] = f13,32
+ ;;
+ stf.spill [in0] = f14,32
+ stf.spill [r2] = f15,32
+ br.ret.sptk.many rp
+END(ia64_save_scratch_fpregs)
+
+/*
+ * Load scratch fp scratch regs (fp10-fp15)
+ *
+ * Inputs:
+ * in0 Address of stack storage for fp regs
+ */
+GLOBAL_ENTRY(ia64_load_scratch_fpregs)
+ alloc r3=ar.pfs,1,0,0,0
+ add r2=16,in0
+ ;;
+ ldf.fill f10 = [in0],32
+ ldf.fill f11 = [r2],32
+ ;;
+ ldf.fill f12 = [in0],32
+ ldf.fill f13 = [r2],32
+ ;;
+ ldf.fill f14 = [in0],32
+ ldf.fill f15 = [r2],32
+ br.ret.sptk.many rp
+END(ia64_load_scratch_fpregs)
diff --git a/arch/ia64/kernel/palinfo.c b/arch/ia64/kernel/palinfo.c
new file mode 100644
index 0000000..25e7c83
--- /dev/null
+++ b/arch/ia64/kernel/palinfo.c
@@ -0,0 +1,1023 @@
+/*
+ * palinfo.c
+ *
+ * Prints processor specific information reported by PAL.
+ * This code is based on specification of PAL as of the
+ * Intel IA-64 Architecture Software Developer's Manual v1.0.
+ *
+ *
+ * Copyright (C) 2000-2001, 2003 Hewlett-Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * Copyright (C) 2004 Intel Corporation
+ * Ashok Raj <ashok.raj@intel.com>
+ *
+ * 05/26/2000 S.Eranian initial release
+ * 08/21/2000 S.Eranian updated to July 2000 PAL specs
+ * 02/05/2001 S.Eranian fixed module support
+ * 10/23/2001 S.Eranian updated pal_perf_mon_info bug fixes
+ * 03/24/2004 Ashok Raj updated to work with CPU Hotplug
+ */
+#include <linux/config.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/proc_fs.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/efi.h>
+#include <linux/notifier.h>
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+
+#include <asm/pal.h>
+#include <asm/sal.h>
+#include <asm/page.h>
+#include <asm/processor.h>
+#include <linux/smp.h>
+
+MODULE_AUTHOR("Stephane Eranian <eranian@hpl.hp.com>");
+MODULE_DESCRIPTION("/proc interface to IA-64 PAL");
+MODULE_LICENSE("GPL");
+
+#define PALINFO_VERSION "0.5"
+
+typedef int (*palinfo_func_t)(char*);
+
+typedef struct {
+ const char *name; /* name of the proc entry */
+ palinfo_func_t proc_read; /* function to call for reading */
+ struct proc_dir_entry *entry; /* registered entry (removal) */
+} palinfo_entry_t;
+
+
+/*
+ * A bunch of string array to get pretty printing
+ */
+
+static char *cache_types[] = {
+ "", /* not used */
+ "Instruction",
+ "Data",
+ "Data/Instruction" /* unified */
+};
+
+static const char *cache_mattrib[]={
+ "WriteThrough",
+ "WriteBack",
+ "", /* reserved */
+ "" /* reserved */
+};
+
+static const char *cache_st_hints[]={
+ "Temporal, level 1",
+ "Reserved",
+ "Reserved",
+ "Non-temporal, all levels",
+ "Reserved",
+ "Reserved",
+ "Reserved",
+ "Reserved"
+};
+
+static const char *cache_ld_hints[]={
+ "Temporal, level 1",
+ "Non-temporal, level 1",
+ "Reserved",
+ "Non-temporal, all levels",
+ "Reserved",
+ "Reserved",
+ "Reserved",
+ "Reserved"
+};
+
+static const char *rse_hints[]={
+ "enforced lazy",
+ "eager stores",
+ "eager loads",
+ "eager loads and stores"
+};
+
+#define RSE_HINTS_COUNT ARRAY_SIZE(rse_hints)
+
+static const char *mem_attrib[]={
+ "WB", /* 000 */
+ "SW", /* 001 */
+ "010", /* 010 */
+ "011", /* 011 */
+ "UC", /* 100 */
+ "UCE", /* 101 */
+ "WC", /* 110 */
+ "NaTPage" /* 111 */
+};
+
+/*
+ * Take a 64bit vector and produces a string such that
+ * if bit n is set then 2^n in clear text is generated. The adjustment
+ * to the right unit is also done.
+ *
+ * Input:
+ * - a pointer to a buffer to hold the string
+ * - a 64-bit vector
+ * Ouput:
+ * - a pointer to the end of the buffer
+ *
+ */
+static char *
+bitvector_process(char *p, u64 vector)
+{
+ int i,j;
+ const char *units[]={ "", "K", "M", "G", "T" };
+
+ for (i=0, j=0; i < 64; i++ , j=i/10) {
+ if (vector & 0x1) {
+ p += sprintf(p, "%d%s ", 1 << (i-j*10), units[j]);
+ }
+ vector >>= 1;
+ }
+ return p;
+}
+
+/*
+ * Take a 64bit vector and produces a string such that
+ * if bit n is set then register n is present. The function
+ * takes into account consecutive registers and prints out ranges.
+ *
+ * Input:
+ * - a pointer to a buffer to hold the string
+ * - a 64-bit vector
+ * Ouput:
+ * - a pointer to the end of the buffer
+ *
+ */
+static char *
+bitregister_process(char *p, u64 *reg_info, int max)
+{
+ int i, begin, skip = 0;
+ u64 value = reg_info[0];
+
+ value >>= i = begin = ffs(value) - 1;
+
+ for(; i < max; i++ ) {
+
+ if (i != 0 && (i%64) == 0) value = *++reg_info;
+
+ if ((value & 0x1) == 0 && skip == 0) {
+ if (begin <= i - 2)
+ p += sprintf(p, "%d-%d ", begin, i-1);
+ else
+ p += sprintf(p, "%d ", i-1);
+ skip = 1;
+ begin = -1;
+ } else if ((value & 0x1) && skip == 1) {
+ skip = 0;
+ begin = i;
+ }
+ value >>=1;
+ }
+ if (begin > -1) {
+ if (begin < 127)
+ p += sprintf(p, "%d-127", begin);
+ else
+ p += sprintf(p, "127");
+ }
+
+ return p;
+}
+
+static int
+power_info(char *page)
+{
+ s64 status;
+ char *p = page;
+ u64 halt_info_buffer[8];
+ pal_power_mgmt_info_u_t *halt_info =(pal_power_mgmt_info_u_t *)halt_info_buffer;
+ int i;
+
+ status = ia64_pal_halt_info(halt_info);
+ if (status != 0) return 0;
+
+ for (i=0; i < 8 ; i++ ) {
+ if (halt_info[i].pal_power_mgmt_info_s.im == 1) {
+ p += sprintf(p, "Power level %d:\n"
+ "\tentry_latency : %d cycles\n"
+ "\texit_latency : %d cycles\n"
+ "\tpower consumption : %d mW\n"
+ "\tCache+TLB coherency : %s\n", i,
+ halt_info[i].pal_power_mgmt_info_s.entry_latency,
+ halt_info[i].pal_power_mgmt_info_s.exit_latency,
+ halt_info[i].pal_power_mgmt_info_s.power_consumption,
+ halt_info[i].pal_power_mgmt_info_s.co ? "Yes" : "No");
+ } else {
+ p += sprintf(p,"Power level %d: not implemented\n",i);
+ }
+ }
+ return p - page;
+}
+
+static int
+cache_info(char *page)
+{
+ char *p = page;
+ u64 i, levels, unique_caches;
+ pal_cache_config_info_t cci;
+ int j, k;
+ s64 status;
+
+ if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
+ printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
+ return 0;
+ }
+
+ p += sprintf(p, "Cache levels : %ld\nUnique caches : %ld\n\n", levels, unique_caches);
+
+ for (i=0; i < levels; i++) {
+
+ for (j=2; j >0 ; j--) {
+
+ /* even without unification some level may not be present */
+ if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 0) {
+ continue;
+ }
+ p += sprintf(p,
+ "%s Cache level %lu:\n"
+ "\tSize : %lu bytes\n"
+ "\tAttributes : ",
+ cache_types[j+cci.pcci_unified], i+1,
+ cci.pcci_cache_size);
+
+ if (cci.pcci_unified) p += sprintf(p, "Unified ");
+
+ p += sprintf(p, "%s\n", cache_mattrib[cci.pcci_cache_attr]);
+
+ p += sprintf(p,
+ "\tAssociativity : %d\n"
+ "\tLine size : %d bytes\n"
+ "\tStride : %d bytes\n",
+ cci.pcci_assoc, 1<<cci.pcci_line_size, 1<<cci.pcci_stride);
+ if (j == 1)
+ p += sprintf(p, "\tStore latency : N/A\n");
+ else
+ p += sprintf(p, "\tStore latency : %d cycle(s)\n",
+ cci.pcci_st_latency);
+
+ p += sprintf(p,
+ "\tLoad latency : %d cycle(s)\n"
+ "\tStore hints : ", cci.pcci_ld_latency);
+
+ for(k=0; k < 8; k++ ) {
+ if ( cci.pcci_st_hints & 0x1)
+ p += sprintf(p, "[%s]", cache_st_hints[k]);
+ cci.pcci_st_hints >>=1;
+ }
+ p += sprintf(p, "\n\tLoad hints : ");
+
+ for(k=0; k < 8; k++ ) {
+ if (cci.pcci_ld_hints & 0x1)
+ p += sprintf(p, "[%s]", cache_ld_hints[k]);
+ cci.pcci_ld_hints >>=1;
+ }
+ p += sprintf(p,
+ "\n\tAlias boundary : %d byte(s)\n"
+ "\tTag LSB : %d\n"
+ "\tTag MSB : %d\n",
+ 1<<cci.pcci_alias_boundary, cci.pcci_tag_lsb,
+ cci.pcci_tag_msb);
+
+ /* when unified, data(j=2) is enough */
+ if (cci.pcci_unified) break;
+ }
+ }
+ return p - page;
+}
+
+
+static int
+vm_info(char *page)
+{
+ char *p = page;
+ u64 tr_pages =0, vw_pages=0, tc_pages;
+ u64 attrib;
+ pal_vm_info_1_u_t vm_info_1;
+ pal_vm_info_2_u_t vm_info_2;
+ pal_tc_info_u_t tc_info;
+ ia64_ptce_info_t ptce;
+ const char *sep;
+ int i, j;
+ s64 status;
+
+ if ((status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2)) !=0) {
+ printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
+ return 0;
+ }
+
+
+ p += sprintf(p,
+ "Physical Address Space : %d bits\n"
+ "Virtual Address Space : %d bits\n"
+ "Protection Key Registers(PKR) : %d\n"
+ "Implemented bits in PKR.key : %d\n"
+ "Hash Tag ID : 0x%x\n"
+ "Size of RR.rid : %d\n",
+ vm_info_1.pal_vm_info_1_s.phys_add_size,
+ vm_info_2.pal_vm_info_2_s.impl_va_msb+1, vm_info_1.pal_vm_info_1_s.max_pkr+1,
+ vm_info_1.pal_vm_info_1_s.key_size, vm_info_1.pal_vm_info_1_s.hash_tag_id,
+ vm_info_2.pal_vm_info_2_s.rid_size);
+
+ if (ia64_pal_mem_attrib(&attrib) != 0)
+ return 0;
+
+ p += sprintf(p, "Supported memory attributes : ");
+ sep = "";
+ for (i = 0; i < 8; i++) {
+ if (attrib & (1 << i)) {
+ p += sprintf(p, "%s%s", sep, mem_attrib[i]);
+ sep = ", ";
+ }
+ }
+ p += sprintf(p, "\n");
+
+ if ((status = ia64_pal_vm_page_size(&tr_pages, &vw_pages)) !=0) {
+ printk(KERN_ERR "ia64_pal_vm_page_size=%ld\n", status);
+ return 0;
+ }
+
+ p += sprintf(p,
+ "\nTLB walker : %simplemented\n"
+ "Number of DTR : %d\n"
+ "Number of ITR : %d\n"
+ "TLB insertable page sizes : ",
+ vm_info_1.pal_vm_info_1_s.vw ? "" : "not ",
+ vm_info_1.pal_vm_info_1_s.max_dtr_entry+1,
+ vm_info_1.pal_vm_info_1_s.max_itr_entry+1);
+
+
+ p = bitvector_process(p, tr_pages);
+
+ p += sprintf(p, "\nTLB purgeable page sizes : ");
+
+ p = bitvector_process(p, vw_pages);
+
+ if ((status=ia64_get_ptce(&ptce)) != 0) {
+ printk(KERN_ERR "ia64_get_ptce=%ld\n", status);
+ return 0;
+ }
+
+ p += sprintf(p,
+ "\nPurge base address : 0x%016lx\n"
+ "Purge outer loop count : %d\n"
+ "Purge inner loop count : %d\n"
+ "Purge outer loop stride : %d\n"
+ "Purge inner loop stride : %d\n",
+ ptce.base, ptce.count[0], ptce.count[1], ptce.stride[0], ptce.stride[1]);
+
+ p += sprintf(p,
+ "TC Levels : %d\n"
+ "Unique TC(s) : %d\n",
+ vm_info_1.pal_vm_info_1_s.num_tc_levels,
+ vm_info_1.pal_vm_info_1_s.max_unique_tcs);
+
+ for(i=0; i < vm_info_1.pal_vm_info_1_s.num_tc_levels; i++) {
+ for (j=2; j>0 ; j--) {
+ tc_pages = 0; /* just in case */
+
+
+ /* even without unification, some levels may not be present */
+ if ((status=ia64_pal_vm_info(i,j, &tc_info, &tc_pages)) != 0) {
+ continue;
+ }
+
+ p += sprintf(p,
+ "\n%s Translation Cache Level %d:\n"
+ "\tHash sets : %d\n"
+ "\tAssociativity : %d\n"
+ "\tNumber of entries : %d\n"
+ "\tFlags : ",
+ cache_types[j+tc_info.tc_unified], i+1, tc_info.tc_num_sets,
+ tc_info.tc_associativity, tc_info.tc_num_entries);
+
+ if (tc_info.tc_pf) p += sprintf(p, "PreferredPageSizeOptimized ");
+ if (tc_info.tc_unified) p += sprintf(p, "Unified ");
+ if (tc_info.tc_reduce_tr) p += sprintf(p, "TCReduction");
+
+ p += sprintf(p, "\n\tSupported page sizes: ");
+
+ p = bitvector_process(p, tc_pages);
+
+ /* when unified date (j=2) is enough */
+ if (tc_info.tc_unified) break;
+ }
+ }
+ p += sprintf(p, "\n");
+
+ return p - page;
+}
+
+
+static int
+register_info(char *page)
+{
+ char *p = page;
+ u64 reg_info[2];
+ u64 info;
+ u64 phys_stacked;
+ pal_hints_u_t hints;
+ u64 iregs, dregs;
+ char *info_type[]={
+ "Implemented AR(s)",
+ "AR(s) with read side-effects",
+ "Implemented CR(s)",
+ "CR(s) with read side-effects",
+ };
+
+ for(info=0; info < 4; info++) {
+
+ if (ia64_pal_register_info(info, &reg_info[0], &reg_info[1]) != 0) return 0;
+
+ p += sprintf(p, "%-32s : ", info_type[info]);
+
+ p = bitregister_process(p, reg_info, 128);
+
+ p += sprintf(p, "\n");
+ }
+
+ if (ia64_pal_rse_info(&phys_stacked, &hints) != 0) return 0;
+
+ p += sprintf(p,
+ "RSE stacked physical registers : %ld\n"
+ "RSE load/store hints : %ld (%s)\n",
+ phys_stacked, hints.ph_data,
+ hints.ph_data < RSE_HINTS_COUNT ? rse_hints[hints.ph_data]: "(??)");
+
+ if (ia64_pal_debug_info(&iregs, &dregs))
+ return 0;
+
+ p += sprintf(p,
+ "Instruction debug register pairs : %ld\n"
+ "Data debug register pairs : %ld\n", iregs, dregs);
+
+ return p - page;
+}
+
+static const char *proc_features[]={
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL,
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
+ NULL,NULL,NULL,NULL,NULL, NULL,NULL,NULL,NULL,
+ NULL,NULL,NULL,NULL,NULL,
+ "XIP,XPSR,XFS implemented",
+ "XR1-XR3 implemented",
+ "Disable dynamic predicate prediction",
+ "Disable processor physical number",
+ "Disable dynamic data cache prefetch",
+ "Disable dynamic inst cache prefetch",
+ "Disable dynamic branch prediction",
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
+ "Disable BINIT on processor time-out",
+ "Disable dynamic power management (DPM)",
+ "Disable coherency",
+ "Disable cache",
+ "Enable CMCI promotion",
+ "Enable MCA to BINIT promotion",
+ "Enable MCA promotion",
+ "Enable BERR promotion"
+};
+
+
+static int
+processor_info(char *page)
+{
+ char *p = page;
+ const char **v = proc_features;
+ u64 avail=1, status=1, control=1;
+ int i;
+ s64 ret;
+
+ if ((ret=ia64_pal_proc_get_features(&avail, &status, &control)) != 0) return 0;
+
+ for(i=0; i < 64; i++, v++,avail >>=1, status >>=1, control >>=1) {
+ if ( ! *v ) continue;
+ p += sprintf(p, "%-40s : %s%s %s\n", *v,
+ avail & 0x1 ? "" : "NotImpl",
+ avail & 0x1 ? (status & 0x1 ? "On" : "Off"): "",
+ avail & 0x1 ? (control & 0x1 ? "Ctrl" : "NoCtrl"): "");
+ }
+ return p - page;
+}
+
+static const char *bus_features[]={
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL,
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
+ NULL,NULL,
+ "Request Bus Parking",
+ "Bus Lock Mask",
+ "Enable Half Transfer",
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
+ NULL, NULL, NULL, NULL,
+ "Enable Cache Line Repl. Shared",
+ "Enable Cache Line Repl. Exclusive",
+ "Disable Transaction Queuing",
+ "Disable Response Error Checking",
+ "Disable Bus Error Checking",
+ "Disable Bus Requester Internal Error Signalling",
+ "Disable Bus Requester Error Signalling",
+ "Disable Bus Initialization Event Checking",
+ "Disable Bus Initialization Event Signalling",
+ "Disable Bus Address Error Checking",
+ "Disable Bus Address Error Signalling",
+ "Disable Bus Data Error Checking"
+};
+
+
+static int
+bus_info(char *page)
+{
+ char *p = page;
+ const char **v = bus_features;
+ pal_bus_features_u_t av, st, ct;
+ u64 avail, status, control;
+ int i;
+ s64 ret;
+
+ if ((ret=ia64_pal_bus_get_features(&av, &st, &ct)) != 0) return 0;
+
+ avail = av.pal_bus_features_val;
+ status = st.pal_bus_features_val;
+ control = ct.pal_bus_features_val;
+
+ for(i=0; i < 64; i++, v++, avail >>=1, status >>=1, control >>=1) {
+ if ( ! *v ) continue;
+ p += sprintf(p, "%-48s : %s%s %s\n", *v,
+ avail & 0x1 ? "" : "NotImpl",
+ avail & 0x1 ? (status & 0x1 ? "On" : "Off"): "",
+ avail & 0x1 ? (control & 0x1 ? "Ctrl" : "NoCtrl"): "");
+ }
+ return p - page;
+}
+
+static int
+version_info(char *page)
+{
+ pal_version_u_t min_ver, cur_ver;
+ char *p = page;
+
+ /* The PAL_VERSION call is advertised as being able to support
+ * both physical and virtual mode calls. This seems to be a documentation
+ * bug rather than firmware bug. In fact, it does only support physical mode.
+ * So now the code reflects this fact and the pal_version() has been updated
+ * accordingly.
+ */
+ if (ia64_pal_version(&min_ver, &cur_ver) != 0) return 0;
+
+ p += sprintf(p,
+ "PAL_vendor : 0x%02x (min=0x%02x)\n"
+ "PAL_A : %x.%x.%x (min=%x.%x.%x)\n"
+ "PAL_B : %x.%x.%x (min=%x.%x.%x)\n",
+ cur_ver.pal_version_s.pv_pal_vendor, min_ver.pal_version_s.pv_pal_vendor,
+
+ cur_ver.pal_version_s.pv_pal_a_model>>4,
+ cur_ver.pal_version_s.pv_pal_a_model&0xf, cur_ver.pal_version_s.pv_pal_a_rev,
+ min_ver.pal_version_s.pv_pal_a_model>>4,
+ min_ver.pal_version_s.pv_pal_a_model&0xf, min_ver.pal_version_s.pv_pal_a_rev,
+
+ cur_ver.pal_version_s.pv_pal_b_model>>4,
+ cur_ver.pal_version_s.pv_pal_b_model&0xf, cur_ver.pal_version_s.pv_pal_b_rev,
+ min_ver.pal_version_s.pv_pal_b_model>>4,
+ min_ver.pal_version_s.pv_pal_b_model&0xf, min_ver.pal_version_s.pv_pal_b_rev);
+ return p - page;
+}
+
+static int
+perfmon_info(char *page)
+{
+ char *p = page;
+ u64 pm_buffer[16];
+ pal_perf_mon_info_u_t pm_info;
+
+ if (ia64_pal_perf_mon_info(pm_buffer, &pm_info) != 0) return 0;
+
+ p += sprintf(p,
+ "PMC/PMD pairs : %d\n"
+ "Counter width : %d bits\n"
+ "Cycle event number : %d\n"
+ "Retired event number : %d\n"
+ "Implemented PMC : ",
+ pm_info.pal_perf_mon_info_s.generic, pm_info.pal_perf_mon_info_s.width,
+ pm_info.pal_perf_mon_info_s.cycles, pm_info.pal_perf_mon_info_s.retired);
+
+ p = bitregister_process(p, pm_buffer, 256);
+ p += sprintf(p, "\nImplemented PMD : ");
+ p = bitregister_process(p, pm_buffer+4, 256);
+ p += sprintf(p, "\nCycles count capable : ");
+ p = bitregister_process(p, pm_buffer+8, 256);
+ p += sprintf(p, "\nRetired bundles count capable : ");
+
+#ifdef CONFIG_ITANIUM
+ /*
+ * PAL_PERF_MON_INFO reports that only PMC4 can be used to count CPU_CYCLES
+ * which is wrong, both PMC4 and PMD5 support it.
+ */
+ if (pm_buffer[12] == 0x10) pm_buffer[12]=0x30;
+#endif
+
+ p = bitregister_process(p, pm_buffer+12, 256);
+
+ p += sprintf(p, "\n");
+
+ return p - page;
+}
+
+static int
+frequency_info(char *page)
+{
+ char *p = page;
+ struct pal_freq_ratio proc, itc, bus;
+ u64 base;
+
+ if (ia64_pal_freq_base(&base) == -1)
+ p += sprintf(p, "Output clock : not implemented\n");
+ else
+ p += sprintf(p, "Output clock : %ld ticks/s\n", base);
+
+ if (ia64_pal_freq_ratios(&proc, &bus, &itc) != 0) return 0;
+
+ p += sprintf(p,
+ "Processor/Clock ratio : %ld/%ld\n"
+ "Bus/Clock ratio : %ld/%ld\n"
+ "ITC/Clock ratio : %ld/%ld\n",
+ proc.num, proc.den, bus.num, bus.den, itc.num, itc.den);
+
+ return p - page;
+}
+
+static int
+tr_info(char *page)
+{
+ char *p = page;
+ s64 status;
+ pal_tr_valid_u_t tr_valid;
+ u64 tr_buffer[4];
+ pal_vm_info_1_u_t vm_info_1;
+ pal_vm_info_2_u_t vm_info_2;
+ u64 i, j;
+ u64 max[3], pgm;
+ struct ifa_reg {
+ u64 valid:1;
+ u64 ig:11;
+ u64 vpn:52;
+ } *ifa_reg;
+ struct itir_reg {
+ u64 rv1:2;
+ u64 ps:6;
+ u64 key:24;
+ u64 rv2:32;
+ } *itir_reg;
+ struct gr_reg {
+ u64 p:1;
+ u64 rv1:1;
+ u64 ma:3;
+ u64 a:1;
+ u64 d:1;
+ u64 pl:2;
+ u64 ar:3;
+ u64 ppn:38;
+ u64 rv2:2;
+ u64 ed:1;
+ u64 ig:11;
+ } *gr_reg;
+ struct rid_reg {
+ u64 ig1:1;
+ u64 rv1:1;
+ u64 ig2:6;
+ u64 rid:24;
+ u64 rv2:32;
+ } *rid_reg;
+
+ if ((status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2)) !=0) {
+ printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
+ return 0;
+ }
+ max[0] = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
+ max[1] = vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
+
+ for (i=0; i < 2; i++ ) {
+ for (j=0; j < max[i]; j++) {
+
+ status = ia64_pal_tr_read(j, i, tr_buffer, &tr_valid);
+ if (status != 0) {
+ printk(KERN_ERR "palinfo: pal call failed on tr[%lu:%lu]=%ld\n",
+ i, j, status);
+ continue;
+ }
+
+ ifa_reg = (struct ifa_reg *)&tr_buffer[2];
+
+ if (ifa_reg->valid == 0) continue;
+
+ gr_reg = (struct gr_reg *)tr_buffer;
+ itir_reg = (struct itir_reg *)&tr_buffer[1];
+ rid_reg = (struct rid_reg *)&tr_buffer[3];
+
+ pgm = -1 << (itir_reg->ps - 12);
+ p += sprintf(p,
+ "%cTR%lu: av=%d pv=%d dv=%d mv=%d\n"
+ "\tppn : 0x%lx\n"
+ "\tvpn : 0x%lx\n"
+ "\tps : ",
+ "ID"[i], j,
+ tr_valid.pal_tr_valid_s.access_rights_valid,
+ tr_valid.pal_tr_valid_s.priv_level_valid,
+ tr_valid.pal_tr_valid_s.dirty_bit_valid,
+ tr_valid.pal_tr_valid_s.mem_attr_valid,
+ (gr_reg->ppn & pgm)<< 12, (ifa_reg->vpn & pgm)<< 12);
+
+ p = bitvector_process(p, 1<< itir_reg->ps);
+
+ p += sprintf(p,
+ "\n\tpl : %d\n"
+ "\tar : %d\n"
+ "\trid : %x\n"
+ "\tp : %d\n"
+ "\tma : %d\n"
+ "\td : %d\n",
+ gr_reg->pl, gr_reg->ar, rid_reg->rid, gr_reg->p, gr_reg->ma,
+ gr_reg->d);
+ }
+ }
+ return p - page;
+}
+
+
+
+/*
+ * List {name,function} pairs for every entry in /proc/palinfo/cpu*
+ */
+static palinfo_entry_t palinfo_entries[]={
+ { "version_info", version_info, },
+ { "vm_info", vm_info, },
+ { "cache_info", cache_info, },
+ { "power_info", power_info, },
+ { "register_info", register_info, },
+ { "processor_info", processor_info, },
+ { "perfmon_info", perfmon_info, },
+ { "frequency_info", frequency_info, },
+ { "bus_info", bus_info },
+ { "tr_info", tr_info, }
+};
+
+#define NR_PALINFO_ENTRIES (int) ARRAY_SIZE(palinfo_entries)
+
+/*
+ * this array is used to keep track of the proc entries we create. This is
+ * required in the module mode when we need to remove all entries. The procfs code
+ * does not do recursion of deletion
+ *
+ * Notes:
+ * - +1 accounts for the cpuN directory entry in /proc/pal
+ */
+#define NR_PALINFO_PROC_ENTRIES (NR_CPUS*(NR_PALINFO_ENTRIES+1))
+
+static struct proc_dir_entry *palinfo_proc_entries[NR_PALINFO_PROC_ENTRIES];
+static struct proc_dir_entry *palinfo_dir;
+
+/*
+ * This data structure is used to pass which cpu,function is being requested
+ * It must fit in a 64bit quantity to be passed to the proc callback routine
+ *
+ * In SMP mode, when we get a request for another CPU, we must call that
+ * other CPU using IPI and wait for the result before returning.
+ */
+typedef union {
+ u64 value;
+ struct {
+ unsigned req_cpu: 32; /* for which CPU this info is */
+ unsigned func_id: 32; /* which function is requested */
+ } pal_func_cpu;
+} pal_func_cpu_u_t;
+
+#define req_cpu pal_func_cpu.req_cpu
+#define func_id pal_func_cpu.func_id
+
+#ifdef CONFIG_SMP
+
+/*
+ * used to hold information about final function to call
+ */
+typedef struct {
+ palinfo_func_t func; /* pointer to function to call */
+ char *page; /* buffer to store results */
+ int ret; /* return value from call */
+} palinfo_smp_data_t;
+
+
+/*
+ * this function does the actual final call and he called
+ * from the smp code, i.e., this is the palinfo callback routine
+ */
+static void
+palinfo_smp_call(void *info)
+{
+ palinfo_smp_data_t *data = (palinfo_smp_data_t *)info;
+ if (data == NULL) {
+ printk(KERN_ERR "palinfo: data pointer is NULL\n");
+ data->ret = 0; /* no output */
+ return;
+ }
+ /* does this actual call */
+ data->ret = (*data->func)(data->page);
+}
+
+/*
+ * function called to trigger the IPI, we need to access a remote CPU
+ * Return:
+ * 0 : error or nothing to output
+ * otherwise how many bytes in the "page" buffer were written
+ */
+static
+int palinfo_handle_smp(pal_func_cpu_u_t *f, char *page)
+{
+ palinfo_smp_data_t ptr;
+ int ret;
+
+ ptr.func = palinfo_entries[f->func_id].proc_read;
+ ptr.page = page;
+ ptr.ret = 0; /* just in case */
+
+
+ /* will send IPI to other CPU and wait for completion of remote call */
+ if ((ret=smp_call_function_single(f->req_cpu, palinfo_smp_call, &ptr, 0, 1))) {
+ printk(KERN_ERR "palinfo: remote CPU call from %d to %d on function %d: "
+ "error %d\n", smp_processor_id(), f->req_cpu, f->func_id, ret);
+ return 0;
+ }
+ return ptr.ret;
+}
+#else /* ! CONFIG_SMP */
+static
+int palinfo_handle_smp(pal_func_cpu_u_t *f, char *page)
+{
+ printk(KERN_ERR "palinfo: should not be called with non SMP kernel\n");
+ return 0;
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Entry point routine: all calls go through this function
+ */
+static int
+palinfo_read_entry(char *page, char **start, off_t off, int count, int *eof, void *data)
+{
+ int len=0;
+ pal_func_cpu_u_t *f = (pal_func_cpu_u_t *)&data;
+
+ /*
+ * in SMP mode, we may need to call another CPU to get correct
+ * information. PAL, by definition, is processor specific
+ */
+ if (f->req_cpu == get_cpu())
+ len = (*palinfo_entries[f->func_id].proc_read)(page);
+ else
+ len = palinfo_handle_smp(f, page);
+
+ put_cpu();
+
+ if (len <= off+count) *eof = 1;
+
+ *start = page + off;
+ len -= off;
+
+ if (len>count) len = count;
+ if (len<0) len = 0;
+
+ return len;
+}
+
+static void
+create_palinfo_proc_entries(unsigned int cpu)
+{
+# define CPUSTR "cpu%d"
+
+ pal_func_cpu_u_t f;
+ struct proc_dir_entry **pdir;
+ struct proc_dir_entry *cpu_dir;
+ int j;
+ char cpustr[sizeof(CPUSTR)];
+
+
+ /*
+ * we keep track of created entries in a depth-first order for
+ * cleanup purposes. Each entry is stored into palinfo_proc_entries
+ */
+ sprintf(cpustr,CPUSTR, cpu);
+
+ cpu_dir = proc_mkdir(cpustr, palinfo_dir);
+
+ f.req_cpu = cpu;
+
+ /*
+ * Compute the location to store per cpu entries
+ * We dont store the top level entry in this list, but
+ * remove it finally after removing all cpu entries.
+ */
+ pdir = &palinfo_proc_entries[cpu*(NR_PALINFO_ENTRIES+1)];
+ *pdir++ = cpu_dir;
+ for (j=0; j < NR_PALINFO_ENTRIES; j++) {
+ f.func_id = j;
+ *pdir = create_proc_read_entry(
+ palinfo_entries[j].name, 0, cpu_dir,
+ palinfo_read_entry, (void *)f.value);
+ if (*pdir)
+ (*pdir)->owner = THIS_MODULE;
+ pdir++;
+ }
+}
+
+static void
+remove_palinfo_proc_entries(unsigned int hcpu)
+{
+ int j;
+ struct proc_dir_entry *cpu_dir, **pdir;
+
+ pdir = &palinfo_proc_entries[hcpu*(NR_PALINFO_ENTRIES+1)];
+ cpu_dir = *pdir;
+ *pdir++=NULL;
+ for (j=0; j < (NR_PALINFO_ENTRIES); j++) {
+ if ((*pdir)) {
+ remove_proc_entry ((*pdir)->name, cpu_dir);
+ *pdir ++= NULL;
+ }
+ }
+
+ if (cpu_dir) {
+ remove_proc_entry(cpu_dir->name, palinfo_dir);
+ }
+}
+
+static int __devinit palinfo_cpu_callback(struct notifier_block *nfb,
+ unsigned long action,
+ void *hcpu)
+{
+ unsigned int hotcpu = (unsigned long)hcpu;
+
+ switch (action) {
+ case CPU_ONLINE:
+ create_palinfo_proc_entries(hotcpu);
+ break;
+#ifdef CONFIG_HOTPLUG_CPU
+ case CPU_DEAD:
+ remove_palinfo_proc_entries(hotcpu);
+ break;
+#endif
+ }
+ return NOTIFY_OK;
+}
+
+static struct notifier_block palinfo_cpu_notifier =
+{
+ .notifier_call = palinfo_cpu_callback,
+ .priority = 0,
+};
+
+static int __init
+palinfo_init(void)
+{
+ int i = 0;
+
+ printk(KERN_INFO "PAL Information Facility v%s\n", PALINFO_VERSION);
+ palinfo_dir = proc_mkdir("pal", NULL);
+
+ /* Create palinfo dirs in /proc for all online cpus */
+ for_each_online_cpu(i) {
+ create_palinfo_proc_entries(i);
+ }
+
+ /* Register for future delivery via notify registration */
+ register_cpu_notifier(&palinfo_cpu_notifier);
+
+ return 0;
+}
+
+static void __exit
+palinfo_exit(void)
+{
+ int i = 0;
+
+ /* remove all nodes: depth first pass. Could optimize this */
+ for_each_online_cpu(i) {
+ remove_palinfo_proc_entries(i);
+ }
+
+ /*
+ * Remove the top level entry finally
+ */
+ remove_proc_entry(palinfo_dir->name, NULL);
+
+ /*
+ * Unregister from cpu notifier callbacks
+ */
+ unregister_cpu_notifier(&palinfo_cpu_notifier);
+}
+
+module_init(palinfo_init);
+module_exit(palinfo_exit);
diff --git a/arch/ia64/kernel/patch.c b/arch/ia64/kernel/patch.c
new file mode 100644
index 0000000..367804a
--- /dev/null
+++ b/arch/ia64/kernel/patch.c
@@ -0,0 +1,189 @@
+/*
+ * Instruction-patching support.
+ *
+ * Copyright (C) 2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+#include <linux/init.h>
+#include <linux/string.h>
+
+#include <asm/patch.h>
+#include <asm/processor.h>
+#include <asm/sections.h>
+#include <asm/system.h>
+#include <asm/unistd.h>
+
+/*
+ * This was adapted from code written by Tony Luck:
+ *
+ * The 64-bit value in a "movl reg=value" is scattered between the two words of the bundle
+ * like this:
+ *
+ * 6 6 5 4 3 2 1
+ * 3210987654321098765432109876543210987654321098765432109876543210
+ * ABBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCDEEEEEFFFFFFFFFGGGGGGG
+ *
+ * CCCCCCCCCCCCCCCCCCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ * xxxxAFFFFFFFFFEEEEEDxGGGGGGGxxxxxxxxxxxxxBBBBBBBBBBBBBBBBBBBBBBB
+ */
+static u64
+get_imm64 (u64 insn_addr)
+{
+ u64 *p = (u64 *) (insn_addr & -16); /* mask out slot number */
+
+ return ( (p[1] & 0x0800000000000000UL) << 4) | /*A*/
+ ((p[1] & 0x00000000007fffffUL) << 40) | /*B*/
+ ((p[0] & 0xffffc00000000000UL) >> 24) | /*C*/
+ ((p[1] & 0x0000100000000000UL) >> 23) | /*D*/
+ ((p[1] & 0x0003e00000000000UL) >> 29) | /*E*/
+ ((p[1] & 0x07fc000000000000UL) >> 43) | /*F*/
+ ((p[1] & 0x000007f000000000UL) >> 36); /*G*/
+}
+
+/* Patch instruction with "val" where "mask" has 1 bits. */
+void
+ia64_patch (u64 insn_addr, u64 mask, u64 val)
+{
+ u64 m0, m1, v0, v1, b0, b1, *b = (u64 *) (insn_addr & -16);
+# define insn_mask ((1UL << 41) - 1)
+ unsigned long shift;
+
+ b0 = b[0]; b1 = b[1];
+ shift = 5 + 41 * (insn_addr % 16); /* 5 bits of template, then 3 x 41-bit instructions */
+ if (shift >= 64) {
+ m1 = mask << (shift - 64);
+ v1 = val << (shift - 64);
+ } else {
+ m0 = mask << shift; m1 = mask >> (64 - shift);
+ v0 = val << shift; v1 = val >> (64 - shift);
+ b[0] = (b0 & ~m0) | (v0 & m0);
+ }
+ b[1] = (b1 & ~m1) | (v1 & m1);
+}
+
+void
+ia64_patch_imm64 (u64 insn_addr, u64 val)
+{
+ ia64_patch(insn_addr,
+ 0x01fffefe000UL, ( ((val & 0x8000000000000000UL) >> 27) /* bit 63 -> 36 */
+ | ((val & 0x0000000000200000UL) << 0) /* bit 21 -> 21 */
+ | ((val & 0x00000000001f0000UL) << 6) /* bit 16 -> 22 */
+ | ((val & 0x000000000000ff80UL) << 20) /* bit 7 -> 27 */
+ | ((val & 0x000000000000007fUL) << 13) /* bit 0 -> 13 */));
+ ia64_patch(insn_addr - 1, 0x1ffffffffffUL, val >> 22);
+}
+
+void
+ia64_patch_imm60 (u64 insn_addr, u64 val)
+{
+ ia64_patch(insn_addr,
+ 0x011ffffe000UL, ( ((val & 0x0800000000000000UL) >> 23) /* bit 59 -> 36 */
+ | ((val & 0x00000000000fffffUL) << 13) /* bit 0 -> 13 */));
+ ia64_patch(insn_addr - 1, 0x1fffffffffcUL, val >> 18);
+}
+
+/*
+ * We need sometimes to load the physical address of a kernel
+ * object. Often we can convert the virtual address to physical
+ * at execution time, but sometimes (either for performance reasons
+ * or during error recovery) we cannot to this. Patch the marked
+ * bundles to load the physical address.
+ */
+void __init
+ia64_patch_vtop (unsigned long start, unsigned long end)
+{
+ s32 *offp = (s32 *) start;
+ u64 ip;
+
+ while (offp < (s32 *) end) {
+ ip = (u64) offp + *offp;
+
+ /* replace virtual address with corresponding physical address: */
+ ia64_patch_imm64(ip, ia64_tpa(get_imm64(ip)));
+ ia64_fc((void *) ip);
+ ++offp;
+ }
+ ia64_sync_i();
+ ia64_srlz_i();
+}
+
+void
+ia64_patch_mckinley_e9 (unsigned long start, unsigned long end)
+{
+ static int first_time = 1;
+ int need_workaround;
+ s32 *offp = (s32 *) start;
+ u64 *wp;
+
+ need_workaround = (local_cpu_data->family == 0x1f && local_cpu_data->model == 0);
+
+ if (first_time) {
+ first_time = 0;
+ if (need_workaround)
+ printk(KERN_INFO "Leaving McKinley Errata 9 workaround enabled\n");
+ else
+ printk(KERN_INFO "McKinley Errata 9 workaround not needed; "
+ "disabling it\n");
+ }
+ if (need_workaround)
+ return;
+
+ while (offp < (s32 *) end) {
+ wp = (u64 *) ia64_imva((char *) offp + *offp);
+ wp[0] = 0x0000000100000000UL; /* nop.m 0; nop.i 0; nop.i 0 */
+ wp[1] = 0x0004000000000200UL;
+ wp[2] = 0x0000000100000011UL; /* nop.m 0; nop.i 0; br.ret.sptk.many b6 */
+ wp[3] = 0x0084006880000200UL;
+ ia64_fc(wp); ia64_fc(wp + 2);
+ ++offp;
+ }
+ ia64_sync_i();
+ ia64_srlz_i();
+}
+
+static void
+patch_fsyscall_table (unsigned long start, unsigned long end)
+{
+ extern unsigned long fsyscall_table[NR_syscalls];
+ s32 *offp = (s32 *) start;
+ u64 ip;
+
+ while (offp < (s32 *) end) {
+ ip = (u64) ia64_imva((char *) offp + *offp);
+ ia64_patch_imm64(ip, (u64) fsyscall_table);
+ ia64_fc((void *) ip);
+ ++offp;
+ }
+ ia64_sync_i();
+ ia64_srlz_i();
+}
+
+static void
+patch_brl_fsys_bubble_down (unsigned long start, unsigned long end)
+{
+ extern char fsys_bubble_down[];
+ s32 *offp = (s32 *) start;
+ u64 ip;
+
+ while (offp < (s32 *) end) {
+ ip = (u64) offp + *offp;
+ ia64_patch_imm60((u64) ia64_imva((void *) ip),
+ (u64) (fsys_bubble_down - (ip & -16)) / 16);
+ ia64_fc((void *) ip);
+ ++offp;
+ }
+ ia64_sync_i();
+ ia64_srlz_i();
+}
+
+void
+ia64_patch_gate (void)
+{
+# define START(name) ((unsigned long) __start_gate_##name##_patchlist)
+# define END(name) ((unsigned long)__end_gate_##name##_patchlist)
+
+ patch_fsyscall_table(START(fsyscall), END(fsyscall));
+ patch_brl_fsys_bubble_down(START(brl_fsys_bubble_down), END(brl_fsys_bubble_down));
+ ia64_patch_vtop(START(vtop), END(vtop));
+ ia64_patch_mckinley_e9(START(mckinley_e9), END(mckinley_e9));
+}
diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c
new file mode 100644
index 0000000..71147be
--- /dev/null
+++ b/arch/ia64/kernel/perfmon.c
@@ -0,0 +1,6676 @@
+/*
+ * This file implements the perfmon-2 subsystem which is used
+ * to program the IA-64 Performance Monitoring Unit (PMU).
+ *
+ * The initial version of perfmon.c was written by
+ * Ganesh Venkitachalam, IBM Corp.
+ *
+ * Then it was modified for perfmon-1.x by Stephane Eranian and
+ * David Mosberger, Hewlett Packard Co.
+ *
+ * Version Perfmon-2.x is a rewrite of perfmon-1.x
+ * by Stephane Eranian, Hewlett Packard Co.
+ *
+ * Copyright (C) 1999-2003, 2005 Hewlett Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * More information about perfmon available at:
+ * http://www.hpl.hp.com/research/linux/perfmon
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/smp_lock.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/init.h>
+#include <linux/vmalloc.h>
+#include <linux/mm.h>
+#include <linux/sysctl.h>
+#include <linux/list.h>
+#include <linux/file.h>
+#include <linux/poll.h>
+#include <linux/vfs.h>
+#include <linux/pagemap.h>
+#include <linux/mount.h>
+#include <linux/version.h>
+#include <linux/bitops.h>
+
+#include <asm/errno.h>
+#include <asm/intrinsics.h>
+#include <asm/page.h>
+#include <asm/perfmon.h>
+#include <asm/processor.h>
+#include <asm/signal.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/delay.h>
+
+#ifdef CONFIG_PERFMON
+/*
+ * perfmon context state
+ */
+#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
+#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
+#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
+#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
+
+#define PFM_INVALID_ACTIVATION (~0UL)
+
+/*
+ * depth of message queue
+ */
+#define PFM_MAX_MSGS 32
+#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
+
+/*
+ * type of a PMU register (bitmask).
+ * bitmask structure:
+ * bit0 : register implemented
+ * bit1 : end marker
+ * bit2-3 : reserved
+ * bit4 : pmc has pmc.pm
+ * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
+ * bit6-7 : register type
+ * bit8-31: reserved
+ */
+#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
+#define PFM_REG_IMPL 0x1 /* register implemented */
+#define PFM_REG_END 0x2 /* end marker */
+#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
+#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
+#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
+#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
+#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
+
+#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
+#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
+
+#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
+
+/* i assumed unsigned */
+#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
+#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
+
+/* XXX: these assume that register i is implemented */
+#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
+#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
+#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
+#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
+
+#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
+#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
+#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
+#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
+
+#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
+#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
+
+#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
+#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
+#define PFM_CTX_TASK(h) (h)->ctx_task
+
+#define PMU_PMC_OI 5 /* position of pmc.oi bit */
+
+/* XXX: does not support more than 64 PMDs */
+#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
+#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
+
+#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
+
+#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
+#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
+#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
+#define PFM_CODE_RR 0 /* requesting code range restriction */
+#define PFM_DATA_RR 1 /* requestion data range restriction */
+
+#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
+#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
+#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
+
+#define RDEP(x) (1UL<<(x))
+
+/*
+ * context protection macros
+ * in SMP:
+ * - we need to protect against CPU concurrency (spin_lock)
+ * - we need to protect against PMU overflow interrupts (local_irq_disable)
+ * in UP:
+ * - we need to protect against PMU overflow interrupts (local_irq_disable)
+ *
+ * spin_lock_irqsave()/spin_lock_irqrestore():
+ * in SMP: local_irq_disable + spin_lock
+ * in UP : local_irq_disable
+ *
+ * spin_lock()/spin_lock():
+ * in UP : removed automatically
+ * in SMP: protect against context accesses from other CPU. interrupts
+ * are not masked. This is useful for the PMU interrupt handler
+ * because we know we will not get PMU concurrency in that code.
+ */
+#define PROTECT_CTX(c, f) \
+ do { \
+ DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
+ spin_lock_irqsave(&(c)->ctx_lock, f); \
+ DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
+ } while(0)
+
+#define UNPROTECT_CTX(c, f) \
+ do { \
+ DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
+ spin_unlock_irqrestore(&(c)->ctx_lock, f); \
+ } while(0)
+
+#define PROTECT_CTX_NOPRINT(c, f) \
+ do { \
+ spin_lock_irqsave(&(c)->ctx_lock, f); \
+ } while(0)
+
+
+#define UNPROTECT_CTX_NOPRINT(c, f) \
+ do { \
+ spin_unlock_irqrestore(&(c)->ctx_lock, f); \
+ } while(0)
+
+
+#define PROTECT_CTX_NOIRQ(c) \
+ do { \
+ spin_lock(&(c)->ctx_lock); \
+ } while(0)
+
+#define UNPROTECT_CTX_NOIRQ(c) \
+ do { \
+ spin_unlock(&(c)->ctx_lock); \
+ } while(0)
+
+
+#ifdef CONFIG_SMP
+
+#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
+#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
+#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
+
+#else /* !CONFIG_SMP */
+#define SET_ACTIVATION(t) do {} while(0)
+#define GET_ACTIVATION(t) do {} while(0)
+#define INC_ACTIVATION(t) do {} while(0)
+#endif /* CONFIG_SMP */
+
+#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
+#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
+#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
+
+#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
+#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
+
+#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
+
+/*
+ * cmp0 must be the value of pmc0
+ */
+#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
+
+#define PFMFS_MAGIC 0xa0b4d889
+
+/*
+ * debugging
+ */
+#define PFM_DEBUGGING 1
+#ifdef PFM_DEBUGGING
+#define DPRINT(a) \
+ do { \
+ if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
+ } while (0)
+
+#define DPRINT_ovfl(a) \
+ do { \
+ if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
+ } while (0)
+#endif
+
+/*
+ * 64-bit software counter structure
+ *
+ * the next_reset_type is applied to the next call to pfm_reset_regs()
+ */
+typedef struct {
+ unsigned long val; /* virtual 64bit counter value */
+ unsigned long lval; /* last reset value */
+ unsigned long long_reset; /* reset value on sampling overflow */
+ unsigned long short_reset; /* reset value on overflow */
+ unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
+ unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
+ unsigned long seed; /* seed for random-number generator */
+ unsigned long mask; /* mask for random-number generator */
+ unsigned int flags; /* notify/do not notify */
+ unsigned long eventid; /* overflow event identifier */
+} pfm_counter_t;
+
+/*
+ * context flags
+ */
+typedef struct {
+ unsigned int block:1; /* when 1, task will blocked on user notifications */
+ unsigned int system:1; /* do system wide monitoring */
+ unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
+ unsigned int is_sampling:1; /* true if using a custom format */
+ unsigned int excl_idle:1; /* exclude idle task in system wide session */
+ unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
+ unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
+ unsigned int no_msg:1; /* no message sent on overflow */
+ unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
+ unsigned int reserved:22;
+} pfm_context_flags_t;
+
+#define PFM_TRAP_REASON_NONE 0x0 /* default value */
+#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
+#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
+
+
+/*
+ * perfmon context: encapsulates all the state of a monitoring session
+ */
+
+typedef struct pfm_context {
+ spinlock_t ctx_lock; /* context protection */
+
+ pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
+ unsigned int ctx_state; /* state: active/inactive (no bitfield) */
+
+ struct task_struct *ctx_task; /* task to which context is attached */
+
+ unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
+
+ struct semaphore ctx_restart_sem; /* use for blocking notification mode */
+
+ unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
+ unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
+ unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
+
+ unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
+ unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
+ unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
+
+ unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
+
+ unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
+ unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
+ unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
+ unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
+
+ pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
+
+ u64 ctx_saved_psr_up; /* only contains psr.up value */
+
+ unsigned long ctx_last_activation; /* context last activation number for last_cpu */
+ unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
+ unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
+
+ int ctx_fd; /* file descriptor used my this context */
+ pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
+
+ pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
+ void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
+ unsigned long ctx_smpl_size; /* size of sampling buffer */
+ void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
+
+ wait_queue_head_t ctx_msgq_wait;
+ pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
+ int ctx_msgq_head;
+ int ctx_msgq_tail;
+ struct fasync_struct *ctx_async_queue;
+
+ wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
+} pfm_context_t;
+
+/*
+ * magic number used to verify that structure is really
+ * a perfmon context
+ */
+#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
+
+#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
+
+#ifdef CONFIG_SMP
+#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
+#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
+#else
+#define SET_LAST_CPU(ctx, v) do {} while(0)
+#define GET_LAST_CPU(ctx) do {} while(0)
+#endif
+
+
+#define ctx_fl_block ctx_flags.block
+#define ctx_fl_system ctx_flags.system
+#define ctx_fl_using_dbreg ctx_flags.using_dbreg
+#define ctx_fl_is_sampling ctx_flags.is_sampling
+#define ctx_fl_excl_idle ctx_flags.excl_idle
+#define ctx_fl_going_zombie ctx_flags.going_zombie
+#define ctx_fl_trap_reason ctx_flags.trap_reason
+#define ctx_fl_no_msg ctx_flags.no_msg
+#define ctx_fl_can_restart ctx_flags.can_restart
+
+#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
+#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
+
+/*
+ * global information about all sessions
+ * mostly used to synchronize between system wide and per-process
+ */
+typedef struct {
+ spinlock_t pfs_lock; /* lock the structure */
+
+ unsigned int pfs_task_sessions; /* number of per task sessions */
+ unsigned int pfs_sys_sessions; /* number of per system wide sessions */
+ unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
+ unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
+ struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
+} pfm_session_t;
+
+/*
+ * information about a PMC or PMD.
+ * dep_pmd[]: a bitmask of dependent PMD registers
+ * dep_pmc[]: a bitmask of dependent PMC registers
+ */
+typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
+typedef struct {
+ unsigned int type;
+ int pm_pos;
+ unsigned long default_value; /* power-on default value */
+ unsigned long reserved_mask; /* bitmask of reserved bits */
+ pfm_reg_check_t read_check;
+ pfm_reg_check_t write_check;
+ unsigned long dep_pmd[4];
+ unsigned long dep_pmc[4];
+} pfm_reg_desc_t;
+
+/* assume cnum is a valid monitor */
+#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
+
+/*
+ * This structure is initialized at boot time and contains
+ * a description of the PMU main characteristics.
+ *
+ * If the probe function is defined, detection is based
+ * on its return value:
+ * - 0 means recognized PMU
+ * - anything else means not supported
+ * When the probe function is not defined, then the pmu_family field
+ * is used and it must match the host CPU family such that:
+ * - cpu->family & config->pmu_family != 0
+ */
+typedef struct {
+ unsigned long ovfl_val; /* overflow value for counters */
+
+ pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
+ pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
+
+ unsigned int num_pmcs; /* number of PMCS: computed at init time */
+ unsigned int num_pmds; /* number of PMDS: computed at init time */
+ unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
+ unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
+
+ char *pmu_name; /* PMU family name */
+ unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
+ unsigned int flags; /* pmu specific flags */
+ unsigned int num_ibrs; /* number of IBRS: computed at init time */
+ unsigned int num_dbrs; /* number of DBRS: computed at init time */
+ unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
+ int (*probe)(void); /* customized probe routine */
+ unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
+} pmu_config_t;
+/*
+ * PMU specific flags
+ */
+#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
+
+/*
+ * debug register related type definitions
+ */
+typedef struct {
+ unsigned long ibr_mask:56;
+ unsigned long ibr_plm:4;
+ unsigned long ibr_ig:3;
+ unsigned long ibr_x:1;
+} ibr_mask_reg_t;
+
+typedef struct {
+ unsigned long dbr_mask:56;
+ unsigned long dbr_plm:4;
+ unsigned long dbr_ig:2;
+ unsigned long dbr_w:1;
+ unsigned long dbr_r:1;
+} dbr_mask_reg_t;
+
+typedef union {
+ unsigned long val;
+ ibr_mask_reg_t ibr;
+ dbr_mask_reg_t dbr;
+} dbreg_t;
+
+
+/*
+ * perfmon command descriptions
+ */
+typedef struct {
+ int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
+ char *cmd_name;
+ int cmd_flags;
+ unsigned int cmd_narg;
+ size_t cmd_argsize;
+ int (*cmd_getsize)(void *arg, size_t *sz);
+} pfm_cmd_desc_t;
+
+#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
+#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
+#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
+#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
+
+
+#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
+#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
+#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
+#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
+#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
+
+#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
+
+typedef struct {
+ int debug; /* turn on/off debugging via syslog */
+ int debug_ovfl; /* turn on/off debug printk in overflow handler */
+ int fastctxsw; /* turn on/off fast (unsecure) ctxsw */
+ int expert_mode; /* turn on/off value checking */
+ int debug_pfm_read;
+} pfm_sysctl_t;
+
+typedef struct {
+ unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
+ unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
+ unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
+ unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
+ unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
+ unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
+ unsigned long pfm_smpl_handler_calls;
+ unsigned long pfm_smpl_handler_cycles;
+ char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
+} pfm_stats_t;
+
+/*
+ * perfmon internal variables
+ */
+static pfm_stats_t pfm_stats[NR_CPUS];
+static pfm_session_t pfm_sessions; /* global sessions information */
+
+static struct proc_dir_entry *perfmon_dir;
+static pfm_uuid_t pfm_null_uuid = {0,};
+
+static spinlock_t pfm_buffer_fmt_lock;
+static LIST_HEAD(pfm_buffer_fmt_list);
+
+static pmu_config_t *pmu_conf;
+
+/* sysctl() controls */
+static pfm_sysctl_t pfm_sysctl;
+int pfm_debug_var;
+
+static ctl_table pfm_ctl_table[]={
+ {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
+ {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
+ {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
+ {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
+ { 0, },
+};
+static ctl_table pfm_sysctl_dir[] = {
+ {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
+ {0,},
+};
+static ctl_table pfm_sysctl_root[] = {
+ {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
+ {0,},
+};
+static struct ctl_table_header *pfm_sysctl_header;
+
+static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
+static int pfm_flush(struct file *filp);
+
+#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
+#define pfm_get_cpu_data(a,b) per_cpu(a, b)
+
+static inline void
+pfm_put_task(struct task_struct *task)
+{
+ if (task != current) put_task_struct(task);
+}
+
+static inline void
+pfm_set_task_notify(struct task_struct *task)
+{
+ struct thread_info *info;
+
+ info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
+ set_bit(TIF_NOTIFY_RESUME, &info->flags);
+}
+
+static inline void
+pfm_clear_task_notify(void)
+{
+ clear_thread_flag(TIF_NOTIFY_RESUME);
+}
+
+static inline void
+pfm_reserve_page(unsigned long a)
+{
+ SetPageReserved(vmalloc_to_page((void *)a));
+}
+static inline void
+pfm_unreserve_page(unsigned long a)
+{
+ ClearPageReserved(vmalloc_to_page((void*)a));
+}
+
+static inline unsigned long
+pfm_protect_ctx_ctxsw(pfm_context_t *x)
+{
+ spin_lock(&(x)->ctx_lock);
+ return 0UL;
+}
+
+static inline unsigned long
+pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
+{
+ spin_unlock(&(x)->ctx_lock);
+}
+
+static inline unsigned int
+pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
+{
+ return do_munmap(mm, addr, len);
+}
+
+static inline unsigned long
+pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
+{
+ return get_unmapped_area(file, addr, len, pgoff, flags);
+}
+
+
+static struct super_block *
+pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
+{
+ return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
+}
+
+static struct file_system_type pfm_fs_type = {
+ .name = "pfmfs",
+ .get_sb = pfmfs_get_sb,
+ .kill_sb = kill_anon_super,
+};
+
+DEFINE_PER_CPU(unsigned long, pfm_syst_info);
+DEFINE_PER_CPU(struct task_struct *, pmu_owner);
+DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
+DEFINE_PER_CPU(unsigned long, pmu_activation_number);
+
+
+/* forward declaration */
+static struct file_operations pfm_file_ops;
+
+/*
+ * forward declarations
+ */
+#ifndef CONFIG_SMP
+static void pfm_lazy_save_regs (struct task_struct *ta);
+#endif
+
+void dump_pmu_state(const char *);
+static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
+
+#include "perfmon_itanium.h"
+#include "perfmon_mckinley.h"
+#include "perfmon_generic.h"
+
+static pmu_config_t *pmu_confs[]={
+ &pmu_conf_mck,
+ &pmu_conf_ita,
+ &pmu_conf_gen, /* must be last */
+ NULL
+};
+
+
+static int pfm_end_notify_user(pfm_context_t *ctx);
+
+static inline void
+pfm_clear_psr_pp(void)
+{
+ ia64_rsm(IA64_PSR_PP);
+ ia64_srlz_i();
+}
+
+static inline void
+pfm_set_psr_pp(void)
+{
+ ia64_ssm(IA64_PSR_PP);
+ ia64_srlz_i();
+}
+
+static inline void
+pfm_clear_psr_up(void)
+{
+ ia64_rsm(IA64_PSR_UP);
+ ia64_srlz_i();
+}
+
+static inline void
+pfm_set_psr_up(void)
+{
+ ia64_ssm(IA64_PSR_UP);
+ ia64_srlz_i();
+}
+
+static inline unsigned long
+pfm_get_psr(void)
+{
+ unsigned long tmp;
+ tmp = ia64_getreg(_IA64_REG_PSR);
+ ia64_srlz_i();
+ return tmp;
+}
+
+static inline void
+pfm_set_psr_l(unsigned long val)
+{
+ ia64_setreg(_IA64_REG_PSR_L, val);
+ ia64_srlz_i();
+}
+
+static inline void
+pfm_freeze_pmu(void)
+{
+ ia64_set_pmc(0,1UL);
+ ia64_srlz_d();
+}
+
+static inline void
+pfm_unfreeze_pmu(void)
+{
+ ia64_set_pmc(0,0UL);
+ ia64_srlz_d();
+}
+
+static inline void
+pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
+{
+ int i;
+
+ for (i=0; i < nibrs; i++) {
+ ia64_set_ibr(i, ibrs[i]);
+ ia64_dv_serialize_instruction();
+ }
+ ia64_srlz_i();
+}
+
+static inline void
+pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
+{
+ int i;
+
+ for (i=0; i < ndbrs; i++) {
+ ia64_set_dbr(i, dbrs[i]);
+ ia64_dv_serialize_data();
+ }
+ ia64_srlz_d();
+}
+
+/*
+ * PMD[i] must be a counter. no check is made
+ */
+static inline unsigned long
+pfm_read_soft_counter(pfm_context_t *ctx, int i)
+{
+ return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
+}
+
+/*
+ * PMD[i] must be a counter. no check is made
+ */
+static inline void
+pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
+{
+ unsigned long ovfl_val = pmu_conf->ovfl_val;
+
+ ctx->ctx_pmds[i].val = val & ~ovfl_val;
+ /*
+ * writing to unimplemented part is ignore, so we do not need to
+ * mask off top part
+ */
+ ia64_set_pmd(i, val & ovfl_val);
+}
+
+static pfm_msg_t *
+pfm_get_new_msg(pfm_context_t *ctx)
+{
+ int idx, next;
+
+ next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
+
+ DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
+ if (next == ctx->ctx_msgq_head) return NULL;
+
+ idx = ctx->ctx_msgq_tail;
+ ctx->ctx_msgq_tail = next;
+
+ DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
+
+ return ctx->ctx_msgq+idx;
+}
+
+static pfm_msg_t *
+pfm_get_next_msg(pfm_context_t *ctx)
+{
+ pfm_msg_t *msg;
+
+ DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
+
+ if (PFM_CTXQ_EMPTY(ctx)) return NULL;
+
+ /*
+ * get oldest message
+ */
+ msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
+
+ /*
+ * and move forward
+ */
+ ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
+
+ DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
+
+ return msg;
+}
+
+static void
+pfm_reset_msgq(pfm_context_t *ctx)
+{
+ ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
+ DPRINT(("ctx=%p msgq reset\n", ctx));
+}
+
+static void *
+pfm_rvmalloc(unsigned long size)
+{
+ void *mem;
+ unsigned long addr;
+
+ size = PAGE_ALIGN(size);
+ mem = vmalloc(size);
+ if (mem) {
+ //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
+ memset(mem, 0, size);
+ addr = (unsigned long)mem;
+ while (size > 0) {
+ pfm_reserve_page(addr);
+ addr+=PAGE_SIZE;
+ size-=PAGE_SIZE;
+ }
+ }
+ return mem;
+}
+
+static void
+pfm_rvfree(void *mem, unsigned long size)
+{
+ unsigned long addr;
+
+ if (mem) {
+ DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
+ addr = (unsigned long) mem;
+ while ((long) size > 0) {
+ pfm_unreserve_page(addr);
+ addr+=PAGE_SIZE;
+ size-=PAGE_SIZE;
+ }
+ vfree(mem);
+ }
+ return;
+}
+
+static pfm_context_t *
+pfm_context_alloc(void)
+{
+ pfm_context_t *ctx;
+
+ /*
+ * allocate context descriptor
+ * must be able to free with interrupts disabled
+ */
+ ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
+ if (ctx) {
+ memset(ctx, 0, sizeof(pfm_context_t));
+ DPRINT(("alloc ctx @%p\n", ctx));
+ }
+ return ctx;
+}
+
+static void
+pfm_context_free(pfm_context_t *ctx)
+{
+ if (ctx) {
+ DPRINT(("free ctx @%p\n", ctx));
+ kfree(ctx);
+ }
+}
+
+static void
+pfm_mask_monitoring(struct task_struct *task)
+{
+ pfm_context_t *ctx = PFM_GET_CTX(task);
+ struct thread_struct *th = &task->thread;
+ unsigned long mask, val, ovfl_mask;
+ int i;
+
+ DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
+
+ ovfl_mask = pmu_conf->ovfl_val;
+ /*
+ * monitoring can only be masked as a result of a valid
+ * counter overflow. In UP, it means that the PMU still
+ * has an owner. Note that the owner can be different
+ * from the current task. However the PMU state belongs
+ * to the owner.
+ * In SMP, a valid overflow only happens when task is
+ * current. Therefore if we come here, we know that
+ * the PMU state belongs to the current task, therefore
+ * we can access the live registers.
+ *
+ * So in both cases, the live register contains the owner's
+ * state. We can ONLY touch the PMU registers and NOT the PSR.
+ *
+ * As a consequence to this call, the thread->pmds[] array
+ * contains stale information which must be ignored
+ * when context is reloaded AND monitoring is active (see
+ * pfm_restart).
+ */
+ mask = ctx->ctx_used_pmds[0];
+ for (i = 0; mask; i++, mask>>=1) {
+ /* skip non used pmds */
+ if ((mask & 0x1) == 0) continue;
+ val = ia64_get_pmd(i);
+
+ if (PMD_IS_COUNTING(i)) {
+ /*
+ * we rebuild the full 64 bit value of the counter
+ */
+ ctx->ctx_pmds[i].val += (val & ovfl_mask);
+ } else {
+ ctx->ctx_pmds[i].val = val;
+ }
+ DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
+ i,
+ ctx->ctx_pmds[i].val,
+ val & ovfl_mask));
+ }
+ /*
+ * mask monitoring by setting the privilege level to 0
+ * we cannot use psr.pp/psr.up for this, it is controlled by
+ * the user
+ *
+ * if task is current, modify actual registers, otherwise modify
+ * thread save state, i.e., what will be restored in pfm_load_regs()
+ */
+ mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
+ for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
+ if ((mask & 0x1) == 0UL) continue;
+ ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
+ th->pmcs[i] &= ~0xfUL;
+ DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
+ }
+ /*
+ * make all of this visible
+ */
+ ia64_srlz_d();
+}
+
+/*
+ * must always be done with task == current
+ *
+ * context must be in MASKED state when calling
+ */
+static void
+pfm_restore_monitoring(struct task_struct *task)
+{
+ pfm_context_t *ctx = PFM_GET_CTX(task);
+ struct thread_struct *th = &task->thread;
+ unsigned long mask, ovfl_mask;
+ unsigned long psr, val;
+ int i, is_system;
+
+ is_system = ctx->ctx_fl_system;
+ ovfl_mask = pmu_conf->ovfl_val;
+
+ if (task != current) {
+ printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
+ return;
+ }
+ if (ctx->ctx_state != PFM_CTX_MASKED) {
+ printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
+ task->pid, current->pid, ctx->ctx_state);
+ return;
+ }
+ psr = pfm_get_psr();
+ /*
+ * monitoring is masked via the PMC.
+ * As we restore their value, we do not want each counter to
+ * restart right away. We stop monitoring using the PSR,
+ * restore the PMC (and PMD) and then re-establish the psr
+ * as it was. Note that there can be no pending overflow at
+ * this point, because monitoring was MASKED.
+ *
+ * system-wide session are pinned and self-monitoring
+ */
+ if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
+ /* disable dcr pp */
+ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
+ pfm_clear_psr_pp();
+ } else {
+ pfm_clear_psr_up();
+ }
+ /*
+ * first, we restore the PMD
+ */
+ mask = ctx->ctx_used_pmds[0];
+ for (i = 0; mask; i++, mask>>=1) {
+ /* skip non used pmds */
+ if ((mask & 0x1) == 0) continue;
+
+ if (PMD_IS_COUNTING(i)) {
+ /*
+ * we split the 64bit value according to
+ * counter width
+ */
+ val = ctx->ctx_pmds[i].val & ovfl_mask;
+ ctx->ctx_pmds[i].val &= ~ovfl_mask;
+ } else {
+ val = ctx->ctx_pmds[i].val;
+ }
+ ia64_set_pmd(i, val);
+
+ DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
+ i,
+ ctx->ctx_pmds[i].val,
+ val));
+ }
+ /*
+ * restore the PMCs
+ */
+ mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
+ for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
+ if ((mask & 0x1) == 0UL) continue;
+ th->pmcs[i] = ctx->ctx_pmcs[i];
+ ia64_set_pmc(i, th->pmcs[i]);
+ DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
+ }
+ ia64_srlz_d();
+
+ /*
+ * must restore DBR/IBR because could be modified while masked
+ * XXX: need to optimize
+ */
+ if (ctx->ctx_fl_using_dbreg) {
+ pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
+ pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
+ }
+
+ /*
+ * now restore PSR
+ */
+ if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
+ /* enable dcr pp */
+ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
+ ia64_srlz_i();
+ }
+ pfm_set_psr_l(psr);
+}
+
+static inline void
+pfm_save_pmds(unsigned long *pmds, unsigned long mask)
+{
+ int i;
+
+ ia64_srlz_d();
+
+ for (i=0; mask; i++, mask>>=1) {
+ if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
+ }
+}
+
+/*
+ * reload from thread state (used for ctxw only)
+ */
+static inline void
+pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
+{
+ int i;
+ unsigned long val, ovfl_val = pmu_conf->ovfl_val;
+
+ for (i=0; mask; i++, mask>>=1) {
+ if ((mask & 0x1) == 0) continue;
+ val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
+ ia64_set_pmd(i, val);
+ }
+ ia64_srlz_d();
+}
+
+/*
+ * propagate PMD from context to thread-state
+ */
+static inline void
+pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
+{
+ struct thread_struct *thread = &task->thread;
+ unsigned long ovfl_val = pmu_conf->ovfl_val;
+ unsigned long mask = ctx->ctx_all_pmds[0];
+ unsigned long val;
+ int i;
+
+ DPRINT(("mask=0x%lx\n", mask));
+
+ for (i=0; mask; i++, mask>>=1) {
+
+ val = ctx->ctx_pmds[i].val;
+
+ /*
+ * We break up the 64 bit value into 2 pieces
+ * the lower bits go to the machine state in the
+ * thread (will be reloaded on ctxsw in).
+ * The upper part stays in the soft-counter.
+ */
+ if (PMD_IS_COUNTING(i)) {
+ ctx->ctx_pmds[i].val = val & ~ovfl_val;
+ val &= ovfl_val;
+ }
+ thread->pmds[i] = val;
+
+ DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
+ i,
+ thread->pmds[i],
+ ctx->ctx_pmds[i].val));
+ }
+}
+
+/*
+ * propagate PMC from context to thread-state
+ */
+static inline void
+pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
+{
+ struct thread_struct *thread = &task->thread;
+ unsigned long mask = ctx->ctx_all_pmcs[0];
+ int i;
+
+ DPRINT(("mask=0x%lx\n", mask));
+
+ for (i=0; mask; i++, mask>>=1) {
+ /* masking 0 with ovfl_val yields 0 */
+ thread->pmcs[i] = ctx->ctx_pmcs[i];
+ DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
+ }
+}
+
+
+
+static inline void
+pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
+{
+ int i;
+
+ for (i=0; mask; i++, mask>>=1) {
+ if ((mask & 0x1) == 0) continue;
+ ia64_set_pmc(i, pmcs[i]);
+ }
+ ia64_srlz_d();
+}
+
+static inline int
+pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
+{
+ return memcmp(a, b, sizeof(pfm_uuid_t));
+}
+
+static inline int
+pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
+{
+ int ret = 0;
+ if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
+ return ret;
+}
+
+static inline int
+pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
+{
+ int ret = 0;
+ if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
+ return ret;
+}
+
+
+static inline int
+pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
+ int cpu, void *arg)
+{
+ int ret = 0;
+ if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
+ return ret;
+}
+
+static inline int
+pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
+ int cpu, void *arg)
+{
+ int ret = 0;
+ if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
+ return ret;
+}
+
+static inline int
+pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
+{
+ int ret = 0;
+ if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
+ return ret;
+}
+
+static inline int
+pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
+{
+ int ret = 0;
+ if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
+ return ret;
+}
+
+static pfm_buffer_fmt_t *
+__pfm_find_buffer_fmt(pfm_uuid_t uuid)
+{
+ struct list_head * pos;
+ pfm_buffer_fmt_t * entry;
+
+ list_for_each(pos, &pfm_buffer_fmt_list) {
+ entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
+ if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
+ return entry;
+ }
+ return NULL;
+}
+
+/*
+ * find a buffer format based on its uuid
+ */
+static pfm_buffer_fmt_t *
+pfm_find_buffer_fmt(pfm_uuid_t uuid)
+{
+ pfm_buffer_fmt_t * fmt;
+ spin_lock(&pfm_buffer_fmt_lock);
+ fmt = __pfm_find_buffer_fmt(uuid);
+ spin_unlock(&pfm_buffer_fmt_lock);
+ return fmt;
+}
+
+int
+pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
+{
+ int ret = 0;
+
+ /* some sanity checks */
+ if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
+
+ /* we need at least a handler */
+ if (fmt->fmt_handler == NULL) return -EINVAL;
+
+ /*
+ * XXX: need check validity of fmt_arg_size
+ */
+
+ spin_lock(&pfm_buffer_fmt_lock);
+
+ if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
+ printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
+ ret = -EBUSY;
+ goto out;
+ }
+ list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
+ printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
+
+out:
+ spin_unlock(&pfm_buffer_fmt_lock);
+ return ret;
+}
+EXPORT_SYMBOL(pfm_register_buffer_fmt);
+
+int
+pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
+{
+ pfm_buffer_fmt_t *fmt;
+ int ret = 0;
+
+ spin_lock(&pfm_buffer_fmt_lock);
+
+ fmt = __pfm_find_buffer_fmt(uuid);
+ if (!fmt) {
+ printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ list_del_init(&fmt->fmt_list);
+ printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
+
+out:
+ spin_unlock(&pfm_buffer_fmt_lock);
+ return ret;
+
+}
+EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
+
+static int
+pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
+{
+ unsigned long flags;
+ /*
+ * validy checks on cpu_mask have been done upstream
+ */
+ LOCK_PFS(flags);
+
+ DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
+ pfm_sessions.pfs_sys_sessions,
+ pfm_sessions.pfs_task_sessions,
+ pfm_sessions.pfs_sys_use_dbregs,
+ is_syswide,
+ cpu));
+
+ if (is_syswide) {
+ /*
+ * cannot mix system wide and per-task sessions
+ */
+ if (pfm_sessions.pfs_task_sessions > 0UL) {
+ DPRINT(("system wide not possible, %u conflicting task_sessions\n",
+ pfm_sessions.pfs_task_sessions));
+ goto abort;
+ }
+
+ if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
+
+ DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
+
+ pfm_sessions.pfs_sys_session[cpu] = task;
+
+ pfm_sessions.pfs_sys_sessions++ ;
+
+ } else {
+ if (pfm_sessions.pfs_sys_sessions) goto abort;
+ pfm_sessions.pfs_task_sessions++;
+ }
+
+ DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
+ pfm_sessions.pfs_sys_sessions,
+ pfm_sessions.pfs_task_sessions,
+ pfm_sessions.pfs_sys_use_dbregs,
+ is_syswide,
+ cpu));
+
+ UNLOCK_PFS(flags);
+
+ return 0;
+
+error_conflict:
+ DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
+ pfm_sessions.pfs_sys_session[cpu]->pid,
+ smp_processor_id()));
+abort:
+ UNLOCK_PFS(flags);
+
+ return -EBUSY;
+
+}
+
+static int
+pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
+{
+ unsigned long flags;
+ /*
+ * validy checks on cpu_mask have been done upstream
+ */
+ LOCK_PFS(flags);
+
+ DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
+ pfm_sessions.pfs_sys_sessions,
+ pfm_sessions.pfs_task_sessions,
+ pfm_sessions.pfs_sys_use_dbregs,
+ is_syswide,
+ cpu));
+
+
+ if (is_syswide) {
+ pfm_sessions.pfs_sys_session[cpu] = NULL;
+ /*
+ * would not work with perfmon+more than one bit in cpu_mask
+ */
+ if (ctx && ctx->ctx_fl_using_dbreg) {
+ if (pfm_sessions.pfs_sys_use_dbregs == 0) {
+ printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
+ } else {
+ pfm_sessions.pfs_sys_use_dbregs--;
+ }
+ }
+ pfm_sessions.pfs_sys_sessions--;
+ } else {
+ pfm_sessions.pfs_task_sessions--;
+ }
+ DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
+ pfm_sessions.pfs_sys_sessions,
+ pfm_sessions.pfs_task_sessions,
+ pfm_sessions.pfs_sys_use_dbregs,
+ is_syswide,
+ cpu));
+
+ UNLOCK_PFS(flags);
+
+ return 0;
+}
+
+/*
+ * removes virtual mapping of the sampling buffer.
+ * IMPORTANT: cannot be called with interrupts disable, e.g. inside
+ * a PROTECT_CTX() section.
+ */
+static int
+pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
+{
+ int r;
+
+ /* sanity checks */
+ if (task->mm == NULL || size == 0UL || vaddr == NULL) {
+ printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
+ return -EINVAL;
+ }
+
+ DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
+
+ /*
+ * does the actual unmapping
+ */
+ down_write(&task->mm->mmap_sem);
+
+ DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
+
+ r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
+
+ up_write(&task->mm->mmap_sem);
+ if (r !=0) {
+ printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
+ }
+
+ DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
+
+ return 0;
+}
+
+/*
+ * free actual physical storage used by sampling buffer
+ */
+#if 0
+static int
+pfm_free_smpl_buffer(pfm_context_t *ctx)
+{
+ pfm_buffer_fmt_t *fmt;
+
+ if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
+
+ /*
+ * we won't use the buffer format anymore
+ */
+ fmt = ctx->ctx_buf_fmt;
+
+ DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
+ ctx->ctx_smpl_hdr,
+ ctx->ctx_smpl_size,
+ ctx->ctx_smpl_vaddr));
+
+ pfm_buf_fmt_exit(fmt, current, NULL, NULL);
+
+ /*
+ * free the buffer
+ */
+ pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
+
+ ctx->ctx_smpl_hdr = NULL;
+ ctx->ctx_smpl_size = 0UL;
+
+ return 0;
+
+invalid_free:
+ printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
+ return -EINVAL;
+}
+#endif
+
+static inline void
+pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
+{
+ if (fmt == NULL) return;
+
+ pfm_buf_fmt_exit(fmt, current, NULL, NULL);
+
+}
+
+/*
+ * pfmfs should _never_ be mounted by userland - too much of security hassle,
+ * no real gain from having the whole whorehouse mounted. So we don't need
+ * any operations on the root directory. However, we need a non-trivial
+ * d_name - pfm: will go nicely and kill the special-casing in procfs.
+ */
+static struct vfsmount *pfmfs_mnt;
+
+static int __init
+init_pfm_fs(void)
+{
+ int err = register_filesystem(&pfm_fs_type);
+ if (!err) {
+ pfmfs_mnt = kern_mount(&pfm_fs_type);
+ err = PTR_ERR(pfmfs_mnt);
+ if (IS_ERR(pfmfs_mnt))
+ unregister_filesystem(&pfm_fs_type);
+ else
+ err = 0;
+ }
+ return err;
+}
+
+static void __exit
+exit_pfm_fs(void)
+{
+ unregister_filesystem(&pfm_fs_type);
+ mntput(pfmfs_mnt);
+}
+
+static ssize_t
+pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
+{
+ pfm_context_t *ctx;
+ pfm_msg_t *msg;
+ ssize_t ret;
+ unsigned long flags;
+ DECLARE_WAITQUEUE(wait, current);
+ if (PFM_IS_FILE(filp) == 0) {
+ printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
+ return -EINVAL;
+ }
+
+ ctx = (pfm_context_t *)filp->private_data;
+ if (ctx == NULL) {
+ printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
+ return -EINVAL;
+ }
+
+ /*
+ * check even when there is no message
+ */
+ if (size < sizeof(pfm_msg_t)) {
+ DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
+ return -EINVAL;
+ }
+
+ PROTECT_CTX(ctx, flags);
+
+ /*
+ * put ourselves on the wait queue
+ */
+ add_wait_queue(&ctx->ctx_msgq_wait, &wait);
+
+
+ for(;;) {
+ /*
+ * check wait queue
+ */
+
+ set_current_state(TASK_INTERRUPTIBLE);
+
+ DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
+
+ ret = 0;
+ if(PFM_CTXQ_EMPTY(ctx) == 0) break;
+
+ UNPROTECT_CTX(ctx, flags);
+
+ /*
+ * check non-blocking read
+ */
+ ret = -EAGAIN;
+ if(filp->f_flags & O_NONBLOCK) break;
+
+ /*
+ * check pending signals
+ */
+ if(signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ /*
+ * no message, so wait
+ */
+ schedule();
+
+ PROTECT_CTX(ctx, flags);
+ }
+ DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
+ set_current_state(TASK_RUNNING);
+ remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
+
+ if (ret < 0) goto abort;
+
+ ret = -EINVAL;
+ msg = pfm_get_next_msg(ctx);
+ if (msg == NULL) {
+ printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
+ goto abort_locked;
+ }
+
+ DPRINT(("[%d] fd=%d type=%d\n", current->pid, msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
+
+ ret = -EFAULT;
+ if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
+
+abort_locked:
+ UNPROTECT_CTX(ctx, flags);
+abort:
+ return ret;
+}
+
+static ssize_t
+pfm_write(struct file *file, const char __user *ubuf,
+ size_t size, loff_t *ppos)
+{
+ DPRINT(("pfm_write called\n"));
+ return -EINVAL;
+}
+
+static unsigned int
+pfm_poll(struct file *filp, poll_table * wait)
+{
+ pfm_context_t *ctx;
+ unsigned long flags;
+ unsigned int mask = 0;
+
+ if (PFM_IS_FILE(filp) == 0) {
+ printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
+ return 0;
+ }
+
+ ctx = (pfm_context_t *)filp->private_data;
+ if (ctx == NULL) {
+ printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
+ return 0;
+ }
+
+
+ DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
+
+ poll_wait(filp, &ctx->ctx_msgq_wait, wait);
+
+ PROTECT_CTX(ctx, flags);
+
+ if (PFM_CTXQ_EMPTY(ctx) == 0)
+ mask = POLLIN | POLLRDNORM;
+
+ UNPROTECT_CTX(ctx, flags);
+
+ DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
+
+ return mask;
+}
+
+static int
+pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
+{
+ DPRINT(("pfm_ioctl called\n"));
+ return -EINVAL;
+}
+
+/*
+ * interrupt cannot be masked when coming here
+ */
+static inline int
+pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
+{
+ int ret;
+
+ ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
+
+ DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
+ current->pid,
+ fd,
+ on,
+ ctx->ctx_async_queue, ret));
+
+ return ret;
+}
+
+static int
+pfm_fasync(int fd, struct file *filp, int on)
+{
+ pfm_context_t *ctx;
+ int ret;
+
+ if (PFM_IS_FILE(filp) == 0) {
+ printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
+ return -EBADF;
+ }
+
+ ctx = (pfm_context_t *)filp->private_data;
+ if (ctx == NULL) {
+ printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
+ return -EBADF;
+ }
+ /*
+ * we cannot mask interrupts during this call because this may
+ * may go to sleep if memory is not readily avalaible.
+ *
+ * We are protected from the conetxt disappearing by the get_fd()/put_fd()
+ * done in caller. Serialization of this function is ensured by caller.
+ */
+ ret = pfm_do_fasync(fd, filp, ctx, on);
+
+
+ DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
+ fd,
+ on,
+ ctx->ctx_async_queue, ret));
+
+ return ret;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * this function is exclusively called from pfm_close().
+ * The context is not protected at that time, nor are interrupts
+ * on the remote CPU. That's necessary to avoid deadlocks.
+ */
+static void
+pfm_syswide_force_stop(void *info)
+{
+ pfm_context_t *ctx = (pfm_context_t *)info;
+ struct pt_regs *regs = ia64_task_regs(current);
+ struct task_struct *owner;
+ unsigned long flags;
+ int ret;
+
+ if (ctx->ctx_cpu != smp_processor_id()) {
+ printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
+ ctx->ctx_cpu,
+ smp_processor_id());
+ return;
+ }
+ owner = GET_PMU_OWNER();
+ if (owner != ctx->ctx_task) {
+ printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
+ smp_processor_id(),
+ owner->pid, ctx->ctx_task->pid);
+ return;
+ }
+ if (GET_PMU_CTX() != ctx) {
+ printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
+ smp_processor_id(),
+ GET_PMU_CTX(), ctx);
+ return;
+ }
+
+ DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
+ /*
+ * the context is already protected in pfm_close(), we simply
+ * need to mask interrupts to avoid a PMU interrupt race on
+ * this CPU
+ */
+ local_irq_save(flags);
+
+ ret = pfm_context_unload(ctx, NULL, 0, regs);
+ if (ret) {
+ DPRINT(("context_unload returned %d\n", ret));
+ }
+
+ /*
+ * unmask interrupts, PMU interrupts are now spurious here
+ */
+ local_irq_restore(flags);
+}
+
+static void
+pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
+{
+ int ret;
+
+ DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
+ ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
+ DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * called for each close(). Partially free resources.
+ * When caller is self-monitoring, the context is unloaded.
+ */
+static int
+pfm_flush(struct file *filp)
+{
+ pfm_context_t *ctx;
+ struct task_struct *task;
+ struct pt_regs *regs;
+ unsigned long flags;
+ unsigned long smpl_buf_size = 0UL;
+ void *smpl_buf_vaddr = NULL;
+ int state, is_system;
+
+ if (PFM_IS_FILE(filp) == 0) {
+ DPRINT(("bad magic for\n"));
+ return -EBADF;
+ }
+
+ ctx = (pfm_context_t *)filp->private_data;
+ if (ctx == NULL) {
+ printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
+ return -EBADF;
+ }
+
+ /*
+ * remove our file from the async queue, if we use this mode.
+ * This can be done without the context being protected. We come
+ * here when the context has become unreacheable by other tasks.
+ *
+ * We may still have active monitoring at this point and we may
+ * end up in pfm_overflow_handler(). However, fasync_helper()
+ * operates with interrupts disabled and it cleans up the
+ * queue. If the PMU handler is called prior to entering
+ * fasync_helper() then it will send a signal. If it is
+ * invoked after, it will find an empty queue and no
+ * signal will be sent. In both case, we are safe
+ */
+ if (filp->f_flags & FASYNC) {
+ DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
+ pfm_do_fasync (-1, filp, ctx, 0);
+ }
+
+ PROTECT_CTX(ctx, flags);
+
+ state = ctx->ctx_state;
+ is_system = ctx->ctx_fl_system;
+
+ task = PFM_CTX_TASK(ctx);
+ regs = ia64_task_regs(task);
+
+ DPRINT(("ctx_state=%d is_current=%d\n",
+ state,
+ task == current ? 1 : 0));
+
+ /*
+ * if state == UNLOADED, then task is NULL
+ */
+
+ /*
+ * we must stop and unload because we are losing access to the context.
+ */
+ if (task == current) {
+#ifdef CONFIG_SMP
+ /*
+ * the task IS the owner but it migrated to another CPU: that's bad
+ * but we must handle this cleanly. Unfortunately, the kernel does
+ * not provide a mechanism to block migration (while the context is loaded).
+ *
+ * We need to release the resource on the ORIGINAL cpu.
+ */
+ if (is_system && ctx->ctx_cpu != smp_processor_id()) {
+
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ /*
+ * keep context protected but unmask interrupt for IPI
+ */
+ local_irq_restore(flags);
+
+ pfm_syswide_cleanup_other_cpu(ctx);
+
+ /*
+ * restore interrupt masking
+ */
+ local_irq_save(flags);
+
+ /*
+ * context is unloaded at this point
+ */
+ } else
+#endif /* CONFIG_SMP */
+ {
+
+ DPRINT(("forcing unload\n"));
+ /*
+ * stop and unload, returning with state UNLOADED
+ * and session unreserved.
+ */
+ pfm_context_unload(ctx, NULL, 0, regs);
+
+ DPRINT(("ctx_state=%d\n", ctx->ctx_state));
+ }
+ }
+
+ /*
+ * remove virtual mapping, if any, for the calling task.
+ * cannot reset ctx field until last user is calling close().
+ *
+ * ctx_smpl_vaddr must never be cleared because it is needed
+ * by every task with access to the context
+ *
+ * When called from do_exit(), the mm context is gone already, therefore
+ * mm is NULL, i.e., the VMA is already gone and we do not have to
+ * do anything here
+ */
+ if (ctx->ctx_smpl_vaddr && current->mm) {
+ smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
+ smpl_buf_size = ctx->ctx_smpl_size;
+ }
+
+ UNPROTECT_CTX(ctx, flags);
+
+ /*
+ * if there was a mapping, then we systematically remove it
+ * at this point. Cannot be done inside critical section
+ * because some VM function reenables interrupts.
+ *
+ */
+ if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
+
+ return 0;
+}
+/*
+ * called either on explicit close() or from exit_files().
+ * Only the LAST user of the file gets to this point, i.e., it is
+ * called only ONCE.
+ *
+ * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
+ * (fput()),i.e, last task to access the file. Nobody else can access the
+ * file at this point.
+ *
+ * When called from exit_files(), the VMA has been freed because exit_mm()
+ * is executed before exit_files().
+ *
+ * When called from exit_files(), the current task is not yet ZOMBIE but we
+ * flush the PMU state to the context.
+ */
+static int
+pfm_close(struct inode *inode, struct file *filp)
+{
+ pfm_context_t *ctx;
+ struct task_struct *task;
+ struct pt_regs *regs;
+ DECLARE_WAITQUEUE(wait, current);
+ unsigned long flags;
+ unsigned long smpl_buf_size = 0UL;
+ void *smpl_buf_addr = NULL;
+ int free_possible = 1;
+ int state, is_system;
+
+ DPRINT(("pfm_close called private=%p\n", filp->private_data));
+
+ if (PFM_IS_FILE(filp) == 0) {
+ DPRINT(("bad magic\n"));
+ return -EBADF;
+ }
+
+ ctx = (pfm_context_t *)filp->private_data;
+ if (ctx == NULL) {
+ printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
+ return -EBADF;
+ }
+
+ PROTECT_CTX(ctx, flags);
+
+ state = ctx->ctx_state;
+ is_system = ctx->ctx_fl_system;
+
+ task = PFM_CTX_TASK(ctx);
+ regs = ia64_task_regs(task);
+
+ DPRINT(("ctx_state=%d is_current=%d\n",
+ state,
+ task == current ? 1 : 0));
+
+ /*
+ * if task == current, then pfm_flush() unloaded the context
+ */
+ if (state == PFM_CTX_UNLOADED) goto doit;
+
+ /*
+ * context is loaded/masked and task != current, we need to
+ * either force an unload or go zombie
+ */
+
+ /*
+ * The task is currently blocked or will block after an overflow.
+ * we must force it to wakeup to get out of the
+ * MASKED state and transition to the unloaded state by itself.
+ *
+ * This situation is only possible for per-task mode
+ */
+ if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
+
+ /*
+ * set a "partial" zombie state to be checked
+ * upon return from down() in pfm_handle_work().
+ *
+ * We cannot use the ZOMBIE state, because it is checked
+ * by pfm_load_regs() which is called upon wakeup from down().
+ * In such case, it would free the context and then we would
+ * return to pfm_handle_work() which would access the
+ * stale context. Instead, we set a flag invisible to pfm_load_regs()
+ * but visible to pfm_handle_work().
+ *
+ * For some window of time, we have a zombie context with
+ * ctx_state = MASKED and not ZOMBIE
+ */
+ ctx->ctx_fl_going_zombie = 1;
+
+ /*
+ * force task to wake up from MASKED state
+ */
+ up(&ctx->ctx_restart_sem);
+
+ DPRINT(("waking up ctx_state=%d\n", state));
+
+ /*
+ * put ourself to sleep waiting for the other
+ * task to report completion
+ *
+ * the context is protected by mutex, therefore there
+ * is no risk of being notified of completion before
+ * begin actually on the waitq.
+ */
+ set_current_state(TASK_INTERRUPTIBLE);
+ add_wait_queue(&ctx->ctx_zombieq, &wait);
+
+ UNPROTECT_CTX(ctx, flags);
+
+ /*
+ * XXX: check for signals :
+ * - ok for explicit close
+ * - not ok when coming from exit_files()
+ */
+ schedule();
+
+
+ PROTECT_CTX(ctx, flags);
+
+
+ remove_wait_queue(&ctx->ctx_zombieq, &wait);
+ set_current_state(TASK_RUNNING);
+
+ /*
+ * context is unloaded at this point
+ */
+ DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
+ }
+ else if (task != current) {
+#ifdef CONFIG_SMP
+ /*
+ * switch context to zombie state
+ */
+ ctx->ctx_state = PFM_CTX_ZOMBIE;
+
+ DPRINT(("zombie ctx for [%d]\n", task->pid));
+ /*
+ * cannot free the context on the spot. deferred until
+ * the task notices the ZOMBIE state
+ */
+ free_possible = 0;
+#else
+ pfm_context_unload(ctx, NULL, 0, regs);
+#endif
+ }
+
+doit:
+ /* reload state, may have changed during opening of critical section */
+ state = ctx->ctx_state;
+
+ /*
+ * the context is still attached to a task (possibly current)
+ * we cannot destroy it right now
+ */
+
+ /*
+ * we must free the sampling buffer right here because
+ * we cannot rely on it being cleaned up later by the
+ * monitored task. It is not possible to free vmalloc'ed
+ * memory in pfm_load_regs(). Instead, we remove the buffer
+ * now. should there be subsequent PMU overflow originally
+ * meant for sampling, the will be converted to spurious
+ * and that's fine because the monitoring tools is gone anyway.
+ */
+ if (ctx->ctx_smpl_hdr) {
+ smpl_buf_addr = ctx->ctx_smpl_hdr;
+ smpl_buf_size = ctx->ctx_smpl_size;
+ /* no more sampling */
+ ctx->ctx_smpl_hdr = NULL;
+ ctx->ctx_fl_is_sampling = 0;
+ }
+
+ DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
+ state,
+ free_possible,
+ smpl_buf_addr,
+ smpl_buf_size));
+
+ if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
+
+ /*
+ * UNLOADED that the session has already been unreserved.
+ */
+ if (state == PFM_CTX_ZOMBIE) {
+ pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
+ }
+
+ /*
+ * disconnect file descriptor from context must be done
+ * before we unlock.
+ */
+ filp->private_data = NULL;
+
+ /*
+ * if we free on the spot, the context is now completely unreacheable
+ * from the callers side. The monitored task side is also cut, so we
+ * can freely cut.
+ *
+ * If we have a deferred free, only the caller side is disconnected.
+ */
+ UNPROTECT_CTX(ctx, flags);
+
+ /*
+ * All memory free operations (especially for vmalloc'ed memory)
+ * MUST be done with interrupts ENABLED.
+ */
+ if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
+
+ /*
+ * return the memory used by the context
+ */
+ if (free_possible) pfm_context_free(ctx);
+
+ return 0;
+}
+
+static int
+pfm_no_open(struct inode *irrelevant, struct file *dontcare)
+{
+ DPRINT(("pfm_no_open called\n"));
+ return -ENXIO;
+}
+
+
+
+static struct file_operations pfm_file_ops = {
+ .llseek = no_llseek,
+ .read = pfm_read,
+ .write = pfm_write,
+ .poll = pfm_poll,
+ .ioctl = pfm_ioctl,
+ .open = pfm_no_open, /* special open code to disallow open via /proc */
+ .fasync = pfm_fasync,
+ .release = pfm_close,
+ .flush = pfm_flush
+};
+
+static int
+pfmfs_delete_dentry(struct dentry *dentry)
+{
+ return 1;
+}
+
+static struct dentry_operations pfmfs_dentry_operations = {
+ .d_delete = pfmfs_delete_dentry,
+};
+
+
+static int
+pfm_alloc_fd(struct file **cfile)
+{
+ int fd, ret = 0;
+ struct file *file = NULL;
+ struct inode * inode;
+ char name[32];
+ struct qstr this;
+
+ fd = get_unused_fd();
+ if (fd < 0) return -ENFILE;
+
+ ret = -ENFILE;
+
+ file = get_empty_filp();
+ if (!file) goto out;
+
+ /*
+ * allocate a new inode
+ */
+ inode = new_inode(pfmfs_mnt->mnt_sb);
+ if (!inode) goto out;
+
+ DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
+
+ inode->i_mode = S_IFCHR|S_IRUGO;
+ inode->i_uid = current->fsuid;
+ inode->i_gid = current->fsgid;
+
+ sprintf(name, "[%lu]", inode->i_ino);
+ this.name = name;
+ this.len = strlen(name);
+ this.hash = inode->i_ino;
+
+ ret = -ENOMEM;
+
+ /*
+ * allocate a new dcache entry
+ */
+ file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
+ if (!file->f_dentry) goto out;
+
+ file->f_dentry->d_op = &pfmfs_dentry_operations;
+
+ d_add(file->f_dentry, inode);
+ file->f_vfsmnt = mntget(pfmfs_mnt);
+ file->f_mapping = inode->i_mapping;
+
+ file->f_op = &pfm_file_ops;
+ file->f_mode = FMODE_READ;
+ file->f_flags = O_RDONLY;
+ file->f_pos = 0;
+
+ /*
+ * may have to delay until context is attached?
+ */
+ fd_install(fd, file);
+
+ /*
+ * the file structure we will use
+ */
+ *cfile = file;
+
+ return fd;
+out:
+ if (file) put_filp(file);
+ put_unused_fd(fd);
+ return ret;
+}
+
+static void
+pfm_free_fd(int fd, struct file *file)
+{
+ struct files_struct *files = current->files;
+
+ /*
+ * there ie no fd_uninstall(), so we do it here
+ */
+ spin_lock(&files->file_lock);
+ files->fd[fd] = NULL;
+ spin_unlock(&files->file_lock);
+
+ if (file) put_filp(file);
+ put_unused_fd(fd);
+}
+
+static int
+pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
+{
+ DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
+
+ while (size > 0) {
+ unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
+
+
+ if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
+ return -ENOMEM;
+
+ addr += PAGE_SIZE;
+ buf += PAGE_SIZE;
+ size -= PAGE_SIZE;
+ }
+ return 0;
+}
+
+/*
+ * allocate a sampling buffer and remaps it into the user address space of the task
+ */
+static int
+pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
+{
+ struct mm_struct *mm = task->mm;
+ struct vm_area_struct *vma = NULL;
+ unsigned long size;
+ void *smpl_buf;
+
+
+ /*
+ * the fixed header + requested size and align to page boundary
+ */
+ size = PAGE_ALIGN(rsize);
+
+ DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
+
+ /*
+ * check requested size to avoid Denial-of-service attacks
+ * XXX: may have to refine this test
+ * Check against address space limit.
+ *
+ * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
+ * return -ENOMEM;
+ */
+ if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
+ return -ENOMEM;
+
+ /*
+ * We do the easy to undo allocations first.
+ *
+ * pfm_rvmalloc(), clears the buffer, so there is no leak
+ */
+ smpl_buf = pfm_rvmalloc(size);
+ if (smpl_buf == NULL) {
+ DPRINT(("Can't allocate sampling buffer\n"));
+ return -ENOMEM;
+ }
+
+ DPRINT(("smpl_buf @%p\n", smpl_buf));
+
+ /* allocate vma */
+ vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
+ if (!vma) {
+ DPRINT(("Cannot allocate vma\n"));
+ goto error_kmem;
+ }
+ memset(vma, 0, sizeof(*vma));
+
+ /*
+ * partially initialize the vma for the sampling buffer
+ */
+ vma->vm_mm = mm;
+ vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
+ vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
+
+ /*
+ * Now we have everything we need and we can initialize
+ * and connect all the data structures
+ */
+
+ ctx->ctx_smpl_hdr = smpl_buf;
+ ctx->ctx_smpl_size = size; /* aligned size */
+
+ /*
+ * Let's do the difficult operations next.
+ *
+ * now we atomically find some area in the address space and
+ * remap the buffer in it.
+ */
+ down_write(&task->mm->mmap_sem);
+
+ /* find some free area in address space, must have mmap sem held */
+ vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
+ if (vma->vm_start == 0UL) {
+ DPRINT(("Cannot find unmapped area for size %ld\n", size));
+ up_write(&task->mm->mmap_sem);
+ goto error;
+ }
+ vma->vm_end = vma->vm_start + size;
+ vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
+
+ DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
+
+ /* can only be applied to current task, need to have the mm semaphore held when called */
+ if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
+ DPRINT(("Can't remap buffer\n"));
+ up_write(&task->mm->mmap_sem);
+ goto error;
+ }
+
+ /*
+ * now insert the vma in the vm list for the process, must be
+ * done with mmap lock held
+ */
+ insert_vm_struct(mm, vma);
+
+ mm->total_vm += size >> PAGE_SHIFT;
+ vm_stat_account(vma);
+ up_write(&task->mm->mmap_sem);
+
+ /*
+ * keep track of user level virtual address
+ */
+ ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
+ *(unsigned long *)user_vaddr = vma->vm_start;
+
+ return 0;
+
+error:
+ kmem_cache_free(vm_area_cachep, vma);
+error_kmem:
+ pfm_rvfree(smpl_buf, size);
+
+ return -ENOMEM;
+}
+
+/*
+ * XXX: do something better here
+ */
+static int
+pfm_bad_permissions(struct task_struct *task)
+{
+ /* inspired by ptrace_attach() */
+ DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
+ current->uid,
+ current->gid,
+ task->euid,
+ task->suid,
+ task->uid,
+ task->egid,
+ task->sgid));
+
+ return ((current->uid != task->euid)
+ || (current->uid != task->suid)
+ || (current->uid != task->uid)
+ || (current->gid != task->egid)
+ || (current->gid != task->sgid)
+ || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
+}
+
+static int
+pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
+{
+ int ctx_flags;
+
+ /* valid signal */
+
+ ctx_flags = pfx->ctx_flags;
+
+ if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
+
+ /*
+ * cannot block in this mode
+ */
+ if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
+ DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
+ return -EINVAL;
+ }
+ } else {
+ }
+ /* probably more to add here */
+
+ return 0;
+}
+
+static int
+pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
+ unsigned int cpu, pfarg_context_t *arg)
+{
+ pfm_buffer_fmt_t *fmt = NULL;
+ unsigned long size = 0UL;
+ void *uaddr = NULL;
+ void *fmt_arg = NULL;
+ int ret = 0;
+#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
+
+ /* invoke and lock buffer format, if found */
+ fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
+ if (fmt == NULL) {
+ DPRINT(("[%d] cannot find buffer format\n", task->pid));
+ return -EINVAL;
+ }
+
+ /*
+ * buffer argument MUST be contiguous to pfarg_context_t
+ */
+ if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
+
+ ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
+
+ DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
+
+ if (ret) goto error;
+
+ /* link buffer format and context */
+ ctx->ctx_buf_fmt = fmt;
+
+ /*
+ * check if buffer format wants to use perfmon buffer allocation/mapping service
+ */
+ ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
+ if (ret) goto error;
+
+ if (size) {
+ /*
+ * buffer is always remapped into the caller's address space
+ */
+ ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
+ if (ret) goto error;
+
+ /* keep track of user address of buffer */
+ arg->ctx_smpl_vaddr = uaddr;
+ }
+ ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
+
+error:
+ return ret;
+}
+
+static void
+pfm_reset_pmu_state(pfm_context_t *ctx)
+{
+ int i;
+
+ /*
+ * install reset values for PMC.
+ */
+ for (i=1; PMC_IS_LAST(i) == 0; i++) {
+ if (PMC_IS_IMPL(i) == 0) continue;
+ ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
+ DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
+ }
+ /*
+ * PMD registers are set to 0UL when the context in memset()
+ */
+
+ /*
+ * On context switched restore, we must restore ALL pmc and ALL pmd even
+ * when they are not actively used by the task. In UP, the incoming process
+ * may otherwise pick up left over PMC, PMD state from the previous process.
+ * As opposed to PMD, stale PMC can cause harm to the incoming
+ * process because they may change what is being measured.
+ * Therefore, we must systematically reinstall the entire
+ * PMC state. In SMP, the same thing is possible on the
+ * same CPU but also on between 2 CPUs.
+ *
+ * The problem with PMD is information leaking especially
+ * to user level when psr.sp=0
+ *
+ * There is unfortunately no easy way to avoid this problem
+ * on either UP or SMP. This definitively slows down the
+ * pfm_load_regs() function.
+ */
+
+ /*
+ * bitmask of all PMCs accessible to this context
+ *
+ * PMC0 is treated differently.
+ */
+ ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
+
+ /*
+ * bitmask of all PMDs that are accesible to this context
+ */
+ ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
+
+ DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
+
+ /*
+ * useful in case of re-enable after disable
+ */
+ ctx->ctx_used_ibrs[0] = 0UL;
+ ctx->ctx_used_dbrs[0] = 0UL;
+}
+
+static int
+pfm_ctx_getsize(void *arg, size_t *sz)
+{
+ pfarg_context_t *req = (pfarg_context_t *)arg;
+ pfm_buffer_fmt_t *fmt;
+
+ *sz = 0;
+
+ if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
+
+ fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
+ if (fmt == NULL) {
+ DPRINT(("cannot find buffer format\n"));
+ return -EINVAL;
+ }
+ /* get just enough to copy in user parameters */
+ *sz = fmt->fmt_arg_size;
+ DPRINT(("arg_size=%lu\n", *sz));
+
+ return 0;
+}
+
+
+
+/*
+ * cannot attach if :
+ * - kernel task
+ * - task not owned by caller
+ * - task incompatible with context mode
+ */
+static int
+pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
+{
+ /*
+ * no kernel task or task not owner by caller
+ */
+ if (task->mm == NULL) {
+ DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
+ return -EPERM;
+ }
+ if (pfm_bad_permissions(task)) {
+ DPRINT(("no permission to attach to [%d]\n", task->pid));
+ return -EPERM;
+ }
+ /*
+ * cannot block in self-monitoring mode
+ */
+ if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
+ DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
+ return -EINVAL;
+ }
+
+ if (task->exit_state == EXIT_ZOMBIE) {
+ DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
+ return -EBUSY;
+ }
+
+ /*
+ * always ok for self
+ */
+ if (task == current) return 0;
+
+ if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
+ DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
+ return -EBUSY;
+ }
+ /*
+ * make sure the task is off any CPU
+ */
+ wait_task_inactive(task);
+
+ /* more to come... */
+
+ return 0;
+}
+
+static int
+pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
+{
+ struct task_struct *p = current;
+ int ret;
+
+ /* XXX: need to add more checks here */
+ if (pid < 2) return -EPERM;
+
+ if (pid != current->pid) {
+
+ read_lock(&tasklist_lock);
+
+ p = find_task_by_pid(pid);
+
+ /* make sure task cannot go away while we operate on it */
+ if (p) get_task_struct(p);
+
+ read_unlock(&tasklist_lock);
+
+ if (p == NULL) return -ESRCH;
+ }
+
+ ret = pfm_task_incompatible(ctx, p);
+ if (ret == 0) {
+ *task = p;
+ } else if (p != current) {
+ pfm_put_task(p);
+ }
+ return ret;
+}
+
+
+
+static int
+pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ pfarg_context_t *req = (pfarg_context_t *)arg;
+ struct file *filp;
+ int ctx_flags;
+ int ret;
+
+ /* let's check the arguments first */
+ ret = pfarg_is_sane(current, req);
+ if (ret < 0) return ret;
+
+ ctx_flags = req->ctx_flags;
+
+ ret = -ENOMEM;
+
+ ctx = pfm_context_alloc();
+ if (!ctx) goto error;
+
+ ret = pfm_alloc_fd(&filp);
+ if (ret < 0) goto error_file;
+
+ req->ctx_fd = ctx->ctx_fd = ret;
+
+ /*
+ * attach context to file
+ */
+ filp->private_data = ctx;
+
+ /*
+ * does the user want to sample?
+ */
+ if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
+ ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
+ if (ret) goto buffer_error;
+ }
+
+ /*
+ * init context protection lock
+ */
+ spin_lock_init(&ctx->ctx_lock);
+
+ /*
+ * context is unloaded
+ */
+ ctx->ctx_state = PFM_CTX_UNLOADED;
+
+ /*
+ * initialization of context's flags
+ */
+ ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
+ ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
+ ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
+ ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
+ /*
+ * will move to set properties
+ * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
+ */
+
+ /*
+ * init restart semaphore to locked
+ */
+ sema_init(&ctx->ctx_restart_sem, 0);
+
+ /*
+ * activation is used in SMP only
+ */
+ ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
+ SET_LAST_CPU(ctx, -1);
+
+ /*
+ * initialize notification message queue
+ */
+ ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
+ init_waitqueue_head(&ctx->ctx_msgq_wait);
+ init_waitqueue_head(&ctx->ctx_zombieq);
+
+ DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
+ ctx,
+ ctx_flags,
+ ctx->ctx_fl_system,
+ ctx->ctx_fl_block,
+ ctx->ctx_fl_excl_idle,
+ ctx->ctx_fl_no_msg,
+ ctx->ctx_fd));
+
+ /*
+ * initialize soft PMU state
+ */
+ pfm_reset_pmu_state(ctx);
+
+ return 0;
+
+buffer_error:
+ pfm_free_fd(ctx->ctx_fd, filp);
+
+ if (ctx->ctx_buf_fmt) {
+ pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
+ }
+error_file:
+ pfm_context_free(ctx);
+
+error:
+ return ret;
+}
+
+static inline unsigned long
+pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
+{
+ unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
+ unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
+ extern unsigned long carta_random32 (unsigned long seed);
+
+ if (reg->flags & PFM_REGFL_RANDOM) {
+ new_seed = carta_random32(old_seed);
+ val -= (old_seed & mask); /* counter values are negative numbers! */
+ if ((mask >> 32) != 0)
+ /* construct a full 64-bit random value: */
+ new_seed |= carta_random32(old_seed >> 32) << 32;
+ reg->seed = new_seed;
+ }
+ reg->lval = val;
+ return val;
+}
+
+static void
+pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
+{
+ unsigned long mask = ovfl_regs[0];
+ unsigned long reset_others = 0UL;
+ unsigned long val;
+ int i;
+
+ /*
+ * now restore reset value on sampling overflowed counters
+ */
+ mask >>= PMU_FIRST_COUNTER;
+ for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
+
+ if ((mask & 0x1UL) == 0UL) continue;
+
+ ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
+ reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
+
+ DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
+ }
+
+ /*
+ * Now take care of resetting the other registers
+ */
+ for(i = 0; reset_others; i++, reset_others >>= 1) {
+
+ if ((reset_others & 0x1) == 0) continue;
+
+ ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
+
+ DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
+ is_long_reset ? "long" : "short", i, val));
+ }
+}
+
+static void
+pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
+{
+ unsigned long mask = ovfl_regs[0];
+ unsigned long reset_others = 0UL;
+ unsigned long val;
+ int i;
+
+ DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
+
+ if (ctx->ctx_state == PFM_CTX_MASKED) {
+ pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
+ return;
+ }
+
+ /*
+ * now restore reset value on sampling overflowed counters
+ */
+ mask >>= PMU_FIRST_COUNTER;
+ for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
+
+ if ((mask & 0x1UL) == 0UL) continue;
+
+ val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
+ reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
+
+ DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
+
+ pfm_write_soft_counter(ctx, i, val);
+ }
+
+ /*
+ * Now take care of resetting the other registers
+ */
+ for(i = 0; reset_others; i++, reset_others >>= 1) {
+
+ if ((reset_others & 0x1) == 0) continue;
+
+ val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
+
+ if (PMD_IS_COUNTING(i)) {
+ pfm_write_soft_counter(ctx, i, val);
+ } else {
+ ia64_set_pmd(i, val);
+ }
+ DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
+ is_long_reset ? "long" : "short", i, val));
+ }
+ ia64_srlz_d();
+}
+
+static int
+pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct thread_struct *thread = NULL;
+ struct task_struct *task;
+ pfarg_reg_t *req = (pfarg_reg_t *)arg;
+ unsigned long value, pmc_pm;
+ unsigned long smpl_pmds, reset_pmds, impl_pmds;
+ unsigned int cnum, reg_flags, flags, pmc_type;
+ int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
+ int is_monitor, is_counting, state;
+ int ret = -EINVAL;
+ pfm_reg_check_t wr_func;
+#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
+
+ state = ctx->ctx_state;
+ is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
+ is_system = ctx->ctx_fl_system;
+ task = ctx->ctx_task;
+ impl_pmds = pmu_conf->impl_pmds[0];
+
+ if (state == PFM_CTX_ZOMBIE) return -EINVAL;
+
+ if (is_loaded) {
+ thread = &task->thread;
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (is_system && ctx->ctx_cpu != smp_processor_id()) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+ can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
+ }
+ expert_mode = pfm_sysctl.expert_mode;
+
+ for (i = 0; i < count; i++, req++) {
+
+ cnum = req->reg_num;
+ reg_flags = req->reg_flags;
+ value = req->reg_value;
+ smpl_pmds = req->reg_smpl_pmds[0];
+ reset_pmds = req->reg_reset_pmds[0];
+ flags = 0;
+
+
+ if (cnum >= PMU_MAX_PMCS) {
+ DPRINT(("pmc%u is invalid\n", cnum));
+ goto error;
+ }
+
+ pmc_type = pmu_conf->pmc_desc[cnum].type;
+ pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
+ is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
+ is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
+
+ /*
+ * we reject all non implemented PMC as well
+ * as attempts to modify PMC[0-3] which are used
+ * as status registers by the PMU
+ */
+ if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
+ DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
+ goto error;
+ }
+ wr_func = pmu_conf->pmc_desc[cnum].write_check;
+ /*
+ * If the PMC is a monitor, then if the value is not the default:
+ * - system-wide session: PMCx.pm=1 (privileged monitor)
+ * - per-task : PMCx.pm=0 (user monitor)
+ */
+ if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
+ DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
+ cnum,
+ pmc_pm,
+ is_system));
+ goto error;
+ }
+
+ if (is_counting) {
+ /*
+ * enforce generation of overflow interrupt. Necessary on all
+ * CPUs.
+ */
+ value |= 1 << PMU_PMC_OI;
+
+ if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
+ flags |= PFM_REGFL_OVFL_NOTIFY;
+ }
+
+ if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
+
+ /* verify validity of smpl_pmds */
+ if ((smpl_pmds & impl_pmds) != smpl_pmds) {
+ DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
+ goto error;
+ }
+
+ /* verify validity of reset_pmds */
+ if ((reset_pmds & impl_pmds) != reset_pmds) {
+ DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
+ goto error;
+ }
+ } else {
+ if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
+ DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
+ goto error;
+ }
+ /* eventid on non-counting monitors are ignored */
+ }
+
+ /*
+ * execute write checker, if any
+ */
+ if (likely(expert_mode == 0 && wr_func)) {
+ ret = (*wr_func)(task, ctx, cnum, &value, regs);
+ if (ret) goto error;
+ ret = -EINVAL;
+ }
+
+ /*
+ * no error on this register
+ */
+ PFM_REG_RETFLAG_SET(req->reg_flags, 0);
+
+ /*
+ * Now we commit the changes to the software state
+ */
+
+ /*
+ * update overflow information
+ */
+ if (is_counting) {
+ /*
+ * full flag update each time a register is programmed
+ */
+ ctx->ctx_pmds[cnum].flags = flags;
+
+ ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
+ ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
+ ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
+
+ /*
+ * Mark all PMDS to be accessed as used.
+ *
+ * We do not keep track of PMC because we have to
+ * systematically restore ALL of them.
+ *
+ * We do not update the used_monitors mask, because
+ * if we have not programmed them, then will be in
+ * a quiescent state, therefore we will not need to
+ * mask/restore then when context is MASKED.
+ */
+ CTX_USED_PMD(ctx, reset_pmds);
+ CTX_USED_PMD(ctx, smpl_pmds);
+ /*
+ * make sure we do not try to reset on
+ * restart because we have established new values
+ */
+ if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
+ }
+ /*
+ * Needed in case the user does not initialize the equivalent
+ * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
+ * possible leak here.
+ */
+ CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
+
+ /*
+ * keep track of the monitor PMC that we are using.
+ * we save the value of the pmc in ctx_pmcs[] and if
+ * the monitoring is not stopped for the context we also
+ * place it in the saved state area so that it will be
+ * picked up later by the context switch code.
+ *
+ * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
+ *
+ * The value in thread->pmcs[] may be modified on overflow, i.e., when
+ * monitoring needs to be stopped.
+ */
+ if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
+
+ /*
+ * update context state
+ */
+ ctx->ctx_pmcs[cnum] = value;
+
+ if (is_loaded) {
+ /*
+ * write thread state
+ */
+ if (is_system == 0) thread->pmcs[cnum] = value;
+
+ /*
+ * write hardware register if we can
+ */
+ if (can_access_pmu) {
+ ia64_set_pmc(cnum, value);
+ }
+#ifdef CONFIG_SMP
+ else {
+ /*
+ * per-task SMP only here
+ *
+ * we are guaranteed that the task is not running on the other CPU,
+ * we indicate that this PMD will need to be reloaded if the task
+ * is rescheduled on the CPU it ran last on.
+ */
+ ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
+ }
+#endif
+ }
+
+ DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
+ cnum,
+ value,
+ is_loaded,
+ can_access_pmu,
+ flags,
+ ctx->ctx_all_pmcs[0],
+ ctx->ctx_used_pmds[0],
+ ctx->ctx_pmds[cnum].eventid,
+ smpl_pmds,
+ reset_pmds,
+ ctx->ctx_reload_pmcs[0],
+ ctx->ctx_used_monitors[0],
+ ctx->ctx_ovfl_regs[0]));
+ }
+
+ /*
+ * make sure the changes are visible
+ */
+ if (can_access_pmu) ia64_srlz_d();
+
+ return 0;
+error:
+ PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
+ return ret;
+}
+
+static int
+pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct thread_struct *thread = NULL;
+ struct task_struct *task;
+ pfarg_reg_t *req = (pfarg_reg_t *)arg;
+ unsigned long value, hw_value, ovfl_mask;
+ unsigned int cnum;
+ int i, can_access_pmu = 0, state;
+ int is_counting, is_loaded, is_system, expert_mode;
+ int ret = -EINVAL;
+ pfm_reg_check_t wr_func;
+
+
+ state = ctx->ctx_state;
+ is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
+ is_system = ctx->ctx_fl_system;
+ ovfl_mask = pmu_conf->ovfl_val;
+ task = ctx->ctx_task;
+
+ if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
+
+ /*
+ * on both UP and SMP, we can only write to the PMC when the task is
+ * the owner of the local PMU.
+ */
+ if (likely(is_loaded)) {
+ thread = &task->thread;
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+ can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
+ }
+ expert_mode = pfm_sysctl.expert_mode;
+
+ for (i = 0; i < count; i++, req++) {
+
+ cnum = req->reg_num;
+ value = req->reg_value;
+
+ if (!PMD_IS_IMPL(cnum)) {
+ DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
+ goto abort_mission;
+ }
+ is_counting = PMD_IS_COUNTING(cnum);
+ wr_func = pmu_conf->pmd_desc[cnum].write_check;
+
+ /*
+ * execute write checker, if any
+ */
+ if (unlikely(expert_mode == 0 && wr_func)) {
+ unsigned long v = value;
+
+ ret = (*wr_func)(task, ctx, cnum, &v, regs);
+ if (ret) goto abort_mission;
+
+ value = v;
+ ret = -EINVAL;
+ }
+
+ /*
+ * no error on this register
+ */
+ PFM_REG_RETFLAG_SET(req->reg_flags, 0);
+
+ /*
+ * now commit changes to software state
+ */
+ hw_value = value;
+
+ /*
+ * update virtualized (64bits) counter
+ */
+ if (is_counting) {
+ /*
+ * write context state
+ */
+ ctx->ctx_pmds[cnum].lval = value;
+
+ /*
+ * when context is load we use the split value
+ */
+ if (is_loaded) {
+ hw_value = value & ovfl_mask;
+ value = value & ~ovfl_mask;
+ }
+ }
+ /*
+ * update reset values (not just for counters)
+ */
+ ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
+ ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
+
+ /*
+ * update randomization parameters (not just for counters)
+ */
+ ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
+ ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
+
+ /*
+ * update context value
+ */
+ ctx->ctx_pmds[cnum].val = value;
+
+ /*
+ * Keep track of what we use
+ *
+ * We do not keep track of PMC because we have to
+ * systematically restore ALL of them.
+ */
+ CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
+
+ /*
+ * mark this PMD register used as well
+ */
+ CTX_USED_PMD(ctx, RDEP(cnum));
+
+ /*
+ * make sure we do not try to reset on
+ * restart because we have established new values
+ */
+ if (is_counting && state == PFM_CTX_MASKED) {
+ ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
+ }
+
+ if (is_loaded) {
+ /*
+ * write thread state
+ */
+ if (is_system == 0) thread->pmds[cnum] = hw_value;
+
+ /*
+ * write hardware register if we can
+ */
+ if (can_access_pmu) {
+ ia64_set_pmd(cnum, hw_value);
+ } else {
+#ifdef CONFIG_SMP
+ /*
+ * we are guaranteed that the task is not running on the other CPU,
+ * we indicate that this PMD will need to be reloaded if the task
+ * is rescheduled on the CPU it ran last on.
+ */
+ ctx->ctx_reload_pmds[0] |= 1UL << cnum;
+#endif
+ }
+ }
+
+ DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
+ "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
+ cnum,
+ value,
+ is_loaded,
+ can_access_pmu,
+ hw_value,
+ ctx->ctx_pmds[cnum].val,
+ ctx->ctx_pmds[cnum].short_reset,
+ ctx->ctx_pmds[cnum].long_reset,
+ PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
+ ctx->ctx_pmds[cnum].seed,
+ ctx->ctx_pmds[cnum].mask,
+ ctx->ctx_used_pmds[0],
+ ctx->ctx_pmds[cnum].reset_pmds[0],
+ ctx->ctx_reload_pmds[0],
+ ctx->ctx_all_pmds[0],
+ ctx->ctx_ovfl_regs[0]));
+ }
+
+ /*
+ * make changes visible
+ */
+ if (can_access_pmu) ia64_srlz_d();
+
+ return 0;
+
+abort_mission:
+ /*
+ * for now, we have only one possibility for error
+ */
+ PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
+ return ret;
+}
+
+/*
+ * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
+ * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
+ * interrupt is delivered during the call, it will be kept pending until we leave, making
+ * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
+ * guaranteed to return consistent data to the user, it may simply be old. It is not
+ * trivial to treat the overflow while inside the call because you may end up in
+ * some module sampling buffer code causing deadlocks.
+ */
+static int
+pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct thread_struct *thread = NULL;
+ struct task_struct *task;
+ unsigned long val = 0UL, lval, ovfl_mask, sval;
+ pfarg_reg_t *req = (pfarg_reg_t *)arg;
+ unsigned int cnum, reg_flags = 0;
+ int i, can_access_pmu = 0, state;
+ int is_loaded, is_system, is_counting, expert_mode;
+ int ret = -EINVAL;
+ pfm_reg_check_t rd_func;
+
+ /*
+ * access is possible when loaded only for
+ * self-monitoring tasks or in UP mode
+ */
+
+ state = ctx->ctx_state;
+ is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
+ is_system = ctx->ctx_fl_system;
+ ovfl_mask = pmu_conf->ovfl_val;
+ task = ctx->ctx_task;
+
+ if (state == PFM_CTX_ZOMBIE) return -EINVAL;
+
+ if (likely(is_loaded)) {
+ thread = &task->thread;
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+ /*
+ * this can be true when not self-monitoring only in UP
+ */
+ can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
+
+ if (can_access_pmu) ia64_srlz_d();
+ }
+ expert_mode = pfm_sysctl.expert_mode;
+
+ DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
+ is_loaded,
+ can_access_pmu,
+ state));
+
+ /*
+ * on both UP and SMP, we can only read the PMD from the hardware register when
+ * the task is the owner of the local PMU.
+ */
+
+ for (i = 0; i < count; i++, req++) {
+
+ cnum = req->reg_num;
+ reg_flags = req->reg_flags;
+
+ if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
+ /*
+ * we can only read the register that we use. That includes
+ * the one we explicitely initialize AND the one we want included
+ * in the sampling buffer (smpl_regs).
+ *
+ * Having this restriction allows optimization in the ctxsw routine
+ * without compromising security (leaks)
+ */
+ if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
+
+ sval = ctx->ctx_pmds[cnum].val;
+ lval = ctx->ctx_pmds[cnum].lval;
+ is_counting = PMD_IS_COUNTING(cnum);
+
+ /*
+ * If the task is not the current one, then we check if the
+ * PMU state is still in the local live register due to lazy ctxsw.
+ * If true, then we read directly from the registers.
+ */
+ if (can_access_pmu){
+ val = ia64_get_pmd(cnum);
+ } else {
+ /*
+ * context has been saved
+ * if context is zombie, then task does not exist anymore.
+ * In this case, we use the full value saved in the context (pfm_flush_regs()).
+ */
+ val = is_loaded ? thread->pmds[cnum] : 0UL;
+ }
+ rd_func = pmu_conf->pmd_desc[cnum].read_check;
+
+ if (is_counting) {
+ /*
+ * XXX: need to check for overflow when loaded
+ */
+ val &= ovfl_mask;
+ val += sval;
+ }
+
+ /*
+ * execute read checker, if any
+ */
+ if (unlikely(expert_mode == 0 && rd_func)) {
+ unsigned long v = val;
+ ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
+ if (ret) goto error;
+ val = v;
+ ret = -EINVAL;
+ }
+
+ PFM_REG_RETFLAG_SET(reg_flags, 0);
+
+ DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
+
+ /*
+ * update register return value, abort all if problem during copy.
+ * we only modify the reg_flags field. no check mode is fine because
+ * access has been verified upfront in sys_perfmonctl().
+ */
+ req->reg_value = val;
+ req->reg_flags = reg_flags;
+ req->reg_last_reset_val = lval;
+ }
+
+ return 0;
+
+error:
+ PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
+ return ret;
+}
+
+int
+pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
+{
+ pfm_context_t *ctx;
+
+ if (req == NULL) return -EINVAL;
+
+ ctx = GET_PMU_CTX();
+
+ if (ctx == NULL) return -EINVAL;
+
+ /*
+ * for now limit to current task, which is enough when calling
+ * from overflow handler
+ */
+ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
+
+ return pfm_write_pmcs(ctx, req, nreq, regs);
+}
+EXPORT_SYMBOL(pfm_mod_write_pmcs);
+
+int
+pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
+{
+ pfm_context_t *ctx;
+
+ if (req == NULL) return -EINVAL;
+
+ ctx = GET_PMU_CTX();
+
+ if (ctx == NULL) return -EINVAL;
+
+ /*
+ * for now limit to current task, which is enough when calling
+ * from overflow handler
+ */
+ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
+
+ return pfm_read_pmds(ctx, req, nreq, regs);
+}
+EXPORT_SYMBOL(pfm_mod_read_pmds);
+
+/*
+ * Only call this function when a process it trying to
+ * write the debug registers (reading is always allowed)
+ */
+int
+pfm_use_debug_registers(struct task_struct *task)
+{
+ pfm_context_t *ctx = task->thread.pfm_context;
+ unsigned long flags;
+ int ret = 0;
+
+ if (pmu_conf->use_rr_dbregs == 0) return 0;
+
+ DPRINT(("called for [%d]\n", task->pid));
+
+ /*
+ * do it only once
+ */
+ if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
+
+ /*
+ * Even on SMP, we do not need to use an atomic here because
+ * the only way in is via ptrace() and this is possible only when the
+ * process is stopped. Even in the case where the ctxsw out is not totally
+ * completed by the time we come here, there is no way the 'stopped' process
+ * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
+ * So this is always safe.
+ */
+ if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
+
+ LOCK_PFS(flags);
+
+ /*
+ * We cannot allow setting breakpoints when system wide monitoring
+ * sessions are using the debug registers.
+ */
+ if (pfm_sessions.pfs_sys_use_dbregs> 0)
+ ret = -1;
+ else
+ pfm_sessions.pfs_ptrace_use_dbregs++;
+
+ DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
+ pfm_sessions.pfs_ptrace_use_dbregs,
+ pfm_sessions.pfs_sys_use_dbregs,
+ task->pid, ret));
+
+ UNLOCK_PFS(flags);
+
+ return ret;
+}
+
+/*
+ * This function is called for every task that exits with the
+ * IA64_THREAD_DBG_VALID set. This indicates a task which was
+ * able to use the debug registers for debugging purposes via
+ * ptrace(). Therefore we know it was not using them for
+ * perfmormance monitoring, so we only decrement the number
+ * of "ptraced" debug register users to keep the count up to date
+ */
+int
+pfm_release_debug_registers(struct task_struct *task)
+{
+ unsigned long flags;
+ int ret;
+
+ if (pmu_conf->use_rr_dbregs == 0) return 0;
+
+ LOCK_PFS(flags);
+ if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
+ printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
+ ret = -1;
+ } else {
+ pfm_sessions.pfs_ptrace_use_dbregs--;
+ ret = 0;
+ }
+ UNLOCK_PFS(flags);
+
+ return ret;
+}
+
+static int
+pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct task_struct *task;
+ pfm_buffer_fmt_t *fmt;
+ pfm_ovfl_ctrl_t rst_ctrl;
+ int state, is_system;
+ int ret = 0;
+
+ state = ctx->ctx_state;
+ fmt = ctx->ctx_buf_fmt;
+ is_system = ctx->ctx_fl_system;
+ task = PFM_CTX_TASK(ctx);
+
+ switch(state) {
+ case PFM_CTX_MASKED:
+ break;
+ case PFM_CTX_LOADED:
+ if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
+ /* fall through */
+ case PFM_CTX_UNLOADED:
+ case PFM_CTX_ZOMBIE:
+ DPRINT(("invalid state=%d\n", state));
+ return -EBUSY;
+ default:
+ DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
+ return -EINVAL;
+ }
+
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (is_system && ctx->ctx_cpu != smp_processor_id()) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+
+ /* sanity check */
+ if (unlikely(task == NULL)) {
+ printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
+ return -EINVAL;
+ }
+
+ if (task == current || is_system) {
+
+ fmt = ctx->ctx_buf_fmt;
+
+ DPRINT(("restarting self %d ovfl=0x%lx\n",
+ task->pid,
+ ctx->ctx_ovfl_regs[0]));
+
+ if (CTX_HAS_SMPL(ctx)) {
+
+ prefetch(ctx->ctx_smpl_hdr);
+
+ rst_ctrl.bits.mask_monitoring = 0;
+ rst_ctrl.bits.reset_ovfl_pmds = 0;
+
+ if (state == PFM_CTX_LOADED)
+ ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
+ else
+ ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
+ } else {
+ rst_ctrl.bits.mask_monitoring = 0;
+ rst_ctrl.bits.reset_ovfl_pmds = 1;
+ }
+
+ if (ret == 0) {
+ if (rst_ctrl.bits.reset_ovfl_pmds)
+ pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
+
+ if (rst_ctrl.bits.mask_monitoring == 0) {
+ DPRINT(("resuming monitoring for [%d]\n", task->pid));
+
+ if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
+ } else {
+ DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
+
+ // cannot use pfm_stop_monitoring(task, regs);
+ }
+ }
+ /*
+ * clear overflowed PMD mask to remove any stale information
+ */
+ ctx->ctx_ovfl_regs[0] = 0UL;
+
+ /*
+ * back to LOADED state
+ */
+ ctx->ctx_state = PFM_CTX_LOADED;
+
+ /*
+ * XXX: not really useful for self monitoring
+ */
+ ctx->ctx_fl_can_restart = 0;
+
+ return 0;
+ }
+
+ /*
+ * restart another task
+ */
+
+ /*
+ * When PFM_CTX_MASKED, we cannot issue a restart before the previous
+ * one is seen by the task.
+ */
+ if (state == PFM_CTX_MASKED) {
+ if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
+ /*
+ * will prevent subsequent restart before this one is
+ * seen by other task
+ */
+ ctx->ctx_fl_can_restart = 0;
+ }
+
+ /*
+ * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
+ * the task is blocked or on its way to block. That's the normal
+ * restart path. If the monitoring is not masked, then the task
+ * can be actively monitoring and we cannot directly intervene.
+ * Therefore we use the trap mechanism to catch the task and
+ * force it to reset the buffer/reset PMDs.
+ *
+ * if non-blocking, then we ensure that the task will go into
+ * pfm_handle_work() before returning to user mode.
+ *
+ * We cannot explicitely reset another task, it MUST always
+ * be done by the task itself. This works for system wide because
+ * the tool that is controlling the session is logically doing
+ * "self-monitoring".
+ */
+ if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
+ DPRINT(("unblocking [%d] \n", task->pid));
+ up(&ctx->ctx_restart_sem);
+ } else {
+ DPRINT(("[%d] armed exit trap\n", task->pid));
+
+ ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
+
+ PFM_SET_WORK_PENDING(task, 1);
+
+ pfm_set_task_notify(task);
+
+ /*
+ * XXX: send reschedule if task runs on another CPU
+ */
+ }
+ return 0;
+}
+
+static int
+pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ unsigned int m = *(unsigned int *)arg;
+
+ pfm_sysctl.debug = m == 0 ? 0 : 1;
+
+ pfm_debug_var = pfm_sysctl.debug;
+
+ printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
+
+ if (m == 0) {
+ memset(pfm_stats, 0, sizeof(pfm_stats));
+ for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
+ }
+ return 0;
+}
+
+/*
+ * arg can be NULL and count can be zero for this function
+ */
+static int
+pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct thread_struct *thread = NULL;
+ struct task_struct *task;
+ pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
+ unsigned long flags;
+ dbreg_t dbreg;
+ unsigned int rnum;
+ int first_time;
+ int ret = 0, state;
+ int i, can_access_pmu = 0;
+ int is_system, is_loaded;
+
+ if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
+
+ state = ctx->ctx_state;
+ is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
+ is_system = ctx->ctx_fl_system;
+ task = ctx->ctx_task;
+
+ if (state == PFM_CTX_ZOMBIE) return -EINVAL;
+
+ /*
+ * on both UP and SMP, we can only write to the PMC when the task is
+ * the owner of the local PMU.
+ */
+ if (is_loaded) {
+ thread = &task->thread;
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+ can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
+ }
+
+ /*
+ * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
+ * ensuring that no real breakpoint can be installed via this call.
+ *
+ * IMPORTANT: regs can be NULL in this function
+ */
+
+ first_time = ctx->ctx_fl_using_dbreg == 0;
+
+ /*
+ * don't bother if we are loaded and task is being debugged
+ */
+ if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
+ DPRINT(("debug registers already in use for [%d]\n", task->pid));
+ return -EBUSY;
+ }
+
+ /*
+ * check for debug registers in system wide mode
+ *
+ * If though a check is done in pfm_context_load(),
+ * we must repeat it here, in case the registers are
+ * written after the context is loaded
+ */
+ if (is_loaded) {
+ LOCK_PFS(flags);
+
+ if (first_time && is_system) {
+ if (pfm_sessions.pfs_ptrace_use_dbregs)
+ ret = -EBUSY;
+ else
+ pfm_sessions.pfs_sys_use_dbregs++;
+ }
+ UNLOCK_PFS(flags);
+ }
+
+ if (ret != 0) return ret;
+
+ /*
+ * mark ourself as user of the debug registers for
+ * perfmon purposes.
+ */
+ ctx->ctx_fl_using_dbreg = 1;
+
+ /*
+ * clear hardware registers to make sure we don't
+ * pick up stale state.
+ *
+ * for a system wide session, we do not use
+ * thread.dbr, thread.ibr because this process
+ * never leaves the current CPU and the state
+ * is shared by all processes running on it
+ */
+ if (first_time && can_access_pmu) {
+ DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
+ for (i=0; i < pmu_conf->num_ibrs; i++) {
+ ia64_set_ibr(i, 0UL);
+ ia64_dv_serialize_instruction();
+ }
+ ia64_srlz_i();
+ for (i=0; i < pmu_conf->num_dbrs; i++) {
+ ia64_set_dbr(i, 0UL);
+ ia64_dv_serialize_data();
+ }
+ ia64_srlz_d();
+ }
+
+ /*
+ * Now install the values into the registers
+ */
+ for (i = 0; i < count; i++, req++) {
+
+ rnum = req->dbreg_num;
+ dbreg.val = req->dbreg_value;
+
+ ret = -EINVAL;
+
+ if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
+ DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
+ rnum, dbreg.val, mode, i, count));
+
+ goto abort_mission;
+ }
+
+ /*
+ * make sure we do not install enabled breakpoint
+ */
+ if (rnum & 0x1) {
+ if (mode == PFM_CODE_RR)
+ dbreg.ibr.ibr_x = 0;
+ else
+ dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
+ }
+
+ PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
+
+ /*
+ * Debug registers, just like PMC, can only be modified
+ * by a kernel call. Moreover, perfmon() access to those
+ * registers are centralized in this routine. The hardware
+ * does not modify the value of these registers, therefore,
+ * if we save them as they are written, we can avoid having
+ * to save them on context switch out. This is made possible
+ * by the fact that when perfmon uses debug registers, ptrace()
+ * won't be able to modify them concurrently.
+ */
+ if (mode == PFM_CODE_RR) {
+ CTX_USED_IBR(ctx, rnum);
+
+ if (can_access_pmu) {
+ ia64_set_ibr(rnum, dbreg.val);
+ ia64_dv_serialize_instruction();
+ }
+
+ ctx->ctx_ibrs[rnum] = dbreg.val;
+
+ DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
+ rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
+ } else {
+ CTX_USED_DBR(ctx, rnum);
+
+ if (can_access_pmu) {
+ ia64_set_dbr(rnum, dbreg.val);
+ ia64_dv_serialize_data();
+ }
+ ctx->ctx_dbrs[rnum] = dbreg.val;
+
+ DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
+ rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
+ }
+ }
+
+ return 0;
+
+abort_mission:
+ /*
+ * in case it was our first attempt, we undo the global modifications
+ */
+ if (first_time) {
+ LOCK_PFS(flags);
+ if (ctx->ctx_fl_system) {
+ pfm_sessions.pfs_sys_use_dbregs--;
+ }
+ UNLOCK_PFS(flags);
+ ctx->ctx_fl_using_dbreg = 0;
+ }
+ /*
+ * install error return flag
+ */
+ PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
+
+ return ret;
+}
+
+static int
+pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
+}
+
+static int
+pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
+}
+
+int
+pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
+{
+ pfm_context_t *ctx;
+
+ if (req == NULL) return -EINVAL;
+
+ ctx = GET_PMU_CTX();
+
+ if (ctx == NULL) return -EINVAL;
+
+ /*
+ * for now limit to current task, which is enough when calling
+ * from overflow handler
+ */
+ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
+
+ return pfm_write_ibrs(ctx, req, nreq, regs);
+}
+EXPORT_SYMBOL(pfm_mod_write_ibrs);
+
+int
+pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
+{
+ pfm_context_t *ctx;
+
+ if (req == NULL) return -EINVAL;
+
+ ctx = GET_PMU_CTX();
+
+ if (ctx == NULL) return -EINVAL;
+
+ /*
+ * for now limit to current task, which is enough when calling
+ * from overflow handler
+ */
+ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
+
+ return pfm_write_dbrs(ctx, req, nreq, regs);
+}
+EXPORT_SYMBOL(pfm_mod_write_dbrs);
+
+
+static int
+pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ pfarg_features_t *req = (pfarg_features_t *)arg;
+
+ req->ft_version = PFM_VERSION;
+ return 0;
+}
+
+static int
+pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct pt_regs *tregs;
+ struct task_struct *task = PFM_CTX_TASK(ctx);
+ int state, is_system;
+
+ state = ctx->ctx_state;
+ is_system = ctx->ctx_fl_system;
+
+ /*
+ * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
+ */
+ if (state == PFM_CTX_UNLOADED) return -EINVAL;
+
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (is_system && ctx->ctx_cpu != smp_processor_id()) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+ DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
+ PFM_CTX_TASK(ctx)->pid,
+ state,
+ is_system));
+ /*
+ * in system mode, we need to update the PMU directly
+ * and the user level state of the caller, which may not
+ * necessarily be the creator of the context.
+ */
+ if (is_system) {
+ /*
+ * Update local PMU first
+ *
+ * disable dcr pp
+ */
+ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
+ ia64_srlz_i();
+
+ /*
+ * update local cpuinfo
+ */
+ PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
+
+ /*
+ * stop monitoring, does srlz.i
+ */
+ pfm_clear_psr_pp();
+
+ /*
+ * stop monitoring in the caller
+ */
+ ia64_psr(regs)->pp = 0;
+
+ return 0;
+ }
+ /*
+ * per-task mode
+ */
+
+ if (task == current) {
+ /* stop monitoring at kernel level */
+ pfm_clear_psr_up();
+
+ /*
+ * stop monitoring at the user level
+ */
+ ia64_psr(regs)->up = 0;
+ } else {
+ tregs = ia64_task_regs(task);
+
+ /*
+ * stop monitoring at the user level
+ */
+ ia64_psr(tregs)->up = 0;
+
+ /*
+ * monitoring disabled in kernel at next reschedule
+ */
+ ctx->ctx_saved_psr_up = 0;
+ DPRINT(("task=[%d]\n", task->pid));
+ }
+ return 0;
+}
+
+
+static int
+pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct pt_regs *tregs;
+ int state, is_system;
+
+ state = ctx->ctx_state;
+ is_system = ctx->ctx_fl_system;
+
+ if (state != PFM_CTX_LOADED) return -EINVAL;
+
+ /*
+ * In system wide and when the context is loaded, access can only happen
+ * when the caller is running on the CPU being monitored by the session.
+ * It does not have to be the owner (ctx_task) of the context per se.
+ */
+ if (is_system && ctx->ctx_cpu != smp_processor_id()) {
+ DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
+ return -EBUSY;
+ }
+
+ /*
+ * in system mode, we need to update the PMU directly
+ * and the user level state of the caller, which may not
+ * necessarily be the creator of the context.
+ */
+ if (is_system) {
+
+ /*
+ * set user level psr.pp for the caller
+ */
+ ia64_psr(regs)->pp = 1;
+
+ /*
+ * now update the local PMU and cpuinfo
+ */
+ PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
+
+ /*
+ * start monitoring at kernel level
+ */
+ pfm_set_psr_pp();
+
+ /* enable dcr pp */
+ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
+ ia64_srlz_i();
+
+ return 0;
+ }
+
+ /*
+ * per-process mode
+ */
+
+ if (ctx->ctx_task == current) {
+
+ /* start monitoring at kernel level */
+ pfm_set_psr_up();
+
+ /*
+ * activate monitoring at user level
+ */
+ ia64_psr(regs)->up = 1;
+
+ } else {
+ tregs = ia64_task_regs(ctx->ctx_task);
+
+ /*
+ * start monitoring at the kernel level the next
+ * time the task is scheduled
+ */
+ ctx->ctx_saved_psr_up = IA64_PSR_UP;
+
+ /*
+ * activate monitoring at user level
+ */
+ ia64_psr(tregs)->up = 1;
+ }
+ return 0;
+}
+
+static int
+pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ pfarg_reg_t *req = (pfarg_reg_t *)arg;
+ unsigned int cnum;
+ int i;
+ int ret = -EINVAL;
+
+ for (i = 0; i < count; i++, req++) {
+
+ cnum = req->reg_num;
+
+ if (!PMC_IS_IMPL(cnum)) goto abort_mission;
+
+ req->reg_value = PMC_DFL_VAL(cnum);
+
+ PFM_REG_RETFLAG_SET(req->reg_flags, 0);
+
+ DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
+ }
+ return 0;
+
+abort_mission:
+ PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
+ return ret;
+}
+
+static int
+pfm_check_task_exist(pfm_context_t *ctx)
+{
+ struct task_struct *g, *t;
+ int ret = -ESRCH;
+
+ read_lock(&tasklist_lock);
+
+ do_each_thread (g, t) {
+ if (t->thread.pfm_context == ctx) {
+ ret = 0;
+ break;
+ }
+ } while_each_thread (g, t);
+
+ read_unlock(&tasklist_lock);
+
+ DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
+
+ return ret;
+}
+
+static int
+pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct task_struct *task;
+ struct thread_struct *thread;
+ struct pfm_context_t *old;
+ unsigned long flags;
+#ifndef CONFIG_SMP
+ struct task_struct *owner_task = NULL;
+#endif
+ pfarg_load_t *req = (pfarg_load_t *)arg;
+ unsigned long *pmcs_source, *pmds_source;
+ int the_cpu;
+ int ret = 0;
+ int state, is_system, set_dbregs = 0;
+
+ state = ctx->ctx_state;
+ is_system = ctx->ctx_fl_system;
+ /*
+ * can only load from unloaded or terminated state
+ */
+ if (state != PFM_CTX_UNLOADED) {
+ DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
+ req->load_pid,
+ ctx->ctx_state));
+ return -EINVAL;
+ }
+
+ DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
+
+ if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
+ DPRINT(("cannot use blocking mode on self\n"));
+ return -EINVAL;
+ }
+
+ ret = pfm_get_task(ctx, req->load_pid, &task);
+ if (ret) {
+ DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
+ return ret;
+ }
+
+ ret = -EINVAL;
+
+ /*
+ * system wide is self monitoring only
+ */
+ if (is_system && task != current) {
+ DPRINT(("system wide is self monitoring only load_pid=%d\n",
+ req->load_pid));
+ goto error;
+ }
+
+ thread = &task->thread;
+
+ ret = 0;
+ /*
+ * cannot load a context which is using range restrictions,
+ * into a task that is being debugged.
+ */
+ if (ctx->ctx_fl_using_dbreg) {
+ if (thread->flags & IA64_THREAD_DBG_VALID) {
+ ret = -EBUSY;
+ DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
+ goto error;
+ }
+ LOCK_PFS(flags);
+
+ if (is_system) {
+ if (pfm_sessions.pfs_ptrace_use_dbregs) {
+ DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
+ ret = -EBUSY;
+ } else {
+ pfm_sessions.pfs_sys_use_dbregs++;
+ DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
+ set_dbregs = 1;
+ }
+ }
+
+ UNLOCK_PFS(flags);
+
+ if (ret) goto error;
+ }
+
+ /*
+ * SMP system-wide monitoring implies self-monitoring.
+ *
+ * The programming model expects the task to
+ * be pinned on a CPU throughout the session.
+ * Here we take note of the current CPU at the
+ * time the context is loaded. No call from
+ * another CPU will be allowed.
+ *
+ * The pinning via shed_setaffinity()
+ * must be done by the calling task prior
+ * to this call.
+ *
+ * systemwide: keep track of CPU this session is supposed to run on
+ */
+ the_cpu = ctx->ctx_cpu = smp_processor_id();
+
+ ret = -EBUSY;
+ /*
+ * now reserve the session
+ */
+ ret = pfm_reserve_session(current, is_system, the_cpu);
+ if (ret) goto error;
+
+ /*
+ * task is necessarily stopped at this point.
+ *
+ * If the previous context was zombie, then it got removed in
+ * pfm_save_regs(). Therefore we should not see it here.
+ * If we see a context, then this is an active context
+ *
+ * XXX: needs to be atomic
+ */
+ DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
+ thread->pfm_context, ctx));
+
+ old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
+ if (old != NULL) {
+ DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
+ goto error_unres;
+ }
+
+ pfm_reset_msgq(ctx);
+
+ ctx->ctx_state = PFM_CTX_LOADED;
+
+ /*
+ * link context to task
+ */
+ ctx->ctx_task = task;
+
+ if (is_system) {
+ /*
+ * we load as stopped
+ */
+ PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
+ PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
+
+ if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
+ } else {
+ thread->flags |= IA64_THREAD_PM_VALID;
+ }
+
+ /*
+ * propagate into thread-state
+ */
+ pfm_copy_pmds(task, ctx);
+ pfm_copy_pmcs(task, ctx);
+
+ pmcs_source = thread->pmcs;
+ pmds_source = thread->pmds;
+
+ /*
+ * always the case for system-wide
+ */
+ if (task == current) {
+
+ if (is_system == 0) {
+
+ /* allow user level control */
+ ia64_psr(regs)->sp = 0;
+ DPRINT(("clearing psr.sp for [%d]\n", task->pid));
+
+ SET_LAST_CPU(ctx, smp_processor_id());
+ INC_ACTIVATION();
+ SET_ACTIVATION(ctx);
+#ifndef CONFIG_SMP
+ /*
+ * push the other task out, if any
+ */
+ owner_task = GET_PMU_OWNER();
+ if (owner_task) pfm_lazy_save_regs(owner_task);
+#endif
+ }
+ /*
+ * load all PMD from ctx to PMU (as opposed to thread state)
+ * restore all PMC from ctx to PMU
+ */
+ pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
+ pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
+
+ ctx->ctx_reload_pmcs[0] = 0UL;
+ ctx->ctx_reload_pmds[0] = 0UL;
+
+ /*
+ * guaranteed safe by earlier check against DBG_VALID
+ */
+ if (ctx->ctx_fl_using_dbreg) {
+ pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
+ pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
+ }
+ /*
+ * set new ownership
+ */
+ SET_PMU_OWNER(task, ctx);
+
+ DPRINT(("context loaded on PMU for [%d]\n", task->pid));
+ } else {
+ /*
+ * when not current, task MUST be stopped, so this is safe
+ */
+ regs = ia64_task_regs(task);
+
+ /* force a full reload */
+ ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
+ SET_LAST_CPU(ctx, -1);
+
+ /* initial saved psr (stopped) */
+ ctx->ctx_saved_psr_up = 0UL;
+ ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
+ }
+
+ ret = 0;
+
+error_unres:
+ if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
+error:
+ /*
+ * we must undo the dbregs setting (for system-wide)
+ */
+ if (ret && set_dbregs) {
+ LOCK_PFS(flags);
+ pfm_sessions.pfs_sys_use_dbregs--;
+ UNLOCK_PFS(flags);
+ }
+ /*
+ * release task, there is now a link with the context
+ */
+ if (is_system == 0 && task != current) {
+ pfm_put_task(task);
+
+ if (ret == 0) {
+ ret = pfm_check_task_exist(ctx);
+ if (ret) {
+ ctx->ctx_state = PFM_CTX_UNLOADED;
+ ctx->ctx_task = NULL;
+ }
+ }
+ }
+ return ret;
+}
+
+/*
+ * in this function, we do not need to increase the use count
+ * for the task via get_task_struct(), because we hold the
+ * context lock. If the task were to disappear while having
+ * a context attached, it would go through pfm_exit_thread()
+ * which also grabs the context lock and would therefore be blocked
+ * until we are here.
+ */
+static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
+
+static int
+pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
+{
+ struct task_struct *task = PFM_CTX_TASK(ctx);
+ struct pt_regs *tregs;
+ int prev_state, is_system;
+ int ret;
+
+ DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
+
+ prev_state = ctx->ctx_state;
+ is_system = ctx->ctx_fl_system;
+
+ /*
+ * unload only when necessary
+ */
+ if (prev_state == PFM_CTX_UNLOADED) {
+ DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
+ return 0;
+ }
+
+ /*
+ * clear psr and dcr bits
+ */
+ ret = pfm_stop(ctx, NULL, 0, regs);
+ if (ret) return ret;
+
+ ctx->ctx_state = PFM_CTX_UNLOADED;
+
+ /*
+ * in system mode, we need to update the PMU directly
+ * and the user level state of the caller, which may not
+ * necessarily be the creator of the context.
+ */
+ if (is_system) {
+
+ /*
+ * Update cpuinfo
+ *
+ * local PMU is taken care of in pfm_stop()
+ */
+ PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
+ PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
+
+ /*
+ * save PMDs in context
+ * release ownership
+ */
+ pfm_flush_pmds(current, ctx);
+
+ /*
+ * at this point we are done with the PMU
+ * so we can unreserve the resource.
+ */
+ if (prev_state != PFM_CTX_ZOMBIE)
+ pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
+
+ /*
+ * disconnect context from task
+ */
+ task->thread.pfm_context = NULL;
+ /*
+ * disconnect task from context
+ */
+ ctx->ctx_task = NULL;
+
+ /*
+ * There is nothing more to cleanup here.
+ */
+ return 0;
+ }
+
+ /*
+ * per-task mode
+ */
+ tregs = task == current ? regs : ia64_task_regs(task);
+
+ if (task == current) {
+ /*
+ * cancel user level control
+ */
+ ia64_psr(regs)->sp = 1;
+
+ DPRINT(("setting psr.sp for [%d]\n", task->pid));
+ }
+ /*
+ * save PMDs to context
+ * release ownership
+ */
+ pfm_flush_pmds(task, ctx);
+
+ /*
+ * at this point we are done with the PMU
+ * so we can unreserve the resource.
+ *
+ * when state was ZOMBIE, we have already unreserved.
+ */
+ if (prev_state != PFM_CTX_ZOMBIE)
+ pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
+
+ /*
+ * reset activation counter and psr
+ */
+ ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
+ SET_LAST_CPU(ctx, -1);
+
+ /*
+ * PMU state will not be restored
+ */
+ task->thread.flags &= ~IA64_THREAD_PM_VALID;
+
+ /*
+ * break links between context and task
+ */
+ task->thread.pfm_context = NULL;
+ ctx->ctx_task = NULL;
+
+ PFM_SET_WORK_PENDING(task, 0);
+
+ ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
+ ctx->ctx_fl_can_restart = 0;
+ ctx->ctx_fl_going_zombie = 0;
+
+ DPRINT(("disconnected [%d] from context\n", task->pid));
+
+ return 0;
+}
+
+
+/*
+ * called only from exit_thread(): task == current
+ * we come here only if current has a context attached (loaded or masked)
+ */
+void
+pfm_exit_thread(struct task_struct *task)
+{
+ pfm_context_t *ctx;
+ unsigned long flags;
+ struct pt_regs *regs = ia64_task_regs(task);
+ int ret, state;
+ int free_ok = 0;
+
+ ctx = PFM_GET_CTX(task);
+
+ PROTECT_CTX(ctx, flags);
+
+ DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
+
+ state = ctx->ctx_state;
+ switch(state) {
+ case PFM_CTX_UNLOADED:
+ /*
+ * only comes to thios function if pfm_context is not NULL, i.e., cannot
+ * be in unloaded state
+ */
+ printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
+ break;
+ case PFM_CTX_LOADED:
+ case PFM_CTX_MASKED:
+ ret = pfm_context_unload(ctx, NULL, 0, regs);
+ if (ret) {
+ printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
+ }
+ DPRINT(("ctx unloaded for current state was %d\n", state));
+
+ pfm_end_notify_user(ctx);
+ break;
+ case PFM_CTX_ZOMBIE:
+ ret = pfm_context_unload(ctx, NULL, 0, regs);
+ if (ret) {
+ printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
+ }
+ free_ok = 1;
+ break;
+ default:
+ printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
+ break;
+ }
+ UNPROTECT_CTX(ctx, flags);
+
+ { u64 psr = pfm_get_psr();
+ BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
+ BUG_ON(GET_PMU_OWNER());
+ BUG_ON(ia64_psr(regs)->up);
+ BUG_ON(ia64_psr(regs)->pp);
+ }
+
+ /*
+ * All memory free operations (especially for vmalloc'ed memory)
+ * MUST be done with interrupts ENABLED.
+ */
+ if (free_ok) pfm_context_free(ctx);
+}
+
+/*
+ * functions MUST be listed in the increasing order of their index (see permfon.h)
+ */
+#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
+#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
+#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
+#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
+#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
+
+static pfm_cmd_desc_t pfm_cmd_tab[]={
+/* 0 */PFM_CMD_NONE,
+/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
+/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
+/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
+/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
+/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
+/* 6 */PFM_CMD_NONE,
+/* 7 */PFM_CMD_NONE,
+/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
+/* 9 */PFM_CMD_NONE,
+/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
+/* 11 */PFM_CMD_NONE,
+/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
+/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
+/* 14 */PFM_CMD_NONE,
+/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
+/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
+/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
+/* 18 */PFM_CMD_NONE,
+/* 19 */PFM_CMD_NONE,
+/* 20 */PFM_CMD_NONE,
+/* 21 */PFM_CMD_NONE,
+/* 22 */PFM_CMD_NONE,
+/* 23 */PFM_CMD_NONE,
+/* 24 */PFM_CMD_NONE,
+/* 25 */PFM_CMD_NONE,
+/* 26 */PFM_CMD_NONE,
+/* 27 */PFM_CMD_NONE,
+/* 28 */PFM_CMD_NONE,
+/* 29 */PFM_CMD_NONE,
+/* 30 */PFM_CMD_NONE,
+/* 31 */PFM_CMD_NONE,
+/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
+/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
+};
+#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
+
+static int
+pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
+{
+ struct task_struct *task;
+ int state, old_state;
+
+recheck:
+ state = ctx->ctx_state;
+ task = ctx->ctx_task;
+
+ if (task == NULL) {
+ DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
+ return 0;
+ }
+
+ DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
+ ctx->ctx_fd,
+ state,
+ task->pid,
+ task->state, PFM_CMD_STOPPED(cmd)));
+
+ /*
+ * self-monitoring always ok.
+ *
+ * for system-wide the caller can either be the creator of the
+ * context (to one to which the context is attached to) OR
+ * a task running on the same CPU as the session.
+ */
+ if (task == current || ctx->ctx_fl_system) return 0;
+
+ /*
+ * if context is UNLOADED we are safe to go
+ */
+ if (state == PFM_CTX_UNLOADED) return 0;
+
+ /*
+ * no command can operate on a zombie context
+ */
+ if (state == PFM_CTX_ZOMBIE) {
+ DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
+ return -EINVAL;
+ }
+
+ /*
+ * context is LOADED or MASKED. Some commands may need to have
+ * the task stopped.
+ *
+ * We could lift this restriction for UP but it would mean that
+ * the user has no guarantee the task would not run between
+ * two successive calls to perfmonctl(). That's probably OK.
+ * If this user wants to ensure the task does not run, then
+ * the task must be stopped.
+ */
+ if (PFM_CMD_STOPPED(cmd)) {
+ if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
+ DPRINT(("[%d] task not in stopped state\n", task->pid));
+ return -EBUSY;
+ }
+ /*
+ * task is now stopped, wait for ctxsw out
+ *
+ * This is an interesting point in the code.
+ * We need to unprotect the context because
+ * the pfm_save_regs() routines needs to grab
+ * the same lock. There are danger in doing
+ * this because it leaves a window open for
+ * another task to get access to the context
+ * and possibly change its state. The one thing
+ * that is not possible is for the context to disappear
+ * because we are protected by the VFS layer, i.e.,
+ * get_fd()/put_fd().
+ */
+ old_state = state;
+
+ UNPROTECT_CTX(ctx, flags);
+
+ wait_task_inactive(task);
+
+ PROTECT_CTX(ctx, flags);
+
+ /*
+ * we must recheck to verify if state has changed
+ */
+ if (ctx->ctx_state != old_state) {
+ DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
+ goto recheck;
+ }
+ }
+ return 0;
+}
+
+/*
+ * system-call entry point (must return long)
+ */
+asmlinkage long
+sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
+{
+ struct file *file = NULL;
+ pfm_context_t *ctx = NULL;
+ unsigned long flags = 0UL;
+ void *args_k = NULL;
+ long ret; /* will expand int return types */
+ size_t base_sz, sz, xtra_sz = 0;
+ int narg, completed_args = 0, call_made = 0, cmd_flags;
+ int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
+ int (*getsize)(void *arg, size_t *sz);
+#define PFM_MAX_ARGSIZE 4096
+
+ /*
+ * reject any call if perfmon was disabled at initialization
+ */
+ if (unlikely(pmu_conf == NULL)) return -ENOSYS;
+
+ if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
+ DPRINT(("invalid cmd=%d\n", cmd));
+ return -EINVAL;
+ }
+
+ func = pfm_cmd_tab[cmd].cmd_func;
+ narg = pfm_cmd_tab[cmd].cmd_narg;
+ base_sz = pfm_cmd_tab[cmd].cmd_argsize;
+ getsize = pfm_cmd_tab[cmd].cmd_getsize;
+ cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
+
+ if (unlikely(func == NULL)) {
+ DPRINT(("invalid cmd=%d\n", cmd));
+ return -EINVAL;
+ }
+
+ DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
+ PFM_CMD_NAME(cmd),
+ cmd,
+ narg,
+ base_sz,
+ count));
+
+ /*
+ * check if number of arguments matches what the command expects
+ */
+ if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
+ return -EINVAL;
+
+restart_args:
+ sz = xtra_sz + base_sz*count;
+ /*
+ * limit abuse to min page size
+ */
+ if (unlikely(sz > PFM_MAX_ARGSIZE)) {
+ printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
+ return -E2BIG;
+ }
+
+ /*
+ * allocate default-sized argument buffer
+ */
+ if (likely(count && args_k == NULL)) {
+ args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
+ if (args_k == NULL) return -ENOMEM;
+ }
+
+ ret = -EFAULT;
+
+ /*
+ * copy arguments
+ *
+ * assume sz = 0 for command without parameters
+ */
+ if (sz && copy_from_user(args_k, arg, sz)) {
+ DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
+ goto error_args;
+ }
+
+ /*
+ * check if command supports extra parameters
+ */
+ if (completed_args == 0 && getsize) {
+ /*
+ * get extra parameters size (based on main argument)
+ */
+ ret = (*getsize)(args_k, &xtra_sz);
+ if (ret) goto error_args;
+
+ completed_args = 1;
+
+ DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
+
+ /* retry if necessary */
+ if (likely(xtra_sz)) goto restart_args;
+ }
+
+ if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
+
+ ret = -EBADF;
+
+ file = fget(fd);
+ if (unlikely(file == NULL)) {
+ DPRINT(("invalid fd %d\n", fd));
+ goto error_args;
+ }
+ if (unlikely(PFM_IS_FILE(file) == 0)) {
+ DPRINT(("fd %d not related to perfmon\n", fd));
+ goto error_args;
+ }
+
+ ctx = (pfm_context_t *)file->private_data;
+ if (unlikely(ctx == NULL)) {
+ DPRINT(("no context for fd %d\n", fd));
+ goto error_args;
+ }
+ prefetch(&ctx->ctx_state);
+
+ PROTECT_CTX(ctx, flags);
+
+ /*
+ * check task is stopped
+ */
+ ret = pfm_check_task_state(ctx, cmd, flags);
+ if (unlikely(ret)) goto abort_locked;
+
+skip_fd:
+ ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
+
+ call_made = 1;
+
+abort_locked:
+ if (likely(ctx)) {
+ DPRINT(("context unlocked\n"));
+ UNPROTECT_CTX(ctx, flags);
+ fput(file);
+ }
+
+ /* copy argument back to user, if needed */
+ if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
+
+error_args:
+ if (args_k) kfree(args_k);
+
+ DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
+
+ return ret;
+}
+
+static void
+pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
+{
+ pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
+ pfm_ovfl_ctrl_t rst_ctrl;
+ int state;
+ int ret = 0;
+
+ state = ctx->ctx_state;
+ /*
+ * Unlock sampling buffer and reset index atomically
+ * XXX: not really needed when blocking
+ */
+ if (CTX_HAS_SMPL(ctx)) {
+
+ rst_ctrl.bits.mask_monitoring = 0;
+ rst_ctrl.bits.reset_ovfl_pmds = 0;
+
+ if (state == PFM_CTX_LOADED)
+ ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
+ else
+ ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
+ } else {
+ rst_ctrl.bits.mask_monitoring = 0;
+ rst_ctrl.bits.reset_ovfl_pmds = 1;
+ }
+
+ if (ret == 0) {
+ if (rst_ctrl.bits.reset_ovfl_pmds) {
+ pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
+ }
+ if (rst_ctrl.bits.mask_monitoring == 0) {
+ DPRINT(("resuming monitoring\n"));
+ if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
+ } else {
+ DPRINT(("stopping monitoring\n"));
+ //pfm_stop_monitoring(current, regs);
+ }
+ ctx->ctx_state = PFM_CTX_LOADED;
+ }
+}
+
+/*
+ * context MUST BE LOCKED when calling
+ * can only be called for current
+ */
+static void
+pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
+{
+ int ret;
+
+ DPRINT(("entering for [%d]\n", current->pid));
+
+ ret = pfm_context_unload(ctx, NULL, 0, regs);
+ if (ret) {
+ printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
+ }
+
+ /*
+ * and wakeup controlling task, indicating we are now disconnected
+ */
+ wake_up_interruptible(&ctx->ctx_zombieq);
+
+ /*
+ * given that context is still locked, the controlling
+ * task will only get access when we return from
+ * pfm_handle_work().
+ */
+}
+
+static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
+
+void
+pfm_handle_work(void)
+{
+ pfm_context_t *ctx;
+ struct pt_regs *regs;
+ unsigned long flags;
+ unsigned long ovfl_regs;
+ unsigned int reason;
+ int ret;
+
+ ctx = PFM_GET_CTX(current);
+ if (ctx == NULL) {
+ printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
+ return;
+ }
+
+ PROTECT_CTX(ctx, flags);
+
+ PFM_SET_WORK_PENDING(current, 0);
+
+ pfm_clear_task_notify();
+
+ regs = ia64_task_regs(current);
+
+ /*
+ * extract reason for being here and clear
+ */
+ reason = ctx->ctx_fl_trap_reason;
+ ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
+ ovfl_regs = ctx->ctx_ovfl_regs[0];
+
+ DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
+
+ /*
+ * must be done before we check for simple-reset mode
+ */
+ if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
+
+
+ //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
+ if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
+
+ UNPROTECT_CTX(ctx, flags);
+
+ /*
+ * pfm_handle_work() is currently called with interrupts disabled.
+ * The down_interruptible call may sleep, therefore we
+ * must re-enable interrupts to avoid deadlocks. It is
+ * safe to do so because this function is called ONLY
+ * when returning to user level (PUStk=1), in which case
+ * there is no risk of kernel stack overflow due to deep
+ * interrupt nesting.
+ */
+ BUG_ON(flags & IA64_PSR_I);
+ local_irq_enable();
+
+ DPRINT(("before block sleeping\n"));
+
+ /*
+ * may go through without blocking on SMP systems
+ * if restart has been received already by the time we call down()
+ */
+ ret = down_interruptible(&ctx->ctx_restart_sem);
+
+ DPRINT(("after block sleeping ret=%d\n", ret));
+
+ /*
+ * disable interrupts to restore state we had upon entering
+ * this function
+ */
+ local_irq_disable();
+
+ PROTECT_CTX(ctx, flags);
+
+ /*
+ * we need to read the ovfl_regs only after wake-up
+ * because we may have had pfm_write_pmds() in between
+ * and that can changed PMD values and therefore
+ * ovfl_regs is reset for these new PMD values.
+ */
+ ovfl_regs = ctx->ctx_ovfl_regs[0];
+
+ if (ctx->ctx_fl_going_zombie) {
+do_zombie:
+ DPRINT(("context is zombie, bailing out\n"));
+ pfm_context_force_terminate(ctx, regs);
+ goto nothing_to_do;
+ }
+ /*
+ * in case of interruption of down() we don't restart anything
+ */
+ if (ret < 0) goto nothing_to_do;
+
+skip_blocking:
+ pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
+ ctx->ctx_ovfl_regs[0] = 0UL;
+
+nothing_to_do:
+
+ UNPROTECT_CTX(ctx, flags);
+}
+
+static int
+pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
+{
+ if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
+ DPRINT(("ignoring overflow notification, owner is zombie\n"));
+ return 0;
+ }
+
+ DPRINT(("waking up somebody\n"));
+
+ if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
+
+ /*
+ * safe, we are not in intr handler, nor in ctxsw when
+ * we come here
+ */
+ kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
+
+ return 0;
+}
+
+static int
+pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
+{
+ pfm_msg_t *msg = NULL;
+
+ if (ctx->ctx_fl_no_msg == 0) {
+ msg = pfm_get_new_msg(ctx);
+ if (msg == NULL) {
+ printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
+ return -1;
+ }
+
+ msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
+ msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
+ msg->pfm_ovfl_msg.msg_active_set = 0;
+ msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
+ msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
+ msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
+ msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
+ msg->pfm_ovfl_msg.msg_tstamp = 0UL;
+ }
+
+ DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
+ msg,
+ ctx->ctx_fl_no_msg,
+ ctx->ctx_fd,
+ ovfl_pmds));
+
+ return pfm_notify_user(ctx, msg);
+}
+
+static int
+pfm_end_notify_user(pfm_context_t *ctx)
+{
+ pfm_msg_t *msg;
+
+ msg = pfm_get_new_msg(ctx);
+ if (msg == NULL) {
+ printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
+ return -1;
+ }
+ /* no leak */
+ memset(msg, 0, sizeof(*msg));
+
+ msg->pfm_end_msg.msg_type = PFM_MSG_END;
+ msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
+ msg->pfm_ovfl_msg.msg_tstamp = 0UL;
+
+ DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
+ msg,
+ ctx->ctx_fl_no_msg,
+ ctx->ctx_fd));
+
+ return pfm_notify_user(ctx, msg);
+}
+
+/*
+ * main overflow processing routine.
+ * it can be called from the interrupt path or explicitely during the context switch code
+ */
+static void
+pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
+{
+ pfm_ovfl_arg_t *ovfl_arg;
+ unsigned long mask;
+ unsigned long old_val, ovfl_val, new_val;
+ unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
+ unsigned long tstamp;
+ pfm_ovfl_ctrl_t ovfl_ctrl;
+ unsigned int i, has_smpl;
+ int must_notify = 0;
+
+ if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
+
+ /*
+ * sanity test. Should never happen
+ */
+ if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
+
+ tstamp = ia64_get_itc();
+ mask = pmc0 >> PMU_FIRST_COUNTER;
+ ovfl_val = pmu_conf->ovfl_val;
+ has_smpl = CTX_HAS_SMPL(ctx);
+
+ DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
+ "used_pmds=0x%lx\n",
+ pmc0,
+ task ? task->pid: -1,
+ (regs ? regs->cr_iip : 0),
+ CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
+ ctx->ctx_used_pmds[0]));
+
+
+ /*
+ * first we update the virtual counters
+ * assume there was a prior ia64_srlz_d() issued
+ */
+ for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
+
+ /* skip pmd which did not overflow */
+ if ((mask & 0x1) == 0) continue;
+
+ /*
+ * Note that the pmd is not necessarily 0 at this point as qualified events
+ * may have happened before the PMU was frozen. The residual count is not
+ * taken into consideration here but will be with any read of the pmd via
+ * pfm_read_pmds().
+ */
+ old_val = new_val = ctx->ctx_pmds[i].val;
+ new_val += 1 + ovfl_val;
+ ctx->ctx_pmds[i].val = new_val;
+
+ /*
+ * check for overflow condition
+ */
+ if (likely(old_val > new_val)) {
+ ovfl_pmds |= 1UL << i;
+ if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
+ }
+
+ DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
+ i,
+ new_val,
+ old_val,
+ ia64_get_pmd(i) & ovfl_val,
+ ovfl_pmds,
+ ovfl_notify));
+ }
+
+ /*
+ * there was no 64-bit overflow, nothing else to do
+ */
+ if (ovfl_pmds == 0UL) return;
+
+ /*
+ * reset all control bits
+ */
+ ovfl_ctrl.val = 0;
+ reset_pmds = 0UL;
+
+ /*
+ * if a sampling format module exists, then we "cache" the overflow by
+ * calling the module's handler() routine.
+ */
+ if (has_smpl) {
+ unsigned long start_cycles, end_cycles;
+ unsigned long pmd_mask;
+ int j, k, ret = 0;
+ int this_cpu = smp_processor_id();
+
+ pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
+ ovfl_arg = &ctx->ctx_ovfl_arg;
+
+ prefetch(ctx->ctx_smpl_hdr);
+
+ for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
+
+ mask = 1UL << i;
+
+ if ((pmd_mask & 0x1) == 0) continue;
+
+ ovfl_arg->ovfl_pmd = (unsigned char )i;
+ ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
+ ovfl_arg->active_set = 0;
+ ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
+ ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
+
+ ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
+ ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
+ ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
+
+ /*
+ * copy values of pmds of interest. Sampling format may copy them
+ * into sampling buffer.
+ */
+ if (smpl_pmds) {
+ for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
+ if ((smpl_pmds & 0x1) == 0) continue;
+ ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
+ DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
+ }
+ }
+
+ pfm_stats[this_cpu].pfm_smpl_handler_calls++;
+
+ start_cycles = ia64_get_itc();
+
+ /*
+ * call custom buffer format record (handler) routine
+ */
+ ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
+
+ end_cycles = ia64_get_itc();
+
+ /*
+ * For those controls, we take the union because they have
+ * an all or nothing behavior.
+ */
+ ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
+ ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
+ ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
+ /*
+ * build the bitmask of pmds to reset now
+ */
+ if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
+
+ pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
+ }
+ /*
+ * when the module cannot handle the rest of the overflows, we abort right here
+ */
+ if (ret && pmd_mask) {
+ DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
+ pmd_mask<<PMU_FIRST_COUNTER));
+ }
+ /*
+ * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
+ */
+ ovfl_pmds &= ~reset_pmds;
+ } else {
+ /*
+ * when no sampling module is used, then the default
+ * is to notify on overflow if requested by user
+ */
+ ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
+ ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
+ ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
+ ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
+ /*
+ * if needed, we reset all overflowed pmds
+ */
+ if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
+ }
+
+ DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
+
+ /*
+ * reset the requested PMD registers using the short reset values
+ */
+ if (reset_pmds) {
+ unsigned long bm = reset_pmds;
+ pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
+ }
+
+ if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
+ /*
+ * keep track of what to reset when unblocking
+ */
+ ctx->ctx_ovfl_regs[0] = ovfl_pmds;
+
+ /*
+ * check for blocking context
+ */
+ if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
+
+ ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
+
+ /*
+ * set the perfmon specific checking pending work for the task
+ */
+ PFM_SET_WORK_PENDING(task, 1);
+
+ /*
+ * when coming from ctxsw, current still points to the
+ * previous task, therefore we must work with task and not current.
+ */
+ pfm_set_task_notify(task);
+ }
+ /*
+ * defer until state is changed (shorten spin window). the context is locked
+ * anyway, so the signal receiver would come spin for nothing.
+ */
+ must_notify = 1;
+ }
+
+ DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
+ GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
+ PFM_GET_WORK_PENDING(task),
+ ctx->ctx_fl_trap_reason,
+ ovfl_pmds,
+ ovfl_notify,
+ ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
+ /*
+ * in case monitoring must be stopped, we toggle the psr bits
+ */
+ if (ovfl_ctrl.bits.mask_monitoring) {
+ pfm_mask_monitoring(task);
+ ctx->ctx_state = PFM_CTX_MASKED;
+ ctx->ctx_fl_can_restart = 1;
+ }
+
+ /*
+ * send notification now
+ */
+ if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
+
+ return;
+
+sanity_check:
+ printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
+ smp_processor_id(),
+ task ? task->pid : -1,
+ pmc0);
+ return;
+
+stop_monitoring:
+ /*
+ * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
+ * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
+ * come here as zombie only if the task is the current task. In which case, we
+ * can access the PMU hardware directly.
+ *
+ * Note that zombies do have PM_VALID set. So here we do the minimal.
+ *
+ * In case the context was zombified it could not be reclaimed at the time
+ * the monitoring program exited. At this point, the PMU reservation has been
+ * returned, the sampiing buffer has been freed. We must convert this call
+ * into a spurious interrupt. However, we must also avoid infinite overflows
+ * by stopping monitoring for this task. We can only come here for a per-task
+ * context. All we need to do is to stop monitoring using the psr bits which
+ * are always task private. By re-enabling secure montioring, we ensure that
+ * the monitored task will not be able to re-activate monitoring.
+ * The task will eventually be context switched out, at which point the context
+ * will be reclaimed (that includes releasing ownership of the PMU).
+ *
+ * So there might be a window of time where the number of per-task session is zero
+ * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
+ * context. This is safe because if a per-task session comes in, it will push this one
+ * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
+ * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
+ * also push our zombie context out.
+ *
+ * Overall pretty hairy stuff....
+ */
+ DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
+ pfm_clear_psr_up();
+ ia64_psr(regs)->up = 0;
+ ia64_psr(regs)->sp = 1;
+ return;
+}
+
+static int
+pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
+{
+ struct task_struct *task;
+ pfm_context_t *ctx;
+ unsigned long flags;
+ u64 pmc0;
+ int this_cpu = smp_processor_id();
+ int retval = 0;
+
+ pfm_stats[this_cpu].pfm_ovfl_intr_count++;
+
+ /*
+ * srlz.d done before arriving here
+ */
+ pmc0 = ia64_get_pmc(0);
+
+ task = GET_PMU_OWNER();
+ ctx = GET_PMU_CTX();
+
+ /*
+ * if we have some pending bits set
+ * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
+ */
+ if (PMC0_HAS_OVFL(pmc0) && task) {
+ /*
+ * we assume that pmc0.fr is always set here
+ */
+
+ /* sanity check */
+ if (!ctx) goto report_spurious1;
+
+ if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
+ goto report_spurious2;
+
+ PROTECT_CTX_NOPRINT(ctx, flags);
+
+ pfm_overflow_handler(task, ctx, pmc0, regs);
+
+ UNPROTECT_CTX_NOPRINT(ctx, flags);
+
+ } else {
+ pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
+ retval = -1;
+ }
+ /*
+ * keep it unfrozen at all times
+ */
+ pfm_unfreeze_pmu();
+
+ return retval;
+
+report_spurious1:
+ printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
+ this_cpu, task->pid);
+ pfm_unfreeze_pmu();
+ return -1;
+report_spurious2:
+ printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
+ this_cpu,
+ task->pid);
+ pfm_unfreeze_pmu();
+ return -1;
+}
+
+static irqreturn_t
+pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
+{
+ unsigned long start_cycles, total_cycles;
+ unsigned long min, max;
+ int this_cpu;
+ int ret;
+
+ this_cpu = get_cpu();
+ min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
+ max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
+
+ start_cycles = ia64_get_itc();
+
+ ret = pfm_do_interrupt_handler(irq, arg, regs);
+
+ total_cycles = ia64_get_itc();
+
+ /*
+ * don't measure spurious interrupts
+ */
+ if (likely(ret == 0)) {
+ total_cycles -= start_cycles;
+
+ if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
+ if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
+
+ pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
+ }
+ put_cpu_no_resched();
+ return IRQ_HANDLED;
+}
+
+/*
+ * /proc/perfmon interface, for debug only
+ */
+
+#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
+
+static void *
+pfm_proc_start(struct seq_file *m, loff_t *pos)
+{
+ if (*pos == 0) {
+ return PFM_PROC_SHOW_HEADER;
+ }
+
+ while (*pos <= NR_CPUS) {
+ if (cpu_online(*pos - 1)) {
+ return (void *)*pos;
+ }
+ ++*pos;
+ }
+ return NULL;
+}
+
+static void *
+pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
+{
+ ++*pos;
+ return pfm_proc_start(m, pos);
+}
+
+static void
+pfm_proc_stop(struct seq_file *m, void *v)
+{
+}
+
+static void
+pfm_proc_show_header(struct seq_file *m)
+{
+ struct list_head * pos;
+ pfm_buffer_fmt_t * entry;
+ unsigned long flags;
+
+ seq_printf(m,
+ "perfmon version : %u.%u\n"
+ "model : %s\n"
+ "fastctxsw : %s\n"
+ "expert mode : %s\n"
+ "ovfl_mask : 0x%lx\n"
+ "PMU flags : 0x%x\n",
+ PFM_VERSION_MAJ, PFM_VERSION_MIN,
+ pmu_conf->pmu_name,
+ pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
+ pfm_sysctl.expert_mode > 0 ? "Yes": "No",
+ pmu_conf->ovfl_val,
+ pmu_conf->flags);
+
+ LOCK_PFS(flags);
+
+ seq_printf(m,
+ "proc_sessions : %u\n"
+ "sys_sessions : %u\n"
+ "sys_use_dbregs : %u\n"
+ "ptrace_use_dbregs : %u\n",
+ pfm_sessions.pfs_task_sessions,
+ pfm_sessions.pfs_sys_sessions,
+ pfm_sessions.pfs_sys_use_dbregs,
+ pfm_sessions.pfs_ptrace_use_dbregs);
+
+ UNLOCK_PFS(flags);
+
+ spin_lock(&pfm_buffer_fmt_lock);
+
+ list_for_each(pos, &pfm_buffer_fmt_list) {
+ entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
+ seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
+ entry->fmt_uuid[0],
+ entry->fmt_uuid[1],
+ entry->fmt_uuid[2],
+ entry->fmt_uuid[3],
+ entry->fmt_uuid[4],
+ entry->fmt_uuid[5],
+ entry->fmt_uuid[6],
+ entry->fmt_uuid[7],
+ entry->fmt_uuid[8],
+ entry->fmt_uuid[9],
+ entry->fmt_uuid[10],
+ entry->fmt_uuid[11],
+ entry->fmt_uuid[12],
+ entry->fmt_uuid[13],
+ entry->fmt_uuid[14],
+ entry->fmt_uuid[15],
+ entry->fmt_name);
+ }
+ spin_unlock(&pfm_buffer_fmt_lock);
+
+}
+
+static int
+pfm_proc_show(struct seq_file *m, void *v)
+{
+ unsigned long psr;
+ unsigned int i;
+ int cpu;
+
+ if (v == PFM_PROC_SHOW_HEADER) {
+ pfm_proc_show_header(m);
+ return 0;
+ }
+
+ /* show info for CPU (v - 1) */
+
+ cpu = (long)v - 1;
+ seq_printf(m,
+ "CPU%-2d overflow intrs : %lu\n"
+ "CPU%-2d overflow cycles : %lu\n"
+ "CPU%-2d overflow min : %lu\n"
+ "CPU%-2d overflow max : %lu\n"
+ "CPU%-2d smpl handler calls : %lu\n"
+ "CPU%-2d smpl handler cycles : %lu\n"
+ "CPU%-2d spurious intrs : %lu\n"
+ "CPU%-2d replay intrs : %lu\n"
+ "CPU%-2d syst_wide : %d\n"
+ "CPU%-2d dcr_pp : %d\n"
+ "CPU%-2d exclude idle : %d\n"
+ "CPU%-2d owner : %d\n"
+ "CPU%-2d context : %p\n"
+ "CPU%-2d activations : %lu\n",
+ cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
+ cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
+ cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
+ cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
+ cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
+ cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
+ cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
+ cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
+ cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
+ cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
+ cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
+ cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
+ cpu, pfm_get_cpu_data(pmu_ctx, cpu),
+ cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
+
+ if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
+
+ psr = pfm_get_psr();
+
+ ia64_srlz_d();
+
+ seq_printf(m,
+ "CPU%-2d psr : 0x%lx\n"
+ "CPU%-2d pmc0 : 0x%lx\n",
+ cpu, psr,
+ cpu, ia64_get_pmc(0));
+
+ for (i=0; PMC_IS_LAST(i) == 0; i++) {
+ if (PMC_IS_COUNTING(i) == 0) continue;
+ seq_printf(m,
+ "CPU%-2d pmc%u : 0x%lx\n"
+ "CPU%-2d pmd%u : 0x%lx\n",
+ cpu, i, ia64_get_pmc(i),
+ cpu, i, ia64_get_pmd(i));
+ }
+ }
+ return 0;
+}
+
+struct seq_operations pfm_seq_ops = {
+ .start = pfm_proc_start,
+ .next = pfm_proc_next,
+ .stop = pfm_proc_stop,
+ .show = pfm_proc_show
+};
+
+static int
+pfm_proc_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &pfm_seq_ops);
+}
+
+
+/*
+ * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
+ * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
+ * is active or inactive based on mode. We must rely on the value in
+ * local_cpu_data->pfm_syst_info
+ */
+void
+pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
+{
+ struct pt_regs *regs;
+ unsigned long dcr;
+ unsigned long dcr_pp;
+
+ dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
+
+ /*
+ * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
+ * on every CPU, so we can rely on the pid to identify the idle task.
+ */
+ if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
+ regs = ia64_task_regs(task);
+ ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
+ return;
+ }
+ /*
+ * if monitoring has started
+ */
+ if (dcr_pp) {
+ dcr = ia64_getreg(_IA64_REG_CR_DCR);
+ /*
+ * context switching in?
+ */
+ if (is_ctxswin) {
+ /* mask monitoring for the idle task */
+ ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
+ pfm_clear_psr_pp();
+ ia64_srlz_i();
+ return;
+ }
+ /*
+ * context switching out
+ * restore monitoring for next task
+ *
+ * Due to inlining this odd if-then-else construction generates
+ * better code.
+ */
+ ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
+ pfm_set_psr_pp();
+ ia64_srlz_i();
+ }
+}
+
+#ifdef CONFIG_SMP
+
+static void
+pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
+{
+ struct task_struct *task = ctx->ctx_task;
+
+ ia64_psr(regs)->up = 0;
+ ia64_psr(regs)->sp = 1;
+
+ if (GET_PMU_OWNER() == task) {
+ DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
+ SET_PMU_OWNER(NULL, NULL);
+ }
+
+ /*
+ * disconnect the task from the context and vice-versa
+ */
+ PFM_SET_WORK_PENDING(task, 0);
+
+ task->thread.pfm_context = NULL;
+ task->thread.flags &= ~IA64_THREAD_PM_VALID;
+
+ DPRINT(("force cleanup for [%d]\n", task->pid));
+}
+
+
+/*
+ * in 2.6, interrupts are masked when we come here and the runqueue lock is held
+ */
+void
+pfm_save_regs(struct task_struct *task)
+{
+ pfm_context_t *ctx;
+ struct thread_struct *t;
+ unsigned long flags;
+ u64 psr;
+
+
+ ctx = PFM_GET_CTX(task);
+ if (ctx == NULL) return;
+ t = &task->thread;
+
+ /*
+ * we always come here with interrupts ALREADY disabled by
+ * the scheduler. So we simply need to protect against concurrent
+ * access, not CPU concurrency.
+ */
+ flags = pfm_protect_ctx_ctxsw(ctx);
+
+ if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
+ struct pt_regs *regs = ia64_task_regs(task);
+
+ pfm_clear_psr_up();
+
+ pfm_force_cleanup(ctx, regs);
+
+ BUG_ON(ctx->ctx_smpl_hdr);
+
+ pfm_unprotect_ctx_ctxsw(ctx, flags);
+
+ pfm_context_free(ctx);
+ return;
+ }
+
+ /*
+ * save current PSR: needed because we modify it
+ */
+ ia64_srlz_d();
+ psr = pfm_get_psr();
+
+ BUG_ON(psr & (IA64_PSR_I));
+
+ /*
+ * stop monitoring:
+ * This is the last instruction which may generate an overflow
+ *
+ * We do not need to set psr.sp because, it is irrelevant in kernel.
+ * It will be restored from ipsr when going back to user level
+ */
+ pfm_clear_psr_up();
+
+ /*
+ * keep a copy of psr.up (for reload)
+ */
+ ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
+
+ /*
+ * release ownership of this PMU.
+ * PM interrupts are masked, so nothing
+ * can happen.
+ */
+ SET_PMU_OWNER(NULL, NULL);
+
+ /*
+ * we systematically save the PMD as we have no
+ * guarantee we will be schedule at that same
+ * CPU again.
+ */
+ pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
+
+ /*
+ * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
+ * we will need it on the restore path to check
+ * for pending overflow.
+ */
+ t->pmcs[0] = ia64_get_pmc(0);
+
+ /*
+ * unfreeze PMU if had pending overflows
+ */
+ if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
+
+ /*
+ * finally, allow context access.
+ * interrupts will still be masked after this call.
+ */
+ pfm_unprotect_ctx_ctxsw(ctx, flags);
+}
+
+#else /* !CONFIG_SMP */
+void
+pfm_save_regs(struct task_struct *task)
+{
+ pfm_context_t *ctx;
+ u64 psr;
+
+ ctx = PFM_GET_CTX(task);
+ if (ctx == NULL) return;
+
+ /*
+ * save current PSR: needed because we modify it
+ */
+ psr = pfm_get_psr();
+
+ BUG_ON(psr & (IA64_PSR_I));
+
+ /*
+ * stop monitoring:
+ * This is the last instruction which may generate an overflow
+ *
+ * We do not need to set psr.sp because, it is irrelevant in kernel.
+ * It will be restored from ipsr when going back to user level
+ */
+ pfm_clear_psr_up();
+
+ /*
+ * keep a copy of psr.up (for reload)
+ */
+ ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
+}
+
+static void
+pfm_lazy_save_regs (struct task_struct *task)
+{
+ pfm_context_t *ctx;
+ struct thread_struct *t;
+ unsigned long flags;
+
+ { u64 psr = pfm_get_psr();
+ BUG_ON(psr & IA64_PSR_UP);
+ }
+
+ ctx = PFM_GET_CTX(task);
+ t = &task->thread;
+
+ /*
+ * we need to mask PMU overflow here to
+ * make sure that we maintain pmc0 until
+ * we save it. overflow interrupts are
+ * treated as spurious if there is no
+ * owner.
+ *
+ * XXX: I don't think this is necessary
+ */
+ PROTECT_CTX(ctx,flags);
+
+ /*
+ * release ownership of this PMU.
+ * must be done before we save the registers.
+ *
+ * after this call any PMU interrupt is treated
+ * as spurious.
+ */
+ SET_PMU_OWNER(NULL, NULL);
+
+ /*
+ * save all the pmds we use
+ */
+ pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
+
+ /*
+ * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
+ * it is needed to check for pended overflow
+ * on the restore path
+ */
+ t->pmcs[0] = ia64_get_pmc(0);
+
+ /*
+ * unfreeze PMU if had pending overflows
+ */
+ if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
+
+ /*
+ * now get can unmask PMU interrupts, they will
+ * be treated as purely spurious and we will not
+ * lose any information
+ */
+ UNPROTECT_CTX(ctx,flags);
+}
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_SMP
+/*
+ * in 2.6, interrupts are masked when we come here and the runqueue lock is held
+ */
+void
+pfm_load_regs (struct task_struct *task)
+{
+ pfm_context_t *ctx;
+ struct thread_struct *t;
+ unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
+ unsigned long flags;
+ u64 psr, psr_up;
+ int need_irq_resend;
+
+ ctx = PFM_GET_CTX(task);
+ if (unlikely(ctx == NULL)) return;
+
+ BUG_ON(GET_PMU_OWNER());
+
+ t = &task->thread;
+ /*
+ * possible on unload
+ */
+ if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
+
+ /*
+ * we always come here with interrupts ALREADY disabled by
+ * the scheduler. So we simply need to protect against concurrent
+ * access, not CPU concurrency.
+ */
+ flags = pfm_protect_ctx_ctxsw(ctx);
+ psr = pfm_get_psr();
+
+ need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
+
+ BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
+ BUG_ON(psr & IA64_PSR_I);
+
+ if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
+ struct pt_regs *regs = ia64_task_regs(task);
+
+ BUG_ON(ctx->ctx_smpl_hdr);
+
+ pfm_force_cleanup(ctx, regs);
+
+ pfm_unprotect_ctx_ctxsw(ctx, flags);
+
+ /*
+ * this one (kmalloc'ed) is fine with interrupts disabled
+ */
+ pfm_context_free(ctx);
+
+ return;
+ }
+
+ /*
+ * we restore ALL the debug registers to avoid picking up
+ * stale state.
+ */
+ if (ctx->ctx_fl_using_dbreg) {
+ pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
+ pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
+ }
+ /*
+ * retrieve saved psr.up
+ */
+ psr_up = ctx->ctx_saved_psr_up;
+
+ /*
+ * if we were the last user of the PMU on that CPU,
+ * then nothing to do except restore psr
+ */
+ if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
+
+ /*
+ * retrieve partial reload masks (due to user modifications)
+ */
+ pmc_mask = ctx->ctx_reload_pmcs[0];
+ pmd_mask = ctx->ctx_reload_pmds[0];
+
+ } else {
+ /*
+ * To avoid leaking information to the user level when psr.sp=0,
+ * we must reload ALL implemented pmds (even the ones we don't use).
+ * In the kernel we only allow PFM_READ_PMDS on registers which
+ * we initialized or requested (sampling) so there is no risk there.
+ */
+ pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
+
+ /*
+ * ALL accessible PMCs are systematically reloaded, unused registers
+ * get their default (from pfm_reset_pmu_state()) values to avoid picking
+ * up stale configuration.
+ *
+ * PMC0 is never in the mask. It is always restored separately.
+ */
+ pmc_mask = ctx->ctx_all_pmcs[0];
+ }
+ /*
+ * when context is MASKED, we will restore PMC with plm=0
+ * and PMD with stale information, but that's ok, nothing
+ * will be captured.
+ *
+ * XXX: optimize here
+ */
+ if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
+ if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
+
+ /*
+ * check for pending overflow at the time the state
+ * was saved.
+ */
+ if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
+ /*
+ * reload pmc0 with the overflow information
+ * On McKinley PMU, this will trigger a PMU interrupt
+ */
+ ia64_set_pmc(0, t->pmcs[0]);
+ ia64_srlz_d();
+ t->pmcs[0] = 0UL;
+
+ /*
+ * will replay the PMU interrupt
+ */
+ if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
+
+ pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
+ }
+
+ /*
+ * we just did a reload, so we reset the partial reload fields
+ */
+ ctx->ctx_reload_pmcs[0] = 0UL;
+ ctx->ctx_reload_pmds[0] = 0UL;
+
+ SET_LAST_CPU(ctx, smp_processor_id());
+
+ /*
+ * dump activation value for this PMU
+ */
+ INC_ACTIVATION();
+ /*
+ * record current activation for this context
+ */
+ SET_ACTIVATION(ctx);
+
+ /*
+ * establish new ownership.
+ */
+ SET_PMU_OWNER(task, ctx);
+
+ /*
+ * restore the psr.up bit. measurement
+ * is active again.
+ * no PMU interrupt can happen at this point
+ * because we still have interrupts disabled.
+ */
+ if (likely(psr_up)) pfm_set_psr_up();
+
+ /*
+ * allow concurrent access to context
+ */
+ pfm_unprotect_ctx_ctxsw(ctx, flags);
+}
+#else /* !CONFIG_SMP */
+/*
+ * reload PMU state for UP kernels
+ * in 2.5 we come here with interrupts disabled
+ */
+void
+pfm_load_regs (struct task_struct *task)
+{
+ struct thread_struct *t;
+ pfm_context_t *ctx;
+ struct task_struct *owner;
+ unsigned long pmd_mask, pmc_mask;
+ u64 psr, psr_up;
+ int need_irq_resend;
+
+ owner = GET_PMU_OWNER();
+ ctx = PFM_GET_CTX(task);
+ t = &task->thread;
+ psr = pfm_get_psr();
+
+ BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
+ BUG_ON(psr & IA64_PSR_I);
+
+ /*
+ * we restore ALL the debug registers to avoid picking up
+ * stale state.
+ *
+ * This must be done even when the task is still the owner
+ * as the registers may have been modified via ptrace()
+ * (not perfmon) by the previous task.
+ */
+ if (ctx->ctx_fl_using_dbreg) {
+ pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
+ pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
+ }
+
+ /*
+ * retrieved saved psr.up
+ */
+ psr_up = ctx->ctx_saved_psr_up;
+ need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
+
+ /*
+ * short path, our state is still there, just
+ * need to restore psr and we go
+ *
+ * we do not touch either PMC nor PMD. the psr is not touched
+ * by the overflow_handler. So we are safe w.r.t. to interrupt
+ * concurrency even without interrupt masking.
+ */
+ if (likely(owner == task)) {
+ if (likely(psr_up)) pfm_set_psr_up();
+ return;
+ }
+
+ /*
+ * someone else is still using the PMU, first push it out and
+ * then we'll be able to install our stuff !
+ *
+ * Upon return, there will be no owner for the current PMU
+ */
+ if (owner) pfm_lazy_save_regs(owner);
+
+ /*
+ * To avoid leaking information to the user level when psr.sp=0,
+ * we must reload ALL implemented pmds (even the ones we don't use).
+ * In the kernel we only allow PFM_READ_PMDS on registers which
+ * we initialized or requested (sampling) so there is no risk there.
+ */
+ pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
+
+ /*
+ * ALL accessible PMCs are systematically reloaded, unused registers
+ * get their default (from pfm_reset_pmu_state()) values to avoid picking
+ * up stale configuration.
+ *
+ * PMC0 is never in the mask. It is always restored separately
+ */
+ pmc_mask = ctx->ctx_all_pmcs[0];
+
+ pfm_restore_pmds(t->pmds, pmd_mask);
+ pfm_restore_pmcs(t->pmcs, pmc_mask);
+
+ /*
+ * check for pending overflow at the time the state
+ * was saved.
+ */
+ if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
+ /*
+ * reload pmc0 with the overflow information
+ * On McKinley PMU, this will trigger a PMU interrupt
+ */
+ ia64_set_pmc(0, t->pmcs[0]);
+ ia64_srlz_d();
+
+ t->pmcs[0] = 0UL;
+
+ /*
+ * will replay the PMU interrupt
+ */
+ if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
+
+ pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
+ }
+
+ /*
+ * establish new ownership.
+ */
+ SET_PMU_OWNER(task, ctx);
+
+ /*
+ * restore the psr.up bit. measurement
+ * is active again.
+ * no PMU interrupt can happen at this point
+ * because we still have interrupts disabled.
+ */
+ if (likely(psr_up)) pfm_set_psr_up();
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * this function assumes monitoring is stopped
+ */
+static void
+pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
+{
+ u64 pmc0;
+ unsigned long mask2, val, pmd_val, ovfl_val;
+ int i, can_access_pmu = 0;
+ int is_self;
+
+ /*
+ * is the caller the task being monitored (or which initiated the
+ * session for system wide measurements)
+ */
+ is_self = ctx->ctx_task == task ? 1 : 0;
+
+ /*
+ * can access PMU is task is the owner of the PMU state on the current CPU
+ * or if we are running on the CPU bound to the context in system-wide mode
+ * (that is not necessarily the task the context is attached to in this mode).
+ * In system-wide we always have can_access_pmu true because a task running on an
+ * invalid processor is flagged earlier in the call stack (see pfm_stop).
+ */
+ can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
+ if (can_access_pmu) {
+ /*
+ * Mark the PMU as not owned
+ * This will cause the interrupt handler to do nothing in case an overflow
+ * interrupt was in-flight
+ * This also guarantees that pmc0 will contain the final state
+ * It virtually gives us full control on overflow processing from that point
+ * on.
+ */
+ SET_PMU_OWNER(NULL, NULL);
+ DPRINT(("releasing ownership\n"));
+
+ /*
+ * read current overflow status:
+ *
+ * we are guaranteed to read the final stable state
+ */
+ ia64_srlz_d();
+ pmc0 = ia64_get_pmc(0); /* slow */
+
+ /*
+ * reset freeze bit, overflow status information destroyed
+ */
+ pfm_unfreeze_pmu();
+ } else {
+ pmc0 = task->thread.pmcs[0];
+ /*
+ * clear whatever overflow status bits there were
+ */
+ task->thread.pmcs[0] = 0;
+ }
+ ovfl_val = pmu_conf->ovfl_val;
+ /*
+ * we save all the used pmds
+ * we take care of overflows for counting PMDs
+ *
+ * XXX: sampling situation is not taken into account here
+ */
+ mask2 = ctx->ctx_used_pmds[0];
+
+ DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
+
+ for (i = 0; mask2; i++, mask2>>=1) {
+
+ /* skip non used pmds */
+ if ((mask2 & 0x1) == 0) continue;
+
+ /*
+ * can access PMU always true in system wide mode
+ */
+ val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
+
+ if (PMD_IS_COUNTING(i)) {
+ DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
+ task->pid,
+ i,
+ ctx->ctx_pmds[i].val,
+ val & ovfl_val));
+
+ /*
+ * we rebuild the full 64 bit value of the counter
+ */
+ val = ctx->ctx_pmds[i].val + (val & ovfl_val);
+
+ /*
+ * now everything is in ctx_pmds[] and we need
+ * to clear the saved context from save_regs() such that
+ * pfm_read_pmds() gets the correct value
+ */
+ pmd_val = 0UL;
+
+ /*
+ * take care of overflow inline
+ */
+ if (pmc0 & (1UL << i)) {
+ val += 1 + ovfl_val;
+ DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
+ }
+ }
+
+ DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
+
+ if (is_self) task->thread.pmds[i] = pmd_val;
+
+ ctx->ctx_pmds[i].val = val;
+ }
+}
+
+static struct irqaction perfmon_irqaction = {
+ .handler = pfm_interrupt_handler,
+ .flags = SA_INTERRUPT,
+ .name = "perfmon"
+};
+
+/*
+ * perfmon initialization routine, called from the initcall() table
+ */
+static int init_pfm_fs(void);
+
+static int __init
+pfm_probe_pmu(void)
+{
+ pmu_config_t **p;
+ int family;
+
+ family = local_cpu_data->family;
+ p = pmu_confs;
+
+ while(*p) {
+ if ((*p)->probe) {
+ if ((*p)->probe() == 0) goto found;
+ } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
+ goto found;
+ }
+ p++;
+ }
+ return -1;
+found:
+ pmu_conf = *p;
+ return 0;
+}
+
+static struct file_operations pfm_proc_fops = {
+ .open = pfm_proc_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+int __init
+pfm_init(void)
+{
+ unsigned int n, n_counters, i;
+
+ printk("perfmon: version %u.%u IRQ %u\n",
+ PFM_VERSION_MAJ,
+ PFM_VERSION_MIN,
+ IA64_PERFMON_VECTOR);
+
+ if (pfm_probe_pmu()) {
+ printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
+ local_cpu_data->family);
+ return -ENODEV;
+ }
+
+ /*
+ * compute the number of implemented PMD/PMC from the
+ * description tables
+ */
+ n = 0;
+ for (i=0; PMC_IS_LAST(i) == 0; i++) {
+ if (PMC_IS_IMPL(i) == 0) continue;
+ pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
+ n++;
+ }
+ pmu_conf->num_pmcs = n;
+
+ n = 0; n_counters = 0;
+ for (i=0; PMD_IS_LAST(i) == 0; i++) {
+ if (PMD_IS_IMPL(i) == 0) continue;
+ pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
+ n++;
+ if (PMD_IS_COUNTING(i)) n_counters++;
+ }
+ pmu_conf->num_pmds = n;
+ pmu_conf->num_counters = n_counters;
+
+ /*
+ * sanity checks on the number of debug registers
+ */
+ if (pmu_conf->use_rr_dbregs) {
+ if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
+ printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
+ pmu_conf = NULL;
+ return -1;
+ }
+ if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
+ printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
+ pmu_conf = NULL;
+ return -1;
+ }
+ }
+
+ printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
+ pmu_conf->pmu_name,
+ pmu_conf->num_pmcs,
+ pmu_conf->num_pmds,
+ pmu_conf->num_counters,
+ ffz(pmu_conf->ovfl_val));
+
+ /* sanity check */
+ if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
+ printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
+ pmu_conf = NULL;
+ return -1;
+ }
+
+ /*
+ * create /proc/perfmon (mostly for debugging purposes)
+ */
+ perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
+ if (perfmon_dir == NULL) {
+ printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
+ pmu_conf = NULL;
+ return -1;
+ }
+ /*
+ * install customized file operations for /proc/perfmon entry
+ */
+ perfmon_dir->proc_fops = &pfm_proc_fops;
+
+ /*
+ * create /proc/sys/kernel/perfmon (for debugging purposes)
+ */
+ pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
+
+ /*
+ * initialize all our spinlocks
+ */
+ spin_lock_init(&pfm_sessions.pfs_lock);
+ spin_lock_init(&pfm_buffer_fmt_lock);
+
+ init_pfm_fs();
+
+ for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
+
+ return 0;
+}
+
+__initcall(pfm_init);
+
+/*
+ * this function is called before pfm_init()
+ */
+void
+pfm_init_percpu (void)
+{
+ /*
+ * make sure no measurement is active
+ * (may inherit programmed PMCs from EFI).
+ */
+ pfm_clear_psr_pp();
+ pfm_clear_psr_up();
+
+ /*
+ * we run with the PMU not frozen at all times
+ */
+ pfm_unfreeze_pmu();
+
+ if (smp_processor_id() == 0)
+ register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
+
+ ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
+ ia64_srlz_d();
+}
+
+/*
+ * used for debug purposes only
+ */
+void
+dump_pmu_state(const char *from)
+{
+ struct task_struct *task;
+ struct thread_struct *t;
+ struct pt_regs *regs;
+ pfm_context_t *ctx;
+ unsigned long psr, dcr, info, flags;
+ int i, this_cpu;
+
+ local_irq_save(flags);
+
+ this_cpu = smp_processor_id();
+ regs = ia64_task_regs(current);
+ info = PFM_CPUINFO_GET();
+ dcr = ia64_getreg(_IA64_REG_CR_DCR);
+
+ if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
+ local_irq_restore(flags);
+ return;
+ }
+
+ printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
+ this_cpu,
+ from,
+ current->pid,
+ regs->cr_iip,
+ current->comm);
+
+ task = GET_PMU_OWNER();
+ ctx = GET_PMU_CTX();
+
+ printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
+
+ psr = pfm_get_psr();
+
+ printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
+ this_cpu,
+ ia64_get_pmc(0),
+ psr & IA64_PSR_PP ? 1 : 0,
+ psr & IA64_PSR_UP ? 1 : 0,
+ dcr & IA64_DCR_PP ? 1 : 0,
+ info,
+ ia64_psr(regs)->up,
+ ia64_psr(regs)->pp);
+
+ ia64_psr(regs)->up = 0;
+ ia64_psr(regs)->pp = 0;
+
+ t = &current->thread;
+
+ for (i=1; PMC_IS_LAST(i) == 0; i++) {
+ if (PMC_IS_IMPL(i) == 0) continue;
+ printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
+ }
+
+ for (i=1; PMD_IS_LAST(i) == 0; i++) {
+ if (PMD_IS_IMPL(i) == 0) continue;
+ printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
+ }
+
+ if (ctx) {
+ printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
+ this_cpu,
+ ctx->ctx_state,
+ ctx->ctx_smpl_vaddr,
+ ctx->ctx_smpl_hdr,
+ ctx->ctx_msgq_head,
+ ctx->ctx_msgq_tail,
+ ctx->ctx_saved_psr_up);
+ }
+ local_irq_restore(flags);
+}
+
+/*
+ * called from process.c:copy_thread(). task is new child.
+ */
+void
+pfm_inherit(struct task_struct *task, struct pt_regs *regs)
+{
+ struct thread_struct *thread;
+
+ DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
+
+ thread = &task->thread;
+
+ /*
+ * cut links inherited from parent (current)
+ */
+ thread->pfm_context = NULL;
+
+ PFM_SET_WORK_PENDING(task, 0);
+
+ /*
+ * the psr bits are already set properly in copy_threads()
+ */
+}
+#else /* !CONFIG_PERFMON */
+asmlinkage long
+sys_perfmonctl (int fd, int cmd, void *arg, int count)
+{
+ return -ENOSYS;
+}
+#endif /* CONFIG_PERFMON */
diff --git a/arch/ia64/kernel/perfmon_default_smpl.c b/arch/ia64/kernel/perfmon_default_smpl.c
new file mode 100644
index 0000000..965d290
--- /dev/null
+++ b/arch/ia64/kernel/perfmon_default_smpl.c
@@ -0,0 +1,306 @@
+/*
+ * Copyright (C) 2002-2003 Hewlett-Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ *
+ * This file implements the default sampling buffer format
+ * for the Linux/ia64 perfmon-2 subsystem.
+ */
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/config.h>
+#include <linux/init.h>
+#include <asm/delay.h>
+#include <linux/smp.h>
+
+#include <asm/perfmon.h>
+#include <asm/perfmon_default_smpl.h>
+
+MODULE_AUTHOR("Stephane Eranian <eranian@hpl.hp.com>");
+MODULE_DESCRIPTION("perfmon default sampling format");
+MODULE_LICENSE("GPL");
+
+MODULE_PARM(debug, "i");
+MODULE_PARM_DESC(debug, "debug");
+
+MODULE_PARM(debug_ovfl, "i");
+MODULE_PARM_DESC(debug_ovfl, "debug ovfl");
+
+
+#define DEFAULT_DEBUG 1
+
+#ifdef DEFAULT_DEBUG
+#define DPRINT(a) \
+ do { \
+ if (unlikely(debug >0)) { printk("%s.%d: CPU%d ", __FUNCTION__, __LINE__, smp_processor_id()); printk a; } \
+ } while (0)
+
+#define DPRINT_ovfl(a) \
+ do { \
+ if (unlikely(debug_ovfl >0)) { printk("%s.%d: CPU%d ", __FUNCTION__, __LINE__, smp_processor_id()); printk a; } \
+ } while (0)
+
+#else
+#define DPRINT(a)
+#define DPRINT_ovfl(a)
+#endif
+
+static int debug, debug_ovfl;
+
+static int
+default_validate(struct task_struct *task, unsigned int flags, int cpu, void *data)
+{
+ pfm_default_smpl_arg_t *arg = (pfm_default_smpl_arg_t*)data;
+ int ret = 0;
+
+ if (data == NULL) {
+ DPRINT(("[%d] no argument passed\n", task->pid));
+ return -EINVAL;
+ }
+
+ DPRINT(("[%d] validate flags=0x%x CPU%d\n", task->pid, flags, cpu));
+
+ /*
+ * must hold at least the buffer header + one minimally sized entry
+ */
+ if (arg->buf_size < PFM_DEFAULT_SMPL_MIN_BUF_SIZE) return -EINVAL;
+
+ DPRINT(("buf_size=%lu\n", arg->buf_size));
+
+ return ret;
+}
+
+static int
+default_get_size(struct task_struct *task, unsigned int flags, int cpu, void *data, unsigned long *size)
+{
+ pfm_default_smpl_arg_t *arg = (pfm_default_smpl_arg_t *)data;
+
+ /*
+ * size has been validated in default_validate
+ */
+ *size = arg->buf_size;
+
+ return 0;
+}
+
+static int
+default_init(struct task_struct *task, void *buf, unsigned int flags, int cpu, void *data)
+{
+ pfm_default_smpl_hdr_t *hdr;
+ pfm_default_smpl_arg_t *arg = (pfm_default_smpl_arg_t *)data;
+
+ hdr = (pfm_default_smpl_hdr_t *)buf;
+
+ hdr->hdr_version = PFM_DEFAULT_SMPL_VERSION;
+ hdr->hdr_buf_size = arg->buf_size;
+ hdr->hdr_cur_offs = sizeof(*hdr);
+ hdr->hdr_overflows = 0UL;
+ hdr->hdr_count = 0UL;
+
+ DPRINT(("[%d] buffer=%p buf_size=%lu hdr_size=%lu hdr_version=%u cur_offs=%lu\n",
+ task->pid,
+ buf,
+ hdr->hdr_buf_size,
+ sizeof(*hdr),
+ hdr->hdr_version,
+ hdr->hdr_cur_offs));
+
+ return 0;
+}
+
+static int
+default_handler(struct task_struct *task, void *buf, pfm_ovfl_arg_t *arg, struct pt_regs *regs, unsigned long stamp)
+{
+ pfm_default_smpl_hdr_t *hdr;
+ pfm_default_smpl_entry_t *ent;
+ void *cur, *last;
+ unsigned long *e, entry_size;
+ unsigned int npmds, i;
+ unsigned char ovfl_pmd;
+ unsigned char ovfl_notify;
+
+ if (unlikely(buf == NULL || arg == NULL|| regs == NULL || task == NULL)) {
+ DPRINT(("[%d] invalid arguments buf=%p arg=%p\n", task->pid, buf, arg));
+ return -EINVAL;
+ }
+
+ hdr = (pfm_default_smpl_hdr_t *)buf;
+ cur = buf+hdr->hdr_cur_offs;
+ last = buf+hdr->hdr_buf_size;
+ ovfl_pmd = arg->ovfl_pmd;
+ ovfl_notify = arg->ovfl_notify;
+
+ /*
+ * precheck for sanity
+ */
+ if ((last - cur) < PFM_DEFAULT_MAX_ENTRY_SIZE) goto full;
+
+ npmds = hweight64(arg->smpl_pmds[0]);
+
+ ent = (pfm_default_smpl_entry_t *)cur;
+
+ prefetch(arg->smpl_pmds_values);
+
+ entry_size = sizeof(*ent) + (npmds << 3);
+
+ /* position for first pmd */
+ e = (unsigned long *)(ent+1);
+
+ hdr->hdr_count++;
+
+ DPRINT_ovfl(("[%d] count=%lu cur=%p last=%p free_bytes=%lu ovfl_pmd=%d ovfl_notify=%d npmds=%u\n",
+ task->pid,
+ hdr->hdr_count,
+ cur, last,
+ last-cur,
+ ovfl_pmd,
+ ovfl_notify, npmds));
+
+ /*
+ * current = task running at the time of the overflow.
+ *
+ * per-task mode:
+ * - this is ususally the task being monitored.
+ * Under certain conditions, it might be a different task
+ *
+ * system-wide:
+ * - this is not necessarily the task controlling the session
+ */
+ ent->pid = current->pid;
+ ent->ovfl_pmd = ovfl_pmd;
+ ent->last_reset_val = arg->pmd_last_reset; //pmd[0].reg_last_reset_val;
+
+ /*
+ * where did the fault happen (includes slot number)
+ */
+ ent->ip = regs->cr_iip | ((regs->cr_ipsr >> 41) & 0x3);
+
+ ent->tstamp = stamp;
+ ent->cpu = smp_processor_id();
+ ent->set = arg->active_set;
+ ent->tgid = current->tgid;
+
+ /*
+ * selectively store PMDs in increasing index number
+ */
+ if (npmds) {
+ unsigned long *val = arg->smpl_pmds_values;
+ for(i=0; i < npmds; i++) {
+ *e++ = *val++;
+ }
+ }
+
+ /*
+ * update position for next entry
+ */
+ hdr->hdr_cur_offs += entry_size;
+ cur += entry_size;
+
+ /*
+ * post check to avoid losing the last sample
+ */
+ if ((last - cur) < PFM_DEFAULT_MAX_ENTRY_SIZE) goto full;
+
+ /*
+ * keep same ovfl_pmds, ovfl_notify
+ */
+ arg->ovfl_ctrl.bits.notify_user = 0;
+ arg->ovfl_ctrl.bits.block_task = 0;
+ arg->ovfl_ctrl.bits.mask_monitoring = 0;
+ arg->ovfl_ctrl.bits.reset_ovfl_pmds = 1; /* reset before returning from interrupt handler */
+
+ return 0;
+full:
+ DPRINT_ovfl(("sampling buffer full free=%lu, count=%lu, ovfl_notify=%d\n", last-cur, hdr->hdr_count, ovfl_notify));
+
+ /*
+ * increment number of buffer overflow.
+ * important to detect duplicate set of samples.
+ */
+ hdr->hdr_overflows++;
+
+ /*
+ * if no notification requested, then we saturate the buffer
+ */
+ if (ovfl_notify == 0) {
+ arg->ovfl_ctrl.bits.notify_user = 0;
+ arg->ovfl_ctrl.bits.block_task = 0;
+ arg->ovfl_ctrl.bits.mask_monitoring = 1;
+ arg->ovfl_ctrl.bits.reset_ovfl_pmds = 0;
+ } else {
+ arg->ovfl_ctrl.bits.notify_user = 1;
+ arg->ovfl_ctrl.bits.block_task = 1; /* ignored for non-blocking context */
+ arg->ovfl_ctrl.bits.mask_monitoring = 1;
+ arg->ovfl_ctrl.bits.reset_ovfl_pmds = 0; /* no reset now */
+ }
+ return -1; /* we are full, sorry */
+}
+
+static int
+default_restart(struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
+{
+ pfm_default_smpl_hdr_t *hdr;
+
+ hdr = (pfm_default_smpl_hdr_t *)buf;
+
+ hdr->hdr_count = 0UL;
+ hdr->hdr_cur_offs = sizeof(*hdr);
+
+ ctrl->bits.mask_monitoring = 0;
+ ctrl->bits.reset_ovfl_pmds = 1; /* uses long-reset values */
+
+ return 0;
+}
+
+static int
+default_exit(struct task_struct *task, void *buf, struct pt_regs *regs)
+{
+ DPRINT(("[%d] exit(%p)\n", task->pid, buf));
+ return 0;
+}
+
+static pfm_buffer_fmt_t default_fmt={
+ .fmt_name = "default_format",
+ .fmt_uuid = PFM_DEFAULT_SMPL_UUID,
+ .fmt_arg_size = sizeof(pfm_default_smpl_arg_t),
+ .fmt_validate = default_validate,
+ .fmt_getsize = default_get_size,
+ .fmt_init = default_init,
+ .fmt_handler = default_handler,
+ .fmt_restart = default_restart,
+ .fmt_restart_active = default_restart,
+ .fmt_exit = default_exit,
+};
+
+static int __init
+pfm_default_smpl_init_module(void)
+{
+ int ret;
+
+ ret = pfm_register_buffer_fmt(&default_fmt);
+ if (ret == 0) {
+ printk("perfmon_default_smpl: %s v%u.%u registered\n",
+ default_fmt.fmt_name,
+ PFM_DEFAULT_SMPL_VERSION_MAJ,
+ PFM_DEFAULT_SMPL_VERSION_MIN);
+ } else {
+ printk("perfmon_default_smpl: %s cannot register ret=%d\n",
+ default_fmt.fmt_name,
+ ret);
+ }
+
+ return ret;
+}
+
+static void __exit
+pfm_default_smpl_cleanup_module(void)
+{
+ int ret;
+ ret = pfm_unregister_buffer_fmt(default_fmt.fmt_uuid);
+
+ printk("perfmon_default_smpl: unregister %s=%d\n", default_fmt.fmt_name, ret);
+}
+
+module_init(pfm_default_smpl_init_module);
+module_exit(pfm_default_smpl_cleanup_module);
+
diff --git a/arch/ia64/kernel/perfmon_generic.h b/arch/ia64/kernel/perfmon_generic.h
new file mode 100644
index 0000000..6748947
--- /dev/null
+++ b/arch/ia64/kernel/perfmon_generic.h
@@ -0,0 +1,45 @@
+/*
+ * This file contains the generic PMU register description tables
+ * and pmc checker used by perfmon.c.
+ *
+ * Copyright (C) 2002-2003 Hewlett Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ */
+
+static pfm_reg_desc_t pfm_gen_pmc_desc[PMU_MAX_PMCS]={
+/* pmc0 */ { PFM_REG_CONTROL , 0, 0x1UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc1 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc2 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc3 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc4 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {RDEP(4),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc5 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {RDEP(5),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc6 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {RDEP(6),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc7 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {RDEP(7),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+ { PFM_REG_END , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}}, /* end marker */
+};
+
+static pfm_reg_desc_t pfm_gen_pmd_desc[PMU_MAX_PMDS]={
+/* pmd0 */ { PFM_REG_NOTIMPL , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}},
+/* pmd1 */ { PFM_REG_NOTIMPL , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}},
+/* pmd2 */ { PFM_REG_NOTIMPL , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}},
+/* pmd3 */ { PFM_REG_NOTIMPL , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}},
+/* pmd4 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(4),0UL, 0UL, 0UL}},
+/* pmd5 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(5),0UL, 0UL, 0UL}},
+/* pmd6 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(6),0UL, 0UL, 0UL}},
+/* pmd7 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(7),0UL, 0UL, 0UL}},
+ { PFM_REG_END , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}}, /* end marker */
+};
+
+/*
+ * impl_pmcs, impl_pmds are computed at runtime to minimize errors!
+ */
+static pmu_config_t pmu_conf_gen={
+ .pmu_name = "Generic",
+ .pmu_family = 0xff, /* any */
+ .ovfl_val = (1UL << 32) - 1,
+ .num_ibrs = 0, /* does not use */
+ .num_dbrs = 0, /* does not use */
+ .pmd_desc = pfm_gen_pmd_desc,
+ .pmc_desc = pfm_gen_pmc_desc
+};
+
diff --git a/arch/ia64/kernel/perfmon_itanium.h b/arch/ia64/kernel/perfmon_itanium.h
new file mode 100644
index 0000000..d1d508a
--- /dev/null
+++ b/arch/ia64/kernel/perfmon_itanium.h
@@ -0,0 +1,115 @@
+/*
+ * This file contains the Itanium PMU register description tables
+ * and pmc checker used by perfmon.c.
+ *
+ * Copyright (C) 2002-2003 Hewlett Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ */
+static int pfm_ita_pmc_check(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
+
+static pfm_reg_desc_t pfm_ita_pmc_desc[PMU_MAX_PMCS]={
+/* pmc0 */ { PFM_REG_CONTROL , 0, 0x1UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc1 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc2 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc3 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc4 */ { PFM_REG_COUNTING, 6, 0x0UL, -1UL, NULL, NULL, {RDEP(4),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc5 */ { PFM_REG_COUNTING, 6, 0x0UL, -1UL, NULL, NULL, {RDEP(5),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc6 */ { PFM_REG_COUNTING, 6, 0x0UL, -1UL, NULL, NULL, {RDEP(6),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc7 */ { PFM_REG_COUNTING, 6, 0x0UL, -1UL, NULL, NULL, {RDEP(7),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc8 */ { PFM_REG_CONFIG , 0, 0xf00000003ffffff8UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc9 */ { PFM_REG_CONFIG , 0, 0xf00000003ffffff8UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc10 */ { PFM_REG_MONITOR , 6, 0x0UL, -1UL, NULL, NULL, {RDEP(0)|RDEP(1),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc11 */ { PFM_REG_MONITOR , 6, 0x0000000010000000UL, -1UL, NULL, pfm_ita_pmc_check, {RDEP(2)|RDEP(3)|RDEP(17),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc12 */ { PFM_REG_MONITOR , 6, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc13 */ { PFM_REG_CONFIG , 0, 0x0003ffff00000001UL, -1UL, NULL, pfm_ita_pmc_check, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+ { PFM_REG_END , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}}, /* end marker */
+};
+
+static pfm_reg_desc_t pfm_ita_pmd_desc[PMU_MAX_PMDS]={
+/* pmd0 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(1),0UL, 0UL, 0UL}, {RDEP(10),0UL, 0UL, 0UL}},
+/* pmd1 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(0),0UL, 0UL, 0UL}, {RDEP(10),0UL, 0UL, 0UL}},
+/* pmd2 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(3)|RDEP(17),0UL, 0UL, 0UL}, {RDEP(11),0UL, 0UL, 0UL}},
+/* pmd3 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(2)|RDEP(17),0UL, 0UL, 0UL}, {RDEP(11),0UL, 0UL, 0UL}},
+/* pmd4 */ { PFM_REG_COUNTING, 0, 0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(4),0UL, 0UL, 0UL}},
+/* pmd5 */ { PFM_REG_COUNTING, 0, 0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(5),0UL, 0UL, 0UL}},
+/* pmd6 */ { PFM_REG_COUNTING, 0, 0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(6),0UL, 0UL, 0UL}},
+/* pmd7 */ { PFM_REG_COUNTING, 0, 0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(7),0UL, 0UL, 0UL}},
+/* pmd8 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd9 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd10 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd11 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd12 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd13 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd14 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd15 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd16 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd17 */ { PFM_REG_BUFFER , 0, 0UL, -1UL, NULL, NULL, {RDEP(2)|RDEP(3),0UL, 0UL, 0UL}, {RDEP(11),0UL, 0UL, 0UL}},
+ { PFM_REG_END , 0, 0UL, -1UL, NULL, NULL, {0,}, {0,}}, /* end marker */
+};
+
+static int
+pfm_ita_pmc_check(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs)
+{
+ int ret;
+ int is_loaded;
+
+ /* sanitfy check */
+ if (ctx == NULL) return -EINVAL;
+
+ is_loaded = ctx->ctx_state == PFM_CTX_LOADED || ctx->ctx_state == PFM_CTX_MASKED;
+
+ /*
+ * we must clear the (instruction) debug registers if pmc13.ta bit is cleared
+ * before they are written (fl_using_dbreg==0) to avoid picking up stale information.
+ */
+ if (cnum == 13 && is_loaded && ((*val & 0x1) == 0UL) && ctx->ctx_fl_using_dbreg == 0) {
+
+ DPRINT(("pmc[%d]=0x%lx has active pmc13.ta cleared, clearing ibr\n", cnum, *val));
+
+ /* don't mix debug with perfmon */
+ if (task && (task->thread.flags & IA64_THREAD_DBG_VALID) != 0) return -EINVAL;
+
+ /*
+ * a count of 0 will mark the debug registers as in use and also
+ * ensure that they are properly cleared.
+ */
+ ret = pfm_write_ibr_dbr(1, ctx, NULL, 0, regs);
+ if (ret) return ret;
+ }
+
+ /*
+ * we must clear the (data) debug registers if pmc11.pt bit is cleared
+ * before they are written (fl_using_dbreg==0) to avoid picking up stale information.
+ */
+ if (cnum == 11 && is_loaded && ((*val >> 28)& 0x1) == 0 && ctx->ctx_fl_using_dbreg == 0) {
+
+ DPRINT(("pmc[%d]=0x%lx has active pmc11.pt cleared, clearing dbr\n", cnum, *val));
+
+ /* don't mix debug with perfmon */
+ if (task && (task->thread.flags & IA64_THREAD_DBG_VALID) != 0) return -EINVAL;
+
+ /*
+ * a count of 0 will mark the debug registers as in use and also
+ * ensure that they are properly cleared.
+ */
+ ret = pfm_write_ibr_dbr(0, ctx, NULL, 0, regs);
+ if (ret) return ret;
+ }
+ return 0;
+}
+
+/*
+ * impl_pmcs, impl_pmds are computed at runtime to minimize errors!
+ */
+static pmu_config_t pmu_conf_ita={
+ .pmu_name = "Itanium",
+ .pmu_family = 0x7,
+ .ovfl_val = (1UL << 32) - 1,
+ .pmd_desc = pfm_ita_pmd_desc,
+ .pmc_desc = pfm_ita_pmc_desc,
+ .num_ibrs = 8,
+ .num_dbrs = 8,
+ .use_rr_dbregs = 1, /* debug register are use for range retrictions */
+};
+
+
diff --git a/arch/ia64/kernel/perfmon_mckinley.h b/arch/ia64/kernel/perfmon_mckinley.h
new file mode 100644
index 0000000..9becccd
--- /dev/null
+++ b/arch/ia64/kernel/perfmon_mckinley.h
@@ -0,0 +1,187 @@
+/*
+ * This file contains the McKinley PMU register description tables
+ * and pmc checker used by perfmon.c.
+ *
+ * Copyright (C) 2002-2003 Hewlett Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ */
+static int pfm_mck_pmc_check(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
+
+static pfm_reg_desc_t pfm_mck_pmc_desc[PMU_MAX_PMCS]={
+/* pmc0 */ { PFM_REG_CONTROL , 0, 0x1UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc1 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc2 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc3 */ { PFM_REG_CONTROL , 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc4 */ { PFM_REG_COUNTING, 6, 0x0000000000800000UL, 0xfffff7fUL, NULL, pfm_mck_pmc_check, {RDEP(4),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc5 */ { PFM_REG_COUNTING, 6, 0x0UL, 0xfffff7fUL, NULL, pfm_mck_pmc_check, {RDEP(5),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc6 */ { PFM_REG_COUNTING, 6, 0x0UL, 0xfffff7fUL, NULL, pfm_mck_pmc_check, {RDEP(6),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc7 */ { PFM_REG_COUNTING, 6, 0x0UL, 0xfffff7fUL, NULL, pfm_mck_pmc_check, {RDEP(7),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc8 */ { PFM_REG_CONFIG , 0, 0xffffffff3fffffffUL, 0xffffffff3ffffffbUL, NULL, pfm_mck_pmc_check, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc9 */ { PFM_REG_CONFIG , 0, 0xffffffff3ffffffcUL, 0xffffffff3ffffffbUL, NULL, pfm_mck_pmc_check, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc10 */ { PFM_REG_MONITOR , 4, 0x0UL, 0xffffUL, NULL, pfm_mck_pmc_check, {RDEP(0)|RDEP(1),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc11 */ { PFM_REG_MONITOR , 6, 0x0UL, 0x30f01cf, NULL, pfm_mck_pmc_check, {RDEP(2)|RDEP(3)|RDEP(17),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc12 */ { PFM_REG_MONITOR , 6, 0x0UL, 0xffffUL, NULL, pfm_mck_pmc_check, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc13 */ { PFM_REG_CONFIG , 0, 0x00002078fefefefeUL, 0x1e00018181818UL, NULL, pfm_mck_pmc_check, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc14 */ { PFM_REG_CONFIG , 0, 0x0db60db60db60db6UL, 0x2492UL, NULL, pfm_mck_pmc_check, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+/* pmc15 */ { PFM_REG_CONFIG , 0, 0x00000000fffffff0UL, 0xfUL, NULL, pfm_mck_pmc_check, {0UL,0UL, 0UL, 0UL}, {0UL,0UL, 0UL, 0UL}},
+ { PFM_REG_END , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}}, /* end marker */
+};
+
+static pfm_reg_desc_t pfm_mck_pmd_desc[PMU_MAX_PMDS]={
+/* pmd0 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(1),0UL, 0UL, 0UL}, {RDEP(10),0UL, 0UL, 0UL}},
+/* pmd1 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(0),0UL, 0UL, 0UL}, {RDEP(10),0UL, 0UL, 0UL}},
+/* pmd2 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(3)|RDEP(17),0UL, 0UL, 0UL}, {RDEP(11),0UL, 0UL, 0UL}},
+/* pmd3 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(2)|RDEP(17),0UL, 0UL, 0UL}, {RDEP(11),0UL, 0UL, 0UL}},
+/* pmd4 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(4),0UL, 0UL, 0UL}},
+/* pmd5 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(5),0UL, 0UL, 0UL}},
+/* pmd6 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(6),0UL, 0UL, 0UL}},
+/* pmd7 */ { PFM_REG_COUNTING, 0, 0x0UL, -1UL, NULL, NULL, {0UL,0UL, 0UL, 0UL}, {RDEP(7),0UL, 0UL, 0UL}},
+/* pmd8 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd9 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd10 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd11 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd12 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(13)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd13 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(14)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd14 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(15)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd15 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(16),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd16 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(8)|RDEP(9)|RDEP(10)|RDEP(11)|RDEP(12)|RDEP(13)|RDEP(14)|RDEP(15),0UL, 0UL, 0UL}, {RDEP(12),0UL, 0UL, 0UL}},
+/* pmd17 */ { PFM_REG_BUFFER , 0, 0x0UL, -1UL, NULL, NULL, {RDEP(2)|RDEP(3),0UL, 0UL, 0UL}, {RDEP(11),0UL, 0UL, 0UL}},
+ { PFM_REG_END , 0, 0x0UL, -1UL, NULL, NULL, {0,}, {0,}}, /* end marker */
+};
+
+/*
+ * PMC reserved fields must have their power-up values preserved
+ */
+static int
+pfm_mck_reserved(unsigned int cnum, unsigned long *val, struct pt_regs *regs)
+{
+ unsigned long tmp1, tmp2, ival = *val;
+
+ /* remove reserved areas from user value */
+ tmp1 = ival & PMC_RSVD_MASK(cnum);
+
+ /* get reserved fields values */
+ tmp2 = PMC_DFL_VAL(cnum) & ~PMC_RSVD_MASK(cnum);
+
+ *val = tmp1 | tmp2;
+
+ DPRINT(("pmc[%d]=0x%lx, mask=0x%lx, reset=0x%lx, val=0x%lx\n",
+ cnum, ival, PMC_RSVD_MASK(cnum), PMC_DFL_VAL(cnum), *val));
+ return 0;
+}
+
+/*
+ * task can be NULL if the context is unloaded
+ */
+static int
+pfm_mck_pmc_check(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs)
+{
+ int ret = 0, check_case1 = 0;
+ unsigned long val8 = 0, val14 = 0, val13 = 0;
+ int is_loaded;
+
+ /* first preserve the reserved fields */
+ pfm_mck_reserved(cnum, val, regs);
+
+ /* sanitfy check */
+ if (ctx == NULL) return -EINVAL;
+
+ is_loaded = ctx->ctx_state == PFM_CTX_LOADED || ctx->ctx_state == PFM_CTX_MASKED;
+
+ /*
+ * we must clear the debug registers if pmc13 has a value which enable
+ * memory pipeline event constraints. In this case we need to clear the
+ * the debug registers if they have not yet been accessed. This is required
+ * to avoid picking stale state.
+ * PMC13 is "active" if:
+ * one of the pmc13.cfg_dbrpXX field is different from 0x3
+ * AND
+ * at the corresponding pmc13.ena_dbrpXX is set.
+ */
+ DPRINT(("cnum=%u val=0x%lx, using_dbreg=%d loaded=%d\n", cnum, *val, ctx->ctx_fl_using_dbreg, is_loaded));
+
+ if (cnum == 13 && is_loaded
+ && (*val & 0x1e00000000000UL) && (*val & 0x18181818UL) != 0x18181818UL && ctx->ctx_fl_using_dbreg == 0) {
+
+ DPRINT(("pmc[%d]=0x%lx has active pmc13 settings, clearing dbr\n", cnum, *val));
+
+ /* don't mix debug with perfmon */
+ if (task && (task->thread.flags & IA64_THREAD_DBG_VALID) != 0) return -EINVAL;
+
+ /*
+ * a count of 0 will mark the debug registers as in use and also
+ * ensure that they are properly cleared.
+ */
+ ret = pfm_write_ibr_dbr(PFM_DATA_RR, ctx, NULL, 0, regs);
+ if (ret) return ret;
+ }
+ /*
+ * we must clear the (instruction) debug registers if any pmc14.ibrpX bit is enabled
+ * before they are (fl_using_dbreg==0) to avoid picking up stale information.
+ */
+ if (cnum == 14 && is_loaded && ((*val & 0x2222UL) != 0x2222UL) && ctx->ctx_fl_using_dbreg == 0) {
+
+ DPRINT(("pmc[%d]=0x%lx has active pmc14 settings, clearing ibr\n", cnum, *val));
+
+ /* don't mix debug with perfmon */
+ if (task && (task->thread.flags & IA64_THREAD_DBG_VALID) != 0) return -EINVAL;
+
+ /*
+ * a count of 0 will mark the debug registers as in use and also
+ * ensure that they are properly cleared.
+ */
+ ret = pfm_write_ibr_dbr(PFM_CODE_RR, ctx, NULL, 0, regs);
+ if (ret) return ret;
+
+ }
+
+ switch(cnum) {
+ case 4: *val |= 1UL << 23; /* force power enable bit */
+ break;
+ case 8: val8 = *val;
+ val13 = ctx->ctx_pmcs[13];
+ val14 = ctx->ctx_pmcs[14];
+ check_case1 = 1;
+ break;
+ case 13: val8 = ctx->ctx_pmcs[8];
+ val13 = *val;
+ val14 = ctx->ctx_pmcs[14];
+ check_case1 = 1;
+ break;
+ case 14: val8 = ctx->ctx_pmcs[8];
+ val13 = ctx->ctx_pmcs[13];
+ val14 = *val;
+ check_case1 = 1;
+ break;
+ }
+ /* check illegal configuration which can produce inconsistencies in tagging
+ * i-side events in L1D and L2 caches
+ */
+ if (check_case1) {
+ ret = ((val13 >> 45) & 0xf) == 0
+ && ((val8 & 0x1) == 0)
+ && ((((val14>>1) & 0x3) == 0x2 || ((val14>>1) & 0x3) == 0x0)
+ ||(((val14>>4) & 0x3) == 0x2 || ((val14>>4) & 0x3) == 0x0));
+
+ if (ret) DPRINT((KERN_DEBUG "perfmon: failure check_case1\n"));
+ }
+
+ return ret ? -EINVAL : 0;
+}
+
+/*
+ * impl_pmcs, impl_pmds are computed at runtime to minimize errors!
+ */
+static pmu_config_t pmu_conf_mck={
+ .pmu_name = "Itanium 2",
+ .pmu_family = 0x1f,
+ .flags = PFM_PMU_IRQ_RESEND,
+ .ovfl_val = (1UL << 47) - 1,
+ .pmd_desc = pfm_mck_pmd_desc,
+ .pmc_desc = pfm_mck_pmc_desc,
+ .num_ibrs = 8,
+ .num_dbrs = 8,
+ .use_rr_dbregs = 1 /* debug register are use for range retrictions */
+};
+
+
diff --git a/arch/ia64/kernel/process.c b/arch/ia64/kernel/process.c
new file mode 100644
index 0000000..9129338
--- /dev/null
+++ b/arch/ia64/kernel/process.c
@@ -0,0 +1,800 @@
+/*
+ * Architecture-specific setup.
+ *
+ * Copyright (C) 1998-2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+#define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
+#include <linux/config.h>
+
+#include <linux/cpu.h>
+#include <linux/pm.h>
+#include <linux/elf.h>
+#include <linux/errno.h>
+#include <linux/kallsyms.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/notifier.h>
+#include <linux/personality.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/smp_lock.h>
+#include <linux/stddef.h>
+#include <linux/thread_info.h>
+#include <linux/unistd.h>
+#include <linux/efi.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+
+#include <asm/cpu.h>
+#include <asm/delay.h>
+#include <asm/elf.h>
+#include <asm/ia32.h>
+#include <asm/irq.h>
+#include <asm/pgalloc.h>
+#include <asm/processor.h>
+#include <asm/sal.h>
+#include <asm/tlbflush.h>
+#include <asm/uaccess.h>
+#include <asm/unwind.h>
+#include <asm/user.h>
+
+#include "entry.h"
+
+#ifdef CONFIG_PERFMON
+# include <asm/perfmon.h>
+#endif
+
+#include "sigframe.h"
+
+void (*ia64_mark_idle)(int);
+static cpumask_t cpu_idle_map;
+
+unsigned long boot_option_idle_override = 0;
+EXPORT_SYMBOL(boot_option_idle_override);
+
+void
+ia64_do_show_stack (struct unw_frame_info *info, void *arg)
+{
+ unsigned long ip, sp, bsp;
+ char buf[128]; /* don't make it so big that it overflows the stack! */
+
+ printk("\nCall Trace:\n");
+ do {
+ unw_get_ip(info, &ip);
+ if (ip == 0)
+ break;
+
+ unw_get_sp(info, &sp);
+ unw_get_bsp(info, &bsp);
+ snprintf(buf, sizeof(buf),
+ " [<%016lx>] %%s\n"
+ " sp=%016lx bsp=%016lx\n",
+ ip, sp, bsp);
+ print_symbol(buf, ip);
+ } while (unw_unwind(info) >= 0);
+}
+
+void
+show_stack (struct task_struct *task, unsigned long *sp)
+{
+ if (!task)
+ unw_init_running(ia64_do_show_stack, NULL);
+ else {
+ struct unw_frame_info info;
+
+ unw_init_from_blocked_task(&info, task);
+ ia64_do_show_stack(&info, NULL);
+ }
+}
+
+void
+dump_stack (void)
+{
+ show_stack(NULL, NULL);
+}
+
+EXPORT_SYMBOL(dump_stack);
+
+void
+show_regs (struct pt_regs *regs)
+{
+ unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
+
+ print_modules();
+ printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
+ printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
+ regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
+ print_symbol("ip is at %s\n", ip);
+ printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
+ regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
+ printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
+ regs->ar_rnat, regs->ar_bspstore, regs->pr);
+ printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
+ regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
+ printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
+ printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
+ printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
+ regs->f6.u.bits[1], regs->f6.u.bits[0],
+ regs->f7.u.bits[1], regs->f7.u.bits[0]);
+ printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
+ regs->f8.u.bits[1], regs->f8.u.bits[0],
+ regs->f9.u.bits[1], regs->f9.u.bits[0]);
+ printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
+ regs->f10.u.bits[1], regs->f10.u.bits[0],
+ regs->f11.u.bits[1], regs->f11.u.bits[0]);
+
+ printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
+ printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
+ printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
+ printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
+ printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
+ printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
+ printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
+ printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
+ printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
+
+ if (user_mode(regs)) {
+ /* print the stacked registers */
+ unsigned long val, *bsp, ndirty;
+ int i, sof, is_nat = 0;
+
+ sof = regs->cr_ifs & 0x7f; /* size of frame */
+ ndirty = (regs->loadrs >> 19);
+ bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
+ for (i = 0; i < sof; ++i) {
+ get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
+ printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
+ ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
+ }
+ } else
+ show_stack(NULL, NULL);
+}
+
+void
+do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
+{
+ if (fsys_mode(current, &scr->pt)) {
+ /* defer signal-handling etc. until we return to privilege-level 0. */
+ if (!ia64_psr(&scr->pt)->lp)
+ ia64_psr(&scr->pt)->lp = 1;
+ return;
+ }
+
+#ifdef CONFIG_PERFMON
+ if (current->thread.pfm_needs_checking)
+ pfm_handle_work();
+#endif
+
+ /* deal with pending signal delivery */
+ if (test_thread_flag(TIF_SIGPENDING))
+ ia64_do_signal(oldset, scr, in_syscall);
+}
+
+static int pal_halt = 1;
+static int __init nohalt_setup(char * str)
+{
+ pal_halt = 0;
+ return 1;
+}
+__setup("nohalt", nohalt_setup);
+
+/*
+ * We use this if we don't have any better idle routine..
+ */
+void
+default_idle (void)
+{
+ unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP);
+
+ while (!need_resched())
+ if (pal_halt && !pmu_active)
+ safe_halt();
+ else
+ cpu_relax();
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+/* We don't actually take CPU down, just spin without interrupts. */
+static inline void play_dead(void)
+{
+ extern void ia64_cpu_local_tick (void);
+ /* Ack it */
+ __get_cpu_var(cpu_state) = CPU_DEAD;
+
+ /* We shouldn't have to disable interrupts while dead, but
+ * some interrupts just don't seem to go away, and this makes
+ * it "work" for testing purposes. */
+ max_xtp();
+ local_irq_disable();
+ /* Death loop */
+ while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
+ cpu_relax();
+
+ /*
+ * Enable timer interrupts from now on
+ * Not required if we put processor in SAL_BOOT_RENDEZ mode.
+ */
+ local_flush_tlb_all();
+ cpu_set(smp_processor_id(), cpu_online_map);
+ wmb();
+ ia64_cpu_local_tick ();
+ local_irq_enable();
+}
+#else
+static inline void play_dead(void)
+{
+ BUG();
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+
+void cpu_idle_wait(void)
+{
+ int cpu;
+ cpumask_t map;
+
+ for_each_online_cpu(cpu)
+ cpu_set(cpu, cpu_idle_map);
+
+ wmb();
+ do {
+ ssleep(1);
+ cpus_and(map, cpu_idle_map, cpu_online_map);
+ } while (!cpus_empty(map));
+}
+EXPORT_SYMBOL_GPL(cpu_idle_wait);
+
+void __attribute__((noreturn))
+cpu_idle (void)
+{
+ void (*mark_idle)(int) = ia64_mark_idle;
+ int cpu = smp_processor_id();
+
+ /* endless idle loop with no priority at all */
+ while (1) {
+#ifdef CONFIG_SMP
+ if (!need_resched())
+ min_xtp();
+#endif
+ while (!need_resched()) {
+ void (*idle)(void);
+
+ if (mark_idle)
+ (*mark_idle)(1);
+
+ if (cpu_isset(cpu, cpu_idle_map))
+ cpu_clear(cpu, cpu_idle_map);
+ rmb();
+ idle = pm_idle;
+ if (!idle)
+ idle = default_idle;
+ (*idle)();
+ }
+
+ if (mark_idle)
+ (*mark_idle)(0);
+
+#ifdef CONFIG_SMP
+ normal_xtp();
+#endif
+ schedule();
+ check_pgt_cache();
+ if (cpu_is_offline(smp_processor_id()))
+ play_dead();
+ }
+}
+
+void
+ia64_save_extra (struct task_struct *task)
+{
+#ifdef CONFIG_PERFMON
+ unsigned long info;
+#endif
+
+ if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
+ ia64_save_debug_regs(&task->thread.dbr[0]);
+
+#ifdef CONFIG_PERFMON
+ if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
+ pfm_save_regs(task);
+
+ info = __get_cpu_var(pfm_syst_info);
+ if (info & PFM_CPUINFO_SYST_WIDE)
+ pfm_syst_wide_update_task(task, info, 0);
+#endif
+
+#ifdef CONFIG_IA32_SUPPORT
+ if (IS_IA32_PROCESS(ia64_task_regs(task)))
+ ia32_save_state(task);
+#endif
+}
+
+void
+ia64_load_extra (struct task_struct *task)
+{
+#ifdef CONFIG_PERFMON
+ unsigned long info;
+#endif
+
+ if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
+ ia64_load_debug_regs(&task->thread.dbr[0]);
+
+#ifdef CONFIG_PERFMON
+ if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
+ pfm_load_regs(task);
+
+ info = __get_cpu_var(pfm_syst_info);
+ if (info & PFM_CPUINFO_SYST_WIDE)
+ pfm_syst_wide_update_task(task, info, 1);
+#endif
+
+#ifdef CONFIG_IA32_SUPPORT
+ if (IS_IA32_PROCESS(ia64_task_regs(task)))
+ ia32_load_state(task);
+#endif
+}
+
+/*
+ * Copy the state of an ia-64 thread.
+ *
+ * We get here through the following call chain:
+ *
+ * from user-level: from kernel:
+ *
+ * <clone syscall> <some kernel call frames>
+ * sys_clone :
+ * do_fork do_fork
+ * copy_thread copy_thread
+ *
+ * This means that the stack layout is as follows:
+ *
+ * +---------------------+ (highest addr)
+ * | struct pt_regs |
+ * +---------------------+
+ * | struct switch_stack |
+ * +---------------------+
+ * | |
+ * | memory stack |
+ * | | <-- sp (lowest addr)
+ * +---------------------+
+ *
+ * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
+ * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
+ * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
+ * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
+ * the stack is page aligned and the page size is at least 4KB, this is always the case,
+ * so there is nothing to worry about.
+ */
+int
+copy_thread (int nr, unsigned long clone_flags,
+ unsigned long user_stack_base, unsigned long user_stack_size,
+ struct task_struct *p, struct pt_regs *regs)
+{
+ extern char ia64_ret_from_clone, ia32_ret_from_clone;
+ struct switch_stack *child_stack, *stack;
+ unsigned long rbs, child_rbs, rbs_size;
+ struct pt_regs *child_ptregs;
+ int retval = 0;
+
+#ifdef CONFIG_SMP
+ /*
+ * For SMP idle threads, fork_by_hand() calls do_fork with
+ * NULL regs.
+ */
+ if (!regs)
+ return 0;
+#endif
+
+ stack = ((struct switch_stack *) regs) - 1;
+
+ child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
+ child_stack = (struct switch_stack *) child_ptregs - 1;
+
+ /* copy parent's switch_stack & pt_regs to child: */
+ memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
+
+ rbs = (unsigned long) current + IA64_RBS_OFFSET;
+ child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
+ rbs_size = stack->ar_bspstore - rbs;
+
+ /* copy the parent's register backing store to the child: */
+ memcpy((void *) child_rbs, (void *) rbs, rbs_size);
+
+ if (likely(user_mode(child_ptregs))) {
+ if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
+ child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
+ if (user_stack_base) {
+ child_ptregs->r12 = user_stack_base + user_stack_size - 16;
+ child_ptregs->ar_bspstore = user_stack_base;
+ child_ptregs->ar_rnat = 0;
+ child_ptregs->loadrs = 0;
+ }
+ } else {
+ /*
+ * Note: we simply preserve the relative position of
+ * the stack pointer here. There is no need to
+ * allocate a scratch area here, since that will have
+ * been taken care of by the caller of sys_clone()
+ * already.
+ */
+ child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
+ child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
+ }
+ child_stack->ar_bspstore = child_rbs + rbs_size;
+ if (IS_IA32_PROCESS(regs))
+ child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
+ else
+ child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
+
+ /* copy parts of thread_struct: */
+ p->thread.ksp = (unsigned long) child_stack - 16;
+
+ /* stop some PSR bits from being inherited.
+ * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
+ * therefore we must specify them explicitly here and not include them in
+ * IA64_PSR_BITS_TO_CLEAR.
+ */
+ child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
+ & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
+
+ /*
+ * NOTE: The calling convention considers all floating point
+ * registers in the high partition (fph) to be scratch. Since
+ * the only way to get to this point is through a system call,
+ * we know that the values in fph are all dead. Hence, there
+ * is no need to inherit the fph state from the parent to the
+ * child and all we have to do is to make sure that
+ * IA64_THREAD_FPH_VALID is cleared in the child.
+ *
+ * XXX We could push this optimization a bit further by
+ * clearing IA64_THREAD_FPH_VALID on ANY system call.
+ * However, it's not clear this is worth doing. Also, it
+ * would be a slight deviation from the normal Linux system
+ * call behavior where scratch registers are preserved across
+ * system calls (unless used by the system call itself).
+ */
+# define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
+ | IA64_THREAD_PM_VALID)
+# define THREAD_FLAGS_TO_SET 0
+ p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
+ | THREAD_FLAGS_TO_SET);
+ ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
+#ifdef CONFIG_IA32_SUPPORT
+ /*
+ * If we're cloning an IA32 task then save the IA32 extra
+ * state from the current task to the new task
+ */
+ if (IS_IA32_PROCESS(ia64_task_regs(current))) {
+ ia32_save_state(p);
+ if (clone_flags & CLONE_SETTLS)
+ retval = ia32_clone_tls(p, child_ptregs);
+
+ /* Copy partially mapped page list */
+ if (!retval)
+ retval = ia32_copy_partial_page_list(p, clone_flags);
+ }
+#endif
+
+#ifdef CONFIG_PERFMON
+ if (current->thread.pfm_context)
+ pfm_inherit(p, child_ptregs);
+#endif
+ return retval;
+}
+
+static void
+do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
+{
+ unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
+ elf_greg_t *dst = arg;
+ struct pt_regs *pt;
+ char nat;
+ int i;
+
+ memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
+
+ if (unw_unwind_to_user(info) < 0)
+ return;
+
+ unw_get_sp(info, &sp);
+ pt = (struct pt_regs *) (sp + 16);
+
+ urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
+
+ if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
+ return;
+
+ ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
+ &ar_rnat);
+
+ /*
+ * coredump format:
+ * r0-r31
+ * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
+ * predicate registers (p0-p63)
+ * b0-b7
+ * ip cfm user-mask
+ * ar.rsc ar.bsp ar.bspstore ar.rnat
+ * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
+ */
+
+ /* r0 is zero */
+ for (i = 1, mask = (1UL << i); i < 32; ++i) {
+ unw_get_gr(info, i, &dst[i], &nat);
+ if (nat)
+ nat_bits |= mask;
+ mask <<= 1;
+ }
+ dst[32] = nat_bits;
+ unw_get_pr(info, &dst[33]);
+
+ for (i = 0; i < 8; ++i)
+ unw_get_br(info, i, &dst[34 + i]);
+
+ unw_get_rp(info, &ip);
+ dst[42] = ip + ia64_psr(pt)->ri;
+ dst[43] = cfm;
+ dst[44] = pt->cr_ipsr & IA64_PSR_UM;
+
+ unw_get_ar(info, UNW_AR_RSC, &dst[45]);
+ /*
+ * For bsp and bspstore, unw_get_ar() would return the kernel
+ * addresses, but we need the user-level addresses instead:
+ */
+ dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
+ dst[47] = pt->ar_bspstore;
+ dst[48] = ar_rnat;
+ unw_get_ar(info, UNW_AR_CCV, &dst[49]);
+ unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
+ unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
+ dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
+ unw_get_ar(info, UNW_AR_LC, &dst[53]);
+ unw_get_ar(info, UNW_AR_EC, &dst[54]);
+ unw_get_ar(info, UNW_AR_CSD, &dst[55]);
+ unw_get_ar(info, UNW_AR_SSD, &dst[56]);
+}
+
+void
+do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
+{
+ elf_fpreg_t *dst = arg;
+ int i;
+
+ memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
+
+ if (unw_unwind_to_user(info) < 0)
+ return;
+
+ /* f0 is 0.0, f1 is 1.0 */
+
+ for (i = 2; i < 32; ++i)
+ unw_get_fr(info, i, dst + i);
+
+ ia64_flush_fph(task);
+ if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
+ memcpy(dst + 32, task->thread.fph, 96*16);
+}
+
+void
+do_copy_regs (struct unw_frame_info *info, void *arg)
+{
+ do_copy_task_regs(current, info, arg);
+}
+
+void
+do_dump_fpu (struct unw_frame_info *info, void *arg)
+{
+ do_dump_task_fpu(current, info, arg);
+}
+
+int
+dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
+{
+ struct unw_frame_info tcore_info;
+
+ if (current == task) {
+ unw_init_running(do_copy_regs, regs);
+ } else {
+ memset(&tcore_info, 0, sizeof(tcore_info));
+ unw_init_from_blocked_task(&tcore_info, task);
+ do_copy_task_regs(task, &tcore_info, regs);
+ }
+ return 1;
+}
+
+void
+ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
+{
+ unw_init_running(do_copy_regs, dst);
+}
+
+int
+dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
+{
+ struct unw_frame_info tcore_info;
+
+ if (current == task) {
+ unw_init_running(do_dump_fpu, dst);
+ } else {
+ memset(&tcore_info, 0, sizeof(tcore_info));
+ unw_init_from_blocked_task(&tcore_info, task);
+ do_dump_task_fpu(task, &tcore_info, dst);
+ }
+ return 1;
+}
+
+int
+dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
+{
+ unw_init_running(do_dump_fpu, dst);
+ return 1; /* f0-f31 are always valid so we always return 1 */
+}
+
+long
+sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
+ struct pt_regs *regs)
+{
+ char *fname;
+ int error;
+
+ fname = getname(filename);
+ error = PTR_ERR(fname);
+ if (IS_ERR(fname))
+ goto out;
+ error = do_execve(fname, argv, envp, regs);
+ putname(fname);
+out:
+ return error;
+}
+
+pid_t
+kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
+{
+ extern void start_kernel_thread (void);
+ unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
+ struct {
+ struct switch_stack sw;
+ struct pt_regs pt;
+ } regs;
+
+ memset(&regs, 0, sizeof(regs));
+ regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
+ regs.pt.r1 = helper_fptr[1]; /* set GP */
+ regs.pt.r9 = (unsigned long) fn; /* 1st argument */
+ regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
+ /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
+ regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
+ regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
+ regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
+ regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
+ regs.sw.pr = (1 << PRED_KERNEL_STACK);
+ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
+}
+EXPORT_SYMBOL(kernel_thread);
+
+/* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
+int
+kernel_thread_helper (int (*fn)(void *), void *arg)
+{
+#ifdef CONFIG_IA32_SUPPORT
+ if (IS_IA32_PROCESS(ia64_task_regs(current))) {
+ /* A kernel thread is always a 64-bit process. */
+ current->thread.map_base = DEFAULT_MAP_BASE;
+ current->thread.task_size = DEFAULT_TASK_SIZE;
+ ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
+ ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
+ }
+#endif
+ return (*fn)(arg);
+}
+
+/*
+ * Flush thread state. This is called when a thread does an execve().
+ */
+void
+flush_thread (void)
+{
+ /* drop floating-point and debug-register state if it exists: */
+ current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
+ ia64_drop_fpu(current);
+ if (IS_IA32_PROCESS(ia64_task_regs(current)))
+ ia32_drop_partial_page_list(current);
+}
+
+/*
+ * Clean up state associated with current thread. This is called when
+ * the thread calls exit().
+ */
+void
+exit_thread (void)
+{
+ ia64_drop_fpu(current);
+#ifdef CONFIG_PERFMON
+ /* if needed, stop monitoring and flush state to perfmon context */
+ if (current->thread.pfm_context)
+ pfm_exit_thread(current);
+
+ /* free debug register resources */
+ if (current->thread.flags & IA64_THREAD_DBG_VALID)
+ pfm_release_debug_registers(current);
+#endif
+ if (IS_IA32_PROCESS(ia64_task_regs(current)))
+ ia32_drop_partial_page_list(current);
+}
+
+unsigned long
+get_wchan (struct task_struct *p)
+{
+ struct unw_frame_info info;
+ unsigned long ip;
+ int count = 0;
+
+ /*
+ * Note: p may not be a blocked task (it could be current or
+ * another process running on some other CPU. Rather than
+ * trying to determine if p is really blocked, we just assume
+ * it's blocked and rely on the unwind routines to fail
+ * gracefully if the process wasn't really blocked after all.
+ * --davidm 99/12/15
+ */
+ unw_init_from_blocked_task(&info, p);
+ do {
+ if (unw_unwind(&info) < 0)
+ return 0;
+ unw_get_ip(&info, &ip);
+ if (!in_sched_functions(ip))
+ return ip;
+ } while (count++ < 16);
+ return 0;
+}
+
+void
+cpu_halt (void)
+{
+ pal_power_mgmt_info_u_t power_info[8];
+ unsigned long min_power;
+ int i, min_power_state;
+
+ if (ia64_pal_halt_info(power_info) != 0)
+ return;
+
+ min_power_state = 0;
+ min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
+ for (i = 1; i < 8; ++i)
+ if (power_info[i].pal_power_mgmt_info_s.im
+ && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
+ min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
+ min_power_state = i;
+ }
+
+ while (1)
+ ia64_pal_halt(min_power_state);
+}
+
+void
+machine_restart (char *restart_cmd)
+{
+ (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
+}
+
+EXPORT_SYMBOL(machine_restart);
+
+void
+machine_halt (void)
+{
+ cpu_halt();
+}
+
+EXPORT_SYMBOL(machine_halt);
+
+void
+machine_power_off (void)
+{
+ if (pm_power_off)
+ pm_power_off();
+ machine_halt();
+}
+
+EXPORT_SYMBOL(machine_power_off);
diff --git a/arch/ia64/kernel/ptrace.c b/arch/ia64/kernel/ptrace.c
new file mode 100644
index 0000000..55789fc
--- /dev/null
+++ b/arch/ia64/kernel/ptrace.c
@@ -0,0 +1,1627 @@
+/*
+ * Kernel support for the ptrace() and syscall tracing interfaces.
+ *
+ * Copyright (C) 1999-2005 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Derived from the x86 and Alpha versions.
+ */
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ptrace.h>
+#include <linux/smp_lock.h>
+#include <linux/user.h>
+#include <linux/security.h>
+#include <linux/audit.h>
+
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace_offsets.h>
+#include <asm/rse.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/unwind.h>
+#ifdef CONFIG_PERFMON
+#include <asm/perfmon.h>
+#endif
+
+#include "entry.h"
+
+/*
+ * Bits in the PSR that we allow ptrace() to change:
+ * be, up, ac, mfl, mfh (the user mask; five bits total)
+ * db (debug breakpoint fault; one bit)
+ * id (instruction debug fault disable; one bit)
+ * dd (data debug fault disable; one bit)
+ * ri (restart instruction; two bits)
+ * is (instruction set; one bit)
+ */
+#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
+ | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
+
+#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
+#define PFM_MASK MASK(38)
+
+#define PTRACE_DEBUG 0
+
+#if PTRACE_DEBUG
+# define dprintk(format...) printk(format)
+# define inline
+#else
+# define dprintk(format...)
+#endif
+
+/* Return TRUE if PT was created due to kernel-entry via a system-call. */
+
+static inline int
+in_syscall (struct pt_regs *pt)
+{
+ return (long) pt->cr_ifs >= 0;
+}
+
+/*
+ * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
+ * bitset where bit i is set iff the NaT bit of register i is set.
+ */
+unsigned long
+ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
+{
+# define GET_BITS(first, last, unat) \
+ ({ \
+ unsigned long bit = ia64_unat_pos(&pt->r##first); \
+ unsigned long nbits = (last - first + 1); \
+ unsigned long mask = MASK(nbits) << first; \
+ unsigned long dist; \
+ if (bit < first) \
+ dist = 64 + bit - first; \
+ else \
+ dist = bit - first; \
+ ia64_rotr(unat, dist) & mask; \
+ })
+ unsigned long val;
+
+ /*
+ * Registers that are stored consecutively in struct pt_regs
+ * can be handled in parallel. If the register order in
+ * struct_pt_regs changes, this code MUST be updated.
+ */
+ val = GET_BITS( 1, 1, scratch_unat);
+ val |= GET_BITS( 2, 3, scratch_unat);
+ val |= GET_BITS(12, 13, scratch_unat);
+ val |= GET_BITS(14, 14, scratch_unat);
+ val |= GET_BITS(15, 15, scratch_unat);
+ val |= GET_BITS( 8, 11, scratch_unat);
+ val |= GET_BITS(16, 31, scratch_unat);
+ return val;
+
+# undef GET_BITS
+}
+
+/*
+ * Set the NaT bits for the scratch registers according to NAT and
+ * return the resulting unat (assuming the scratch registers are
+ * stored in PT).
+ */
+unsigned long
+ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
+{
+# define PUT_BITS(first, last, nat) \
+ ({ \
+ unsigned long bit = ia64_unat_pos(&pt->r##first); \
+ unsigned long nbits = (last - first + 1); \
+ unsigned long mask = MASK(nbits) << first; \
+ long dist; \
+ if (bit < first) \
+ dist = 64 + bit - first; \
+ else \
+ dist = bit - first; \
+ ia64_rotl(nat & mask, dist); \
+ })
+ unsigned long scratch_unat;
+
+ /*
+ * Registers that are stored consecutively in struct pt_regs
+ * can be handled in parallel. If the register order in
+ * struct_pt_regs changes, this code MUST be updated.
+ */
+ scratch_unat = PUT_BITS( 1, 1, nat);
+ scratch_unat |= PUT_BITS( 2, 3, nat);
+ scratch_unat |= PUT_BITS(12, 13, nat);
+ scratch_unat |= PUT_BITS(14, 14, nat);
+ scratch_unat |= PUT_BITS(15, 15, nat);
+ scratch_unat |= PUT_BITS( 8, 11, nat);
+ scratch_unat |= PUT_BITS(16, 31, nat);
+
+ return scratch_unat;
+
+# undef PUT_BITS
+}
+
+#define IA64_MLX_TEMPLATE 0x2
+#define IA64_MOVL_OPCODE 6
+
+void
+ia64_increment_ip (struct pt_regs *regs)
+{
+ unsigned long w0, ri = ia64_psr(regs)->ri + 1;
+
+ if (ri > 2) {
+ ri = 0;
+ regs->cr_iip += 16;
+ } else if (ri == 2) {
+ get_user(w0, (char __user *) regs->cr_iip + 0);
+ if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
+ /*
+ * rfi'ing to slot 2 of an MLX bundle causes
+ * an illegal operation fault. We don't want
+ * that to happen...
+ */
+ ri = 0;
+ regs->cr_iip += 16;
+ }
+ }
+ ia64_psr(regs)->ri = ri;
+}
+
+void
+ia64_decrement_ip (struct pt_regs *regs)
+{
+ unsigned long w0, ri = ia64_psr(regs)->ri - 1;
+
+ if (ia64_psr(regs)->ri == 0) {
+ regs->cr_iip -= 16;
+ ri = 2;
+ get_user(w0, (char __user *) regs->cr_iip + 0);
+ if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
+ /*
+ * rfi'ing to slot 2 of an MLX bundle causes
+ * an illegal operation fault. We don't want
+ * that to happen...
+ */
+ ri = 1;
+ }
+ }
+ ia64_psr(regs)->ri = ri;
+}
+
+/*
+ * This routine is used to read an rnat bits that are stored on the
+ * kernel backing store. Since, in general, the alignment of the user
+ * and kernel are different, this is not completely trivial. In
+ * essence, we need to construct the user RNAT based on up to two
+ * kernel RNAT values and/or the RNAT value saved in the child's
+ * pt_regs.
+ *
+ * user rbs
+ *
+ * +--------+ <-- lowest address
+ * | slot62 |
+ * +--------+
+ * | rnat | 0x....1f8
+ * +--------+
+ * | slot00 | \
+ * +--------+ |
+ * | slot01 | > child_regs->ar_rnat
+ * +--------+ |
+ * | slot02 | / kernel rbs
+ * +--------+ +--------+
+ * <- child_regs->ar_bspstore | slot61 | <-- krbs
+ * +- - - - + +--------+
+ * | slot62 |
+ * +- - - - + +--------+
+ * | rnat |
+ * +- - - - + +--------+
+ * vrnat | slot00 |
+ * +- - - - + +--------+
+ * = =
+ * +--------+
+ * | slot00 | \
+ * +--------+ |
+ * | slot01 | > child_stack->ar_rnat
+ * +--------+ |
+ * | slot02 | /
+ * +--------+
+ * <--- child_stack->ar_bspstore
+ *
+ * The way to think of this code is as follows: bit 0 in the user rnat
+ * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
+ * value. The kernel rnat value holding this bit is stored in
+ * variable rnat0. rnat1 is loaded with the kernel rnat value that
+ * form the upper bits of the user rnat value.
+ *
+ * Boundary cases:
+ *
+ * o when reading the rnat "below" the first rnat slot on the kernel
+ * backing store, rnat0/rnat1 are set to 0 and the low order bits are
+ * merged in from pt->ar_rnat.
+ *
+ * o when reading the rnat "above" the last rnat slot on the kernel
+ * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
+ */
+static unsigned long
+get_rnat (struct task_struct *task, struct switch_stack *sw,
+ unsigned long *krbs, unsigned long *urnat_addr,
+ unsigned long *urbs_end)
+{
+ unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
+ unsigned long umask = 0, mask, m;
+ unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
+ long num_regs, nbits;
+ struct pt_regs *pt;
+
+ pt = ia64_task_regs(task);
+ kbsp = (unsigned long *) sw->ar_bspstore;
+ ubspstore = (unsigned long *) pt->ar_bspstore;
+
+ if (urbs_end < urnat_addr)
+ nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
+ else
+ nbits = 63;
+ mask = MASK(nbits);
+ /*
+ * First, figure out which bit number slot 0 in user-land maps
+ * to in the kernel rnat. Do this by figuring out how many
+ * register slots we're beyond the user's backingstore and
+ * then computing the equivalent address in kernel space.
+ */
+ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
+ slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
+ shift = ia64_rse_slot_num(slot0_kaddr);
+ rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
+ rnat0_kaddr = rnat1_kaddr - 64;
+
+ if (ubspstore + 63 > urnat_addr) {
+ /* some bits need to be merged in from pt->ar_rnat */
+ umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
+ urnat = (pt->ar_rnat & umask);
+ mask &= ~umask;
+ if (!mask)
+ return urnat;
+ }
+
+ m = mask << shift;
+ if (rnat0_kaddr >= kbsp)
+ rnat0 = sw->ar_rnat;
+ else if (rnat0_kaddr > krbs)
+ rnat0 = *rnat0_kaddr;
+ urnat |= (rnat0 & m) >> shift;
+
+ m = mask >> (63 - shift);
+ if (rnat1_kaddr >= kbsp)
+ rnat1 = sw->ar_rnat;
+ else if (rnat1_kaddr > krbs)
+ rnat1 = *rnat1_kaddr;
+ urnat |= (rnat1 & m) << (63 - shift);
+ return urnat;
+}
+
+/*
+ * The reverse of get_rnat.
+ */
+static void
+put_rnat (struct task_struct *task, struct switch_stack *sw,
+ unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
+ unsigned long *urbs_end)
+{
+ unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
+ unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
+ long num_regs, nbits;
+ struct pt_regs *pt;
+ unsigned long cfm, *urbs_kargs;
+
+ pt = ia64_task_regs(task);
+ kbsp = (unsigned long *) sw->ar_bspstore;
+ ubspstore = (unsigned long *) pt->ar_bspstore;
+
+ urbs_kargs = urbs_end;
+ if (in_syscall(pt)) {
+ /*
+ * If entered via syscall, don't allow user to set rnat bits
+ * for syscall args.
+ */
+ cfm = pt->cr_ifs;
+ urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
+ }
+
+ if (urbs_kargs >= urnat_addr)
+ nbits = 63;
+ else {
+ if ((urnat_addr - 63) >= urbs_kargs)
+ return;
+ nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
+ }
+ mask = MASK(nbits);
+
+ /*
+ * First, figure out which bit number slot 0 in user-land maps
+ * to in the kernel rnat. Do this by figuring out how many
+ * register slots we're beyond the user's backingstore and
+ * then computing the equivalent address in kernel space.
+ */
+ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
+ slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
+ shift = ia64_rse_slot_num(slot0_kaddr);
+ rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
+ rnat0_kaddr = rnat1_kaddr - 64;
+
+ if (ubspstore + 63 > urnat_addr) {
+ /* some bits need to be place in pt->ar_rnat: */
+ umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
+ pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
+ mask &= ~umask;
+ if (!mask)
+ return;
+ }
+ /*
+ * Note: Section 11.1 of the EAS guarantees that bit 63 of an
+ * rnat slot is ignored. so we don't have to clear it here.
+ */
+ rnat0 = (urnat << shift);
+ m = mask << shift;
+ if (rnat0_kaddr >= kbsp)
+ sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
+ else if (rnat0_kaddr > krbs)
+ *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
+
+ rnat1 = (urnat >> (63 - shift));
+ m = mask >> (63 - shift);
+ if (rnat1_kaddr >= kbsp)
+ sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
+ else if (rnat1_kaddr > krbs)
+ *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
+}
+
+static inline int
+on_kernel_rbs (unsigned long addr, unsigned long bspstore,
+ unsigned long urbs_end)
+{
+ unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
+ urbs_end);
+ return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
+}
+
+/*
+ * Read a word from the user-level backing store of task CHILD. ADDR
+ * is the user-level address to read the word from, VAL a pointer to
+ * the return value, and USER_BSP gives the end of the user-level
+ * backing store (i.e., it's the address that would be in ar.bsp after
+ * the user executed a "cover" instruction).
+ *
+ * This routine takes care of accessing the kernel register backing
+ * store for those registers that got spilled there. It also takes
+ * care of calculating the appropriate RNaT collection words.
+ */
+long
+ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
+ unsigned long user_rbs_end, unsigned long addr, long *val)
+{
+ unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
+ struct pt_regs *child_regs;
+ size_t copied;
+ long ret;
+
+ urbs_end = (long *) user_rbs_end;
+ laddr = (unsigned long *) addr;
+ child_regs = ia64_task_regs(child);
+ bspstore = (unsigned long *) child_regs->ar_bspstore;
+ krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
+ if (on_kernel_rbs(addr, (unsigned long) bspstore,
+ (unsigned long) urbs_end))
+ {
+ /*
+ * Attempt to read the RBS in an area that's actually
+ * on the kernel RBS => read the corresponding bits in
+ * the kernel RBS.
+ */
+ rnat_addr = ia64_rse_rnat_addr(laddr);
+ ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
+
+ if (laddr == rnat_addr) {
+ /* return NaT collection word itself */
+ *val = ret;
+ return 0;
+ }
+
+ if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
+ /*
+ * It is implementation dependent whether the
+ * data portion of a NaT value gets saved on a
+ * st8.spill or RSE spill (e.g., see EAS 2.6,
+ * 4.4.4.6 Register Spill and Fill). To get
+ * consistent behavior across all possible
+ * IA-64 implementations, we return zero in
+ * this case.
+ */
+ *val = 0;
+ return 0;
+ }
+
+ if (laddr < urbs_end) {
+ /*
+ * The desired word is on the kernel RBS and
+ * is not a NaT.
+ */
+ regnum = ia64_rse_num_regs(bspstore, laddr);
+ *val = *ia64_rse_skip_regs(krbs, regnum);
+ return 0;
+ }
+ }
+ copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
+ if (copied != sizeof(ret))
+ return -EIO;
+ *val = ret;
+ return 0;
+}
+
+long
+ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
+ unsigned long user_rbs_end, unsigned long addr, long val)
+{
+ unsigned long *bspstore, *krbs, regnum, *laddr;
+ unsigned long *urbs_end = (long *) user_rbs_end;
+ struct pt_regs *child_regs;
+
+ laddr = (unsigned long *) addr;
+ child_regs = ia64_task_regs(child);
+ bspstore = (unsigned long *) child_regs->ar_bspstore;
+ krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
+ if (on_kernel_rbs(addr, (unsigned long) bspstore,
+ (unsigned long) urbs_end))
+ {
+ /*
+ * Attempt to write the RBS in an area that's actually
+ * on the kernel RBS => write the corresponding bits
+ * in the kernel RBS.
+ */
+ if (ia64_rse_is_rnat_slot(laddr))
+ put_rnat(child, child_stack, krbs, laddr, val,
+ urbs_end);
+ else {
+ if (laddr < urbs_end) {
+ regnum = ia64_rse_num_regs(bspstore, laddr);
+ *ia64_rse_skip_regs(krbs, regnum) = val;
+ }
+ }
+ } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
+ != sizeof(val))
+ return -EIO;
+ return 0;
+}
+
+/*
+ * Calculate the address of the end of the user-level register backing
+ * store. This is the address that would have been stored in ar.bsp
+ * if the user had executed a "cover" instruction right before
+ * entering the kernel. If CFMP is not NULL, it is used to return the
+ * "current frame mask" that was active at the time the kernel was
+ * entered.
+ */
+unsigned long
+ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
+ unsigned long *cfmp)
+{
+ unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
+ long ndirty;
+
+ krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
+ bspstore = (unsigned long *) pt->ar_bspstore;
+ ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
+
+ if (in_syscall(pt))
+ ndirty += (cfm & 0x7f);
+ else
+ cfm &= ~(1UL << 63); /* clear valid bit */
+
+ if (cfmp)
+ *cfmp = cfm;
+ return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
+}
+
+/*
+ * Synchronize (i.e, write) the RSE backing store living in kernel
+ * space to the VM of the CHILD task. SW and PT are the pointers to
+ * the switch_stack and pt_regs structures, respectively.
+ * USER_RBS_END is the user-level address at which the backing store
+ * ends.
+ */
+long
+ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
+ unsigned long user_rbs_start, unsigned long user_rbs_end)
+{
+ unsigned long addr, val;
+ long ret;
+
+ /* now copy word for word from kernel rbs to user rbs: */
+ for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
+ ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
+ if (ret < 0)
+ return ret;
+ if (access_process_vm(child, addr, &val, sizeof(val), 1)
+ != sizeof(val))
+ return -EIO;
+ }
+ return 0;
+}
+
+static inline int
+thread_matches (struct task_struct *thread, unsigned long addr)
+{
+ unsigned long thread_rbs_end;
+ struct pt_regs *thread_regs;
+
+ if (ptrace_check_attach(thread, 0) < 0)
+ /*
+ * If the thread is not in an attachable state, we'll
+ * ignore it. The net effect is that if ADDR happens
+ * to overlap with the portion of the thread's
+ * register backing store that is currently residing
+ * on the thread's kernel stack, then ptrace() may end
+ * up accessing a stale value. But if the thread
+ * isn't stopped, that's a problem anyhow, so we're
+ * doing as well as we can...
+ */
+ return 0;
+
+ thread_regs = ia64_task_regs(thread);
+ thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
+ if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
+ return 0;
+
+ return 1; /* looks like we've got a winner */
+}
+
+/*
+ * GDB apparently wants to be able to read the register-backing store
+ * of any thread when attached to a given process. If we are peeking
+ * or poking an address that happens to reside in the kernel-backing
+ * store of another thread, we need to attach to that thread, because
+ * otherwise we end up accessing stale data.
+ *
+ * task_list_lock must be read-locked before calling this routine!
+ */
+static struct task_struct *
+find_thread_for_addr (struct task_struct *child, unsigned long addr)
+{
+ struct task_struct *g, *p;
+ struct mm_struct *mm;
+ int mm_users;
+
+ if (!(mm = get_task_mm(child)))
+ return child;
+
+ /* -1 because of our get_task_mm(): */
+ mm_users = atomic_read(&mm->mm_users) - 1;
+ if (mm_users <= 1)
+ goto out; /* not multi-threaded */
+
+ /*
+ * First, traverse the child's thread-list. Good for scalability with
+ * NPTL-threads.
+ */
+ p = child;
+ do {
+ if (thread_matches(p, addr)) {
+ child = p;
+ goto out;
+ }
+ if (mm_users-- <= 1)
+ goto out;
+ } while ((p = next_thread(p)) != child);
+
+ do_each_thread(g, p) {
+ if (child->mm != mm)
+ continue;
+
+ if (thread_matches(p, addr)) {
+ child = p;
+ goto out;
+ }
+ } while_each_thread(g, p);
+ out:
+ mmput(mm);
+ return child;
+}
+
+/*
+ * Write f32-f127 back to task->thread.fph if it has been modified.
+ */
+inline void
+ia64_flush_fph (struct task_struct *task)
+{
+ struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
+
+ if (ia64_is_local_fpu_owner(task) && psr->mfh) {
+ psr->mfh = 0;
+ task->thread.flags |= IA64_THREAD_FPH_VALID;
+ ia64_save_fpu(&task->thread.fph[0]);
+ }
+}
+
+/*
+ * Sync the fph state of the task so that it can be manipulated
+ * through thread.fph. If necessary, f32-f127 are written back to
+ * thread.fph or, if the fph state hasn't been used before, thread.fph
+ * is cleared to zeroes. Also, access to f32-f127 is disabled to
+ * ensure that the task picks up the state from thread.fph when it
+ * executes again.
+ */
+void
+ia64_sync_fph (struct task_struct *task)
+{
+ struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
+
+ ia64_flush_fph(task);
+ if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
+ task->thread.flags |= IA64_THREAD_FPH_VALID;
+ memset(&task->thread.fph, 0, sizeof(task->thread.fph));
+ }
+ ia64_drop_fpu(task);
+ psr->dfh = 1;
+}
+
+static int
+access_fr (struct unw_frame_info *info, int regnum, int hi,
+ unsigned long *data, int write_access)
+{
+ struct ia64_fpreg fpval;
+ int ret;
+
+ ret = unw_get_fr(info, regnum, &fpval);
+ if (ret < 0)
+ return ret;
+
+ if (write_access) {
+ fpval.u.bits[hi] = *data;
+ ret = unw_set_fr(info, regnum, fpval);
+ } else
+ *data = fpval.u.bits[hi];
+ return ret;
+}
+
+/*
+ * Change the machine-state of CHILD such that it will return via the normal
+ * kernel exit-path, rather than the syscall-exit path.
+ */
+static void
+convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
+ unsigned long cfm)
+{
+ struct unw_frame_info info, prev_info;
+ unsigned long ip, pr;
+
+ unw_init_from_blocked_task(&info, child);
+ while (1) {
+ prev_info = info;
+ if (unw_unwind(&info) < 0)
+ return;
+ if (unw_get_rp(&info, &ip) < 0)
+ return;
+ if (ip < FIXADDR_USER_END)
+ break;
+ }
+
+ unw_get_pr(&prev_info, &pr);
+ pr &= ~(1UL << PRED_SYSCALL);
+ pr |= (1UL << PRED_NON_SYSCALL);
+ unw_set_pr(&prev_info, pr);
+
+ pt->cr_ifs = (1UL << 63) | cfm;
+}
+
+static int
+access_nat_bits (struct task_struct *child, struct pt_regs *pt,
+ struct unw_frame_info *info,
+ unsigned long *data, int write_access)
+{
+ unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
+ char nat = 0;
+
+ if (write_access) {
+ nat_bits = *data;
+ scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
+ if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
+ dprintk("ptrace: failed to set ar.unat\n");
+ return -1;
+ }
+ for (regnum = 4; regnum <= 7; ++regnum) {
+ unw_get_gr(info, regnum, &dummy, &nat);
+ unw_set_gr(info, regnum, dummy,
+ (nat_bits >> regnum) & 1);
+ }
+ } else {
+ if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
+ dprintk("ptrace: failed to read ar.unat\n");
+ return -1;
+ }
+ nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
+ for (regnum = 4; regnum <= 7; ++regnum) {
+ unw_get_gr(info, regnum, &dummy, &nat);
+ nat_bits |= (nat != 0) << regnum;
+ }
+ *data = nat_bits;
+ }
+ return 0;
+}
+
+static int
+access_uarea (struct task_struct *child, unsigned long addr,
+ unsigned long *data, int write_access)
+{
+ unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
+ struct switch_stack *sw;
+ struct pt_regs *pt;
+# define pt_reg_addr(pt, reg) ((void *) \
+ ((unsigned long) (pt) \
+ + offsetof(struct pt_regs, reg)))
+
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+
+ if ((addr & 0x7) != 0) {
+ dprintk("ptrace: unaligned register address 0x%lx\n", addr);
+ return -1;
+ }
+
+ if (addr < PT_F127 + 16) {
+ /* accessing fph */
+ if (write_access)
+ ia64_sync_fph(child);
+ else
+ ia64_flush_fph(child);
+ ptr = (unsigned long *)
+ ((unsigned long) &child->thread.fph + addr);
+ } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
+ /* scratch registers untouched by kernel (saved in pt_regs) */
+ ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
+ } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
+ /*
+ * Scratch registers untouched by kernel (saved in
+ * switch_stack).
+ */
+ ptr = (unsigned long *) ((long) sw
+ + (addr - PT_NAT_BITS - 32));
+ } else if (addr < PT_AR_LC + 8) {
+ /* preserved state: */
+ struct unw_frame_info info;
+ char nat = 0;
+ int ret;
+
+ unw_init_from_blocked_task(&info, child);
+ if (unw_unwind_to_user(&info) < 0)
+ return -1;
+
+ switch (addr) {
+ case PT_NAT_BITS:
+ return access_nat_bits(child, pt, &info,
+ data, write_access);
+
+ case PT_R4: case PT_R5: case PT_R6: case PT_R7:
+ if (write_access) {
+ /* read NaT bit first: */
+ unsigned long dummy;
+
+ ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
+ &dummy, &nat);
+ if (ret < 0)
+ return ret;
+ }
+ return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
+ &nat, write_access);
+
+ case PT_B1: case PT_B2: case PT_B3:
+ case PT_B4: case PT_B5:
+ return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
+ write_access);
+
+ case PT_AR_EC:
+ return unw_access_ar(&info, UNW_AR_EC, data,
+ write_access);
+
+ case PT_AR_LC:
+ return unw_access_ar(&info, UNW_AR_LC, data,
+ write_access);
+
+ default:
+ if (addr >= PT_F2 && addr < PT_F5 + 16)
+ return access_fr(&info, (addr - PT_F2)/16 + 2,
+ (addr & 8) != 0, data,
+ write_access);
+ else if (addr >= PT_F16 && addr < PT_F31 + 16)
+ return access_fr(&info,
+ (addr - PT_F16)/16 + 16,
+ (addr & 8) != 0,
+ data, write_access);
+ else {
+ dprintk("ptrace: rejecting access to register "
+ "address 0x%lx\n", addr);
+ return -1;
+ }
+ }
+ } else if (addr < PT_F9+16) {
+ /* scratch state */
+ switch (addr) {
+ case PT_AR_BSP:
+ /*
+ * By convention, we use PT_AR_BSP to refer to
+ * the end of the user-level backing store.
+ * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
+ * to get the real value of ar.bsp at the time
+ * the kernel was entered.
+ *
+ * Furthermore, when changing the contents of
+ * PT_AR_BSP (or PT_CFM) we MUST copy any
+ * users-level stacked registers that are
+ * stored on the kernel stack back to
+ * user-space because otherwise, we might end
+ * up clobbering kernel stacked registers.
+ * Also, if this happens while the task is
+ * blocked in a system call, which convert the
+ * state such that the non-system-call exit
+ * path is used. This ensures that the proper
+ * state will be picked up when resuming
+ * execution. However, it *also* means that
+ * once we write PT_AR_BSP/PT_CFM, it won't be
+ * possible to modify the syscall arguments of
+ * the pending system call any longer. This
+ * shouldn't be an issue because modifying
+ * PT_AR_BSP/PT_CFM generally implies that
+ * we're either abandoning the pending system
+ * call or that we defer it's re-execution
+ * (e.g., due to GDB doing an inferior
+ * function call).
+ */
+ urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
+ if (write_access) {
+ if (*data != urbs_end) {
+ if (ia64_sync_user_rbs(child, sw,
+ pt->ar_bspstore,
+ urbs_end) < 0)
+ return -1;
+ if (in_syscall(pt))
+ convert_to_non_syscall(child,
+ pt,
+ cfm);
+ /*
+ * Simulate user-level write
+ * of ar.bsp:
+ */
+ pt->loadrs = 0;
+ pt->ar_bspstore = *data;
+ }
+ } else
+ *data = urbs_end;
+ return 0;
+
+ case PT_CFM:
+ urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
+ if (write_access) {
+ if (((cfm ^ *data) & PFM_MASK) != 0) {
+ if (ia64_sync_user_rbs(child, sw,
+ pt->ar_bspstore,
+ urbs_end) < 0)
+ return -1;
+ if (in_syscall(pt))
+ convert_to_non_syscall(child,
+ pt,
+ cfm);
+ pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
+ | (*data & PFM_MASK));
+ }
+ } else
+ *data = cfm;
+ return 0;
+
+ case PT_CR_IPSR:
+ if (write_access)
+ pt->cr_ipsr = ((*data & IPSR_MASK)
+ | (pt->cr_ipsr & ~IPSR_MASK));
+ else
+ *data = (pt->cr_ipsr & IPSR_MASK);
+ return 0;
+
+ case PT_AR_RNAT:
+ urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
+ rnat_addr = (long) ia64_rse_rnat_addr((long *)
+ urbs_end);
+ if (write_access)
+ return ia64_poke(child, sw, urbs_end,
+ rnat_addr, *data);
+ else
+ return ia64_peek(child, sw, urbs_end,
+ rnat_addr, data);
+
+ case PT_R1:
+ ptr = pt_reg_addr(pt, r1);
+ break;
+ case PT_R2: case PT_R3:
+ ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
+ break;
+ case PT_R8: case PT_R9: case PT_R10: case PT_R11:
+ ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
+ break;
+ case PT_R12: case PT_R13:
+ ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
+ break;
+ case PT_R14:
+ ptr = pt_reg_addr(pt, r14);
+ break;
+ case PT_R15:
+ ptr = pt_reg_addr(pt, r15);
+ break;
+ case PT_R16: case PT_R17: case PT_R18: case PT_R19:
+ case PT_R20: case PT_R21: case PT_R22: case PT_R23:
+ case PT_R24: case PT_R25: case PT_R26: case PT_R27:
+ case PT_R28: case PT_R29: case PT_R30: case PT_R31:
+ ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
+ break;
+ case PT_B0:
+ ptr = pt_reg_addr(pt, b0);
+ break;
+ case PT_B6:
+ ptr = pt_reg_addr(pt, b6);
+ break;
+ case PT_B7:
+ ptr = pt_reg_addr(pt, b7);
+ break;
+ case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
+ case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
+ ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
+ break;
+ case PT_AR_BSPSTORE:
+ ptr = pt_reg_addr(pt, ar_bspstore);
+ break;
+ case PT_AR_RSC:
+ ptr = pt_reg_addr(pt, ar_rsc);
+ break;
+ case PT_AR_UNAT:
+ ptr = pt_reg_addr(pt, ar_unat);
+ break;
+ case PT_AR_PFS:
+ ptr = pt_reg_addr(pt, ar_pfs);
+ break;
+ case PT_AR_CCV:
+ ptr = pt_reg_addr(pt, ar_ccv);
+ break;
+ case PT_AR_FPSR:
+ ptr = pt_reg_addr(pt, ar_fpsr);
+ break;
+ case PT_CR_IIP:
+ ptr = pt_reg_addr(pt, cr_iip);
+ break;
+ case PT_PR:
+ ptr = pt_reg_addr(pt, pr);
+ break;
+ /* scratch register */
+
+ default:
+ /* disallow accessing anything else... */
+ dprintk("ptrace: rejecting access to register "
+ "address 0x%lx\n", addr);
+ return -1;
+ }
+ } else if (addr <= PT_AR_SSD) {
+ ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
+ } else {
+ /* access debug registers */
+
+ if (addr >= PT_IBR) {
+ regnum = (addr - PT_IBR) >> 3;
+ ptr = &child->thread.ibr[0];
+ } else {
+ regnum = (addr - PT_DBR) >> 3;
+ ptr = &child->thread.dbr[0];
+ }
+
+ if (regnum >= 8) {
+ dprintk("ptrace: rejecting access to register "
+ "address 0x%lx\n", addr);
+ return -1;
+ }
+#ifdef CONFIG_PERFMON
+ /*
+ * Check if debug registers are used by perfmon. This
+ * test must be done once we know that we can do the
+ * operation, i.e. the arguments are all valid, but
+ * before we start modifying the state.
+ *
+ * Perfmon needs to keep a count of how many processes
+ * are trying to modify the debug registers for system
+ * wide monitoring sessions.
+ *
+ * We also include read access here, because they may
+ * cause the PMU-installed debug register state
+ * (dbr[], ibr[]) to be reset. The two arrays are also
+ * used by perfmon, but we do not use
+ * IA64_THREAD_DBG_VALID. The registers are restored
+ * by the PMU context switch code.
+ */
+ if (pfm_use_debug_registers(child)) return -1;
+#endif
+
+ if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
+ child->thread.flags |= IA64_THREAD_DBG_VALID;
+ memset(child->thread.dbr, 0,
+ sizeof(child->thread.dbr));
+ memset(child->thread.ibr, 0,
+ sizeof(child->thread.ibr));
+ }
+
+ ptr += regnum;
+
+ if ((regnum & 1) && write_access) {
+ /* don't let the user set kernel-level breakpoints: */
+ *ptr = *data & ~(7UL << 56);
+ return 0;
+ }
+ }
+ if (write_access)
+ *ptr = *data;
+ else
+ *data = *ptr;
+ return 0;
+}
+
+static long
+ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
+{
+ unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
+ struct unw_frame_info info;
+ struct ia64_fpreg fpval;
+ struct switch_stack *sw;
+ struct pt_regs *pt;
+ long ret, retval = 0;
+ char nat = 0;
+ int i;
+
+ if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
+ return -EIO;
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+ unw_init_from_blocked_task(&info, child);
+ if (unw_unwind_to_user(&info) < 0) {
+ return -EIO;
+ }
+
+ if (((unsigned long) ppr & 0x7) != 0) {
+ dprintk("ptrace:unaligned register address %p\n", ppr);
+ return -EIO;
+ }
+
+ if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
+ || access_uarea(child, PT_AR_EC, &ec, 0) < 0
+ || access_uarea(child, PT_AR_LC, &lc, 0) < 0
+ || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
+ || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
+ || access_uarea(child, PT_CFM, &cfm, 0)
+ || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
+ return -EIO;
+
+ /* control regs */
+
+ retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
+ retval |= __put_user(psr, &ppr->cr_ipsr);
+
+ /* app regs */
+
+ retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
+ retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
+ retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
+ retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
+ retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
+ retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
+
+ retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
+ retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
+ retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
+ retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
+ retval |= __put_user(cfm, &ppr->cfm);
+
+ /* gr1-gr3 */
+
+ retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
+ retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
+
+ /* gr4-gr7 */
+
+ for (i = 4; i < 8; i++) {
+ if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
+ return -EIO;
+ retval |= __put_user(val, &ppr->gr[i]);
+ }
+
+ /* gr8-gr11 */
+
+ retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
+
+ /* gr12-gr15 */
+
+ retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
+ retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
+ retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
+
+ /* gr16-gr31 */
+
+ retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
+
+ /* b0 */
+
+ retval |= __put_user(pt->b0, &ppr->br[0]);
+
+ /* b1-b5 */
+
+ for (i = 1; i < 6; i++) {
+ if (unw_access_br(&info, i, &val, 0) < 0)
+ return -EIO;
+ __put_user(val, &ppr->br[i]);
+ }
+
+ /* b6-b7 */
+
+ retval |= __put_user(pt->b6, &ppr->br[6]);
+ retval |= __put_user(pt->b7, &ppr->br[7]);
+
+ /* fr2-fr5 */
+
+ for (i = 2; i < 6; i++) {
+ if (unw_get_fr(&info, i, &fpval) < 0)
+ return -EIO;
+ retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
+ }
+
+ /* fr6-fr11 */
+
+ retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
+ sizeof(struct ia64_fpreg) * 6);
+
+ /* fp scratch regs(12-15) */
+
+ retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
+ sizeof(struct ia64_fpreg) * 4);
+
+ /* fr16-fr31 */
+
+ for (i = 16; i < 32; i++) {
+ if (unw_get_fr(&info, i, &fpval) < 0)
+ return -EIO;
+ retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
+ }
+
+ /* fph */
+
+ ia64_flush_fph(child);
+ retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
+ sizeof(ppr->fr[32]) * 96);
+
+ /* preds */
+
+ retval |= __put_user(pt->pr, &ppr->pr);
+
+ /* nat bits */
+
+ retval |= __put_user(nat_bits, &ppr->nat);
+
+ ret = retval ? -EIO : 0;
+ return ret;
+}
+
+static long
+ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
+{
+ unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
+ struct unw_frame_info info;
+ struct switch_stack *sw;
+ struct ia64_fpreg fpval;
+ struct pt_regs *pt;
+ long ret, retval = 0;
+ int i;
+
+ memset(&fpval, 0, sizeof(fpval));
+
+ if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
+ return -EIO;
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+ unw_init_from_blocked_task(&info, child);
+ if (unw_unwind_to_user(&info) < 0) {
+ return -EIO;
+ }
+
+ if (((unsigned long) ppr & 0x7) != 0) {
+ dprintk("ptrace:unaligned register address %p\n", ppr);
+ return -EIO;
+ }
+
+ /* control regs */
+
+ retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
+ retval |= __get_user(psr, &ppr->cr_ipsr);
+
+ /* app regs */
+
+ retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
+ retval |= __get_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
+ retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
+ retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
+ retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
+ retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
+
+ retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
+ retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
+ retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
+ retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
+ retval |= __get_user(cfm, &ppr->cfm);
+
+ /* gr1-gr3 */
+
+ retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
+ retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
+
+ /* gr4-gr7 */
+
+ for (i = 4; i < 8; i++) {
+ retval |= __get_user(val, &ppr->gr[i]);
+ /* NaT bit will be set via PT_NAT_BITS: */
+ if (unw_set_gr(&info, i, val, 0) < 0)
+ return -EIO;
+ }
+
+ /* gr8-gr11 */
+
+ retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
+
+ /* gr12-gr15 */
+
+ retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
+ retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
+ retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
+
+ /* gr16-gr31 */
+
+ retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
+
+ /* b0 */
+
+ retval |= __get_user(pt->b0, &ppr->br[0]);
+
+ /* b1-b5 */
+
+ for (i = 1; i < 6; i++) {
+ retval |= __get_user(val, &ppr->br[i]);
+ unw_set_br(&info, i, val);
+ }
+
+ /* b6-b7 */
+
+ retval |= __get_user(pt->b6, &ppr->br[6]);
+ retval |= __get_user(pt->b7, &ppr->br[7]);
+
+ /* fr2-fr5 */
+
+ for (i = 2; i < 6; i++) {
+ retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
+ if (unw_set_fr(&info, i, fpval) < 0)
+ return -EIO;
+ }
+
+ /* fr6-fr11 */
+
+ retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
+ sizeof(ppr->fr[6]) * 6);
+
+ /* fp scratch regs(12-15) */
+
+ retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
+ sizeof(ppr->fr[12]) * 4);
+
+ /* fr16-fr31 */
+
+ for (i = 16; i < 32; i++) {
+ retval |= __copy_from_user(&fpval, &ppr->fr[i],
+ sizeof(fpval));
+ if (unw_set_fr(&info, i, fpval) < 0)
+ return -EIO;
+ }
+
+ /* fph */
+
+ ia64_sync_fph(child);
+ retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
+ sizeof(ppr->fr[32]) * 96);
+
+ /* preds */
+
+ retval |= __get_user(pt->pr, &ppr->pr);
+
+ /* nat bits */
+
+ retval |= __get_user(nat_bits, &ppr->nat);
+
+ retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
+ retval |= access_uarea(child, PT_AR_EC, &ec, 1);
+ retval |= access_uarea(child, PT_AR_LC, &lc, 1);
+ retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
+ retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
+ retval |= access_uarea(child, PT_CFM, &cfm, 1);
+ retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
+
+ ret = retval ? -EIO : 0;
+ return ret;
+}
+
+/*
+ * Called by kernel/ptrace.c when detaching..
+ *
+ * Make sure the single step bit is not set.
+ */
+void
+ptrace_disable (struct task_struct *child)
+{
+ struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));
+
+ /* make sure the single step/taken-branch trap bits are not set: */
+ child_psr->ss = 0;
+ child_psr->tb = 0;
+}
+
+asmlinkage long
+sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
+{
+ struct pt_regs *pt;
+ unsigned long urbs_end, peek_or_poke;
+ struct task_struct *child;
+ struct switch_stack *sw;
+ long ret;
+
+ lock_kernel();
+ ret = -EPERM;
+ if (request == PTRACE_TRACEME) {
+ /* are we already being traced? */
+ if (current->ptrace & PT_PTRACED)
+ goto out;
+ ret = security_ptrace(current->parent, current);
+ if (ret)
+ goto out;
+ current->ptrace |= PT_PTRACED;
+ ret = 0;
+ goto out;
+ }
+
+ peek_or_poke = (request == PTRACE_PEEKTEXT
+ || request == PTRACE_PEEKDATA
+ || request == PTRACE_POKETEXT
+ || request == PTRACE_POKEDATA);
+ ret = -ESRCH;
+ read_lock(&tasklist_lock);
+ {
+ child = find_task_by_pid(pid);
+ if (child) {
+ if (peek_or_poke)
+ child = find_thread_for_addr(child, addr);
+ get_task_struct(child);
+ }
+ }
+ read_unlock(&tasklist_lock);
+ if (!child)
+ goto out;
+ ret = -EPERM;
+ if (pid == 1) /* no messing around with init! */
+ goto out_tsk;
+
+ if (request == PTRACE_ATTACH) {
+ ret = ptrace_attach(child);
+ goto out_tsk;
+ }
+
+ ret = ptrace_check_attach(child, request == PTRACE_KILL);
+ if (ret < 0)
+ goto out_tsk;
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+
+ switch (request) {
+ case PTRACE_PEEKTEXT:
+ case PTRACE_PEEKDATA:
+ /* read word at location addr */
+ urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
+ ret = ia64_peek(child, sw, urbs_end, addr, &data);
+ if (ret == 0) {
+ ret = data;
+ /* ensure "ret" is not mistaken as an error code: */
+ force_successful_syscall_return();
+ }
+ goto out_tsk;
+
+ case PTRACE_POKETEXT:
+ case PTRACE_POKEDATA:
+ /* write the word at location addr */
+ urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
+ ret = ia64_poke(child, sw, urbs_end, addr, data);
+ goto out_tsk;
+
+ case PTRACE_PEEKUSR:
+ /* read the word at addr in the USER area */
+ if (access_uarea(child, addr, &data, 0) < 0) {
+ ret = -EIO;
+ goto out_tsk;
+ }
+ ret = data;
+ /* ensure "ret" is not mistaken as an error code */
+ force_successful_syscall_return();
+ goto out_tsk;
+
+ case PTRACE_POKEUSR:
+ /* write the word at addr in the USER area */
+ if (access_uarea(child, addr, &data, 1) < 0) {
+ ret = -EIO;
+ goto out_tsk;
+ }
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_OLD_GETSIGINFO:
+ /* for backwards-compatibility */
+ ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
+ goto out_tsk;
+
+ case PTRACE_OLD_SETSIGINFO:
+ /* for backwards-compatibility */
+ ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
+ goto out_tsk;
+
+ case PTRACE_SYSCALL:
+ /* continue and stop at next (return from) syscall */
+ case PTRACE_CONT:
+ /* restart after signal. */
+ ret = -EIO;
+ if (data > _NSIG)
+ goto out_tsk;
+ if (request == PTRACE_SYSCALL)
+ set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
+ else
+ clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
+ child->exit_code = data;
+
+ /*
+ * Make sure the single step/taken-branch trap bits
+ * are not set:
+ */
+ ia64_psr(pt)->ss = 0;
+ ia64_psr(pt)->tb = 0;
+
+ wake_up_process(child);
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_KILL:
+ /*
+ * Make the child exit. Best I can do is send it a
+ * sigkill. Perhaps it should be put in the status
+ * that it wants to exit.
+ */
+ if (child->exit_state == EXIT_ZOMBIE)
+ /* already dead */
+ goto out_tsk;
+ child->exit_code = SIGKILL;
+
+ ptrace_disable(child);
+ wake_up_process(child);
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_SINGLESTEP:
+ /* let child execute for one instruction */
+ case PTRACE_SINGLEBLOCK:
+ ret = -EIO;
+ if (data > _NSIG)
+ goto out_tsk;
+
+ clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
+ if (request == PTRACE_SINGLESTEP) {
+ ia64_psr(pt)->ss = 1;
+ } else {
+ ia64_psr(pt)->tb = 1;
+ }
+ child->exit_code = data;
+
+ /* give it a chance to run. */
+ wake_up_process(child);
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_DETACH:
+ /* detach a process that was attached. */
+ ret = ptrace_detach(child, data);
+ goto out_tsk;
+
+ case PTRACE_GETREGS:
+ ret = ptrace_getregs(child,
+ (struct pt_all_user_regs __user *) data);
+ goto out_tsk;
+
+ case PTRACE_SETREGS:
+ ret = ptrace_setregs(child,
+ (struct pt_all_user_regs __user *) data);
+ goto out_tsk;
+
+ default:
+ ret = ptrace_request(child, request, addr, data);
+ goto out_tsk;
+ }
+ out_tsk:
+ put_task_struct(child);
+ out:
+ unlock_kernel();
+ return ret;
+}
+
+
+void
+syscall_trace (void)
+{
+ if (!test_thread_flag(TIF_SYSCALL_TRACE))
+ return;
+ if (!(current->ptrace & PT_PTRACED))
+ return;
+ /*
+ * The 0x80 provides a way for the tracing parent to
+ * distinguish between a syscall stop and SIGTRAP delivery.
+ */
+ ptrace_notify(SIGTRAP
+ | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
+
+ /*
+ * This isn't the same as continuing with a signal, but it
+ * will do for normal use. strace only continues with a
+ * signal if the stopping signal is not SIGTRAP. -brl
+ */
+ if (current->exit_code) {
+ send_sig(current->exit_code, current, 1);
+ current->exit_code = 0;
+ }
+}
+
+/* "asmlinkage" so the input arguments are preserved... */
+
+asmlinkage void
+syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
+ long arg4, long arg5, long arg6, long arg7,
+ struct pt_regs regs)
+{
+ long syscall;
+
+ if (unlikely(current->audit_context)) {
+ if (IS_IA32_PROCESS(&regs))
+ syscall = regs.r1;
+ else
+ syscall = regs.r15;
+
+ audit_syscall_entry(current, syscall, arg0, arg1, arg2, arg3);
+ }
+
+ if (test_thread_flag(TIF_SYSCALL_TRACE)
+ && (current->ptrace & PT_PTRACED))
+ syscall_trace();
+}
+
+/* "asmlinkage" so the input arguments are preserved... */
+
+asmlinkage void
+syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
+ long arg4, long arg5, long arg6, long arg7,
+ struct pt_regs regs)
+{
+ if (unlikely(current->audit_context))
+ audit_syscall_exit(current, regs.r8);
+
+ if (test_thread_flag(TIF_SYSCALL_TRACE)
+ && (current->ptrace & PT_PTRACED))
+ syscall_trace();
+}
diff --git a/arch/ia64/kernel/sal.c b/arch/ia64/kernel/sal.c
new file mode 100644
index 0000000..acc0f13
--- /dev/null
+++ b/arch/ia64/kernel/sal.c
@@ -0,0 +1,302 @@
+/*
+ * System Abstraction Layer (SAL) interface routines.
+ *
+ * Copyright (C) 1998, 1999, 2001, 2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ */
+#include <linux/config.h>
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/string.h>
+
+#include <asm/page.h>
+#include <asm/sal.h>
+#include <asm/pal.h>
+
+ __cacheline_aligned DEFINE_SPINLOCK(sal_lock);
+unsigned long sal_platform_features;
+
+unsigned short sal_revision;
+unsigned short sal_version;
+
+#define SAL_MAJOR(x) ((x) >> 8)
+#define SAL_MINOR(x) ((x) & 0xff)
+
+static struct {
+ void *addr; /* function entry point */
+ void *gpval; /* gp value to use */
+} pdesc;
+
+static long
+default_handler (void)
+{
+ return -1;
+}
+
+ia64_sal_handler ia64_sal = (ia64_sal_handler) default_handler;
+ia64_sal_desc_ptc_t *ia64_ptc_domain_info;
+
+const char *
+ia64_sal_strerror (long status)
+{
+ const char *str;
+ switch (status) {
+ case 0: str = "Call completed without error"; break;
+ case 1: str = "Effect a warm boot of the system to complete "
+ "the update"; break;
+ case -1: str = "Not implemented"; break;
+ case -2: str = "Invalid argument"; break;
+ case -3: str = "Call completed with error"; break;
+ case -4: str = "Virtual address not registered"; break;
+ case -5: str = "No information available"; break;
+ case -6: str = "Insufficient space to add the entry"; break;
+ case -7: str = "Invalid entry_addr value"; break;
+ case -8: str = "Invalid interrupt vector"; break;
+ case -9: str = "Requested memory not available"; break;
+ case -10: str = "Unable to write to the NVM device"; break;
+ case -11: str = "Invalid partition type specified"; break;
+ case -12: str = "Invalid NVM_Object id specified"; break;
+ case -13: str = "NVM_Object already has the maximum number "
+ "of partitions"; break;
+ case -14: str = "Insufficient space in partition for the "
+ "requested write sub-function"; break;
+ case -15: str = "Insufficient data buffer space for the "
+ "requested read record sub-function"; break;
+ case -16: str = "Scratch buffer required for the write/delete "
+ "sub-function"; break;
+ case -17: str = "Insufficient space in the NVM_Object for the "
+ "requested create sub-function"; break;
+ case -18: str = "Invalid value specified in the partition_rec "
+ "argument"; break;
+ case -19: str = "Record oriented I/O not supported for this "
+ "partition"; break;
+ case -20: str = "Bad format of record to be written or "
+ "required keyword variable not "
+ "specified"; break;
+ default: str = "Unknown SAL status code"; break;
+ }
+ return str;
+}
+
+void __init
+ia64_sal_handler_init (void *entry_point, void *gpval)
+{
+ /* fill in the SAL procedure descriptor and point ia64_sal to it: */
+ pdesc.addr = entry_point;
+ pdesc.gpval = gpval;
+ ia64_sal = (ia64_sal_handler) &pdesc;
+}
+
+static void __init
+check_versions (struct ia64_sal_systab *systab)
+{
+ sal_revision = (systab->sal_rev_major << 8) | systab->sal_rev_minor;
+ sal_version = (systab->sal_b_rev_major << 8) | systab->sal_b_rev_minor;
+
+ /* Check for broken firmware */
+ if ((sal_revision == SAL_VERSION_CODE(49, 29))
+ && (sal_version == SAL_VERSION_CODE(49, 29)))
+ {
+ /*
+ * Old firmware for zx2000 prototypes have this weird version number,
+ * reset it to something sane.
+ */
+ sal_revision = SAL_VERSION_CODE(2, 8);
+ sal_version = SAL_VERSION_CODE(0, 0);
+ }
+}
+
+static void __init
+sal_desc_entry_point (void *p)
+{
+ struct ia64_sal_desc_entry_point *ep = p;
+ ia64_pal_handler_init(__va(ep->pal_proc));
+ ia64_sal_handler_init(__va(ep->sal_proc), __va(ep->gp));
+}
+
+#ifdef CONFIG_SMP
+static void __init
+set_smp_redirect (int flag)
+{
+#ifndef CONFIG_HOTPLUG_CPU
+ if (no_int_routing)
+ smp_int_redirect &= ~flag;
+ else
+ smp_int_redirect |= flag;
+#else
+ /*
+ * For CPU Hotplug we dont want to do any chipset supported
+ * interrupt redirection. The reason is this would require that
+ * All interrupts be stopped and hard bind the irq to a cpu.
+ * Later when the interrupt is fired we need to set the redir hint
+ * on again in the vector. This is combersome for something that the
+ * user mode irq balancer will solve anyways.
+ */
+ no_int_routing=1;
+ smp_int_redirect &= ~flag;
+#endif
+}
+#else
+#define set_smp_redirect(flag) do { } while (0)
+#endif
+
+static void __init
+sal_desc_platform_feature (void *p)
+{
+ struct ia64_sal_desc_platform_feature *pf = p;
+ sal_platform_features = pf->feature_mask;
+
+ printk(KERN_INFO "SAL Platform features:");
+ if (!sal_platform_features) {
+ printk(" None\n");
+ return;
+ }
+
+ if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_BUS_LOCK)
+ printk(" BusLock");
+ if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT) {
+ printk(" IRQ_Redirection");
+ set_smp_redirect(SMP_IRQ_REDIRECTION);
+ }
+ if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT) {
+ printk(" IPI_Redirection");
+ set_smp_redirect(SMP_IPI_REDIRECTION);
+ }
+ if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)
+ printk(" ITC_Drift");
+ printk("\n");
+}
+
+#ifdef CONFIG_SMP
+static void __init
+sal_desc_ap_wakeup (void *p)
+{
+ struct ia64_sal_desc_ap_wakeup *ap = p;
+
+ switch (ap->mechanism) {
+ case IA64_SAL_AP_EXTERNAL_INT:
+ ap_wakeup_vector = ap->vector;
+ printk(KERN_INFO "SAL: AP wakeup using external interrupt "
+ "vector 0x%lx\n", ap_wakeup_vector);
+ break;
+ default:
+ printk(KERN_ERR "SAL: AP wakeup mechanism unsupported!\n");
+ break;
+ }
+}
+
+static void __init
+chk_nointroute_opt(void)
+{
+ char *cp;
+ extern char saved_command_line[];
+
+ for (cp = saved_command_line; *cp; ) {
+ if (memcmp(cp, "nointroute", 10) == 0) {
+ no_int_routing = 1;
+ printk ("no_int_routing on\n");
+ break;
+ } else {
+ while (*cp != ' ' && *cp)
+ ++cp;
+ while (*cp == ' ')
+ ++cp;
+ }
+ }
+}
+
+#else
+static void __init sal_desc_ap_wakeup(void *p) { }
+#endif
+
+void __init
+ia64_sal_init (struct ia64_sal_systab *systab)
+{
+ char *p;
+ int i;
+
+ if (!systab) {
+ printk(KERN_WARNING "Hmm, no SAL System Table.\n");
+ return;
+ }
+
+ if (strncmp(systab->signature, "SST_", 4) != 0)
+ printk(KERN_ERR "bad signature in system table!");
+
+ check_versions(systab);
+#ifdef CONFIG_SMP
+ chk_nointroute_opt();
+#endif
+
+ /* revisions are coded in BCD, so %x does the job for us */
+ printk(KERN_INFO "SAL %x.%x: %.32s %.32s%sversion %x.%x\n",
+ SAL_MAJOR(sal_revision), SAL_MINOR(sal_revision),
+ systab->oem_id, systab->product_id,
+ systab->product_id[0] ? " " : "",
+ SAL_MAJOR(sal_version), SAL_MINOR(sal_version));
+
+ p = (char *) (systab + 1);
+ for (i = 0; i < systab->entry_count; i++) {
+ /*
+ * The first byte of each entry type contains the type
+ * descriptor.
+ */
+ switch (*p) {
+ case SAL_DESC_ENTRY_POINT:
+ sal_desc_entry_point(p);
+ break;
+ case SAL_DESC_PLATFORM_FEATURE:
+ sal_desc_platform_feature(p);
+ break;
+ case SAL_DESC_PTC:
+ ia64_ptc_domain_info = (ia64_sal_desc_ptc_t *)p;
+ break;
+ case SAL_DESC_AP_WAKEUP:
+ sal_desc_ap_wakeup(p);
+ break;
+ }
+ p += SAL_DESC_SIZE(*p);
+ }
+}
+
+int
+ia64_sal_oemcall(struct ia64_sal_retval *isrvp, u64 oemfunc, u64 arg1,
+ u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7)
+{
+ if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX)
+ return -1;
+ SAL_CALL(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
+ return 0;
+}
+EXPORT_SYMBOL(ia64_sal_oemcall);
+
+int
+ia64_sal_oemcall_nolock(struct ia64_sal_retval *isrvp, u64 oemfunc, u64 arg1,
+ u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6,
+ u64 arg7)
+{
+ if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX)
+ return -1;
+ SAL_CALL_NOLOCK(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6,
+ arg7);
+ return 0;
+}
+EXPORT_SYMBOL(ia64_sal_oemcall_nolock);
+
+int
+ia64_sal_oemcall_reentrant(struct ia64_sal_retval *isrvp, u64 oemfunc,
+ u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5,
+ u64 arg6, u64 arg7)
+{
+ if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX)
+ return -1;
+ SAL_CALL_REENTRANT(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6,
+ arg7);
+ return 0;
+}
+EXPORT_SYMBOL(ia64_sal_oemcall_reentrant);
diff --git a/arch/ia64/kernel/salinfo.c b/arch/ia64/kernel/salinfo.c
new file mode 100644
index 0000000..d227fab
--- /dev/null
+++ b/arch/ia64/kernel/salinfo.c
@@ -0,0 +1,629 @@
+/*
+ * salinfo.c
+ *
+ * Creates entries in /proc/sal for various system features.
+ *
+ * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (c) 2003 Hewlett-Packard Co
+ * Bjorn Helgaas <bjorn.helgaas@hp.com>
+ *
+ * 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
+ * code to create this file
+ * Oct 23 2003 kaos@sgi.com
+ * Replace IPI with set_cpus_allowed() to read a record from the required cpu.
+ * Redesign salinfo log processing to separate interrupt and user space
+ * contexts.
+ * Cache the record across multi-block reads from user space.
+ * Support > 64 cpus.
+ * Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
+ *
+ * Jan 28 2004 kaos@sgi.com
+ * Periodically check for outstanding MCA or INIT records.
+ *
+ * Dec 5 2004 kaos@sgi.com
+ * Standardize which records are cleared automatically.
+ */
+
+#include <linux/types.h>
+#include <linux/proc_fs.h>
+#include <linux/module.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/timer.h>
+#include <linux/vmalloc.h>
+
+#include <asm/semaphore.h>
+#include <asm/sal.h>
+#include <asm/uaccess.h>
+
+MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
+MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
+MODULE_LICENSE("GPL");
+
+static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
+
+typedef struct {
+ const char *name; /* name of the proc entry */
+ unsigned long feature; /* feature bit */
+ struct proc_dir_entry *entry; /* registered entry (removal) */
+} salinfo_entry_t;
+
+/*
+ * List {name,feature} pairs for every entry in /proc/sal/<feature>
+ * that this module exports
+ */
+static salinfo_entry_t salinfo_entries[]={
+ { "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
+ { "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
+ { "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
+ { "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
+};
+
+#define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
+
+static char *salinfo_log_name[] = {
+ "mca",
+ "init",
+ "cmc",
+ "cpe",
+};
+
+static struct proc_dir_entry *salinfo_proc_entries[
+ ARRAY_SIZE(salinfo_entries) + /* /proc/sal/bus_lock */
+ ARRAY_SIZE(salinfo_log_name) + /* /proc/sal/{mca,...} */
+ (2 * ARRAY_SIZE(salinfo_log_name)) + /* /proc/sal/mca/{event,data} */
+ 1]; /* /proc/sal */
+
+/* Some records we get ourselves, some are accessed as saved data in buffers
+ * that are owned by mca.c.
+ */
+struct salinfo_data_saved {
+ u8* buffer;
+ u64 size;
+ u64 id;
+ int cpu;
+};
+
+/* State transitions. Actions are :-
+ * Write "read <cpunum>" to the data file.
+ * Write "clear <cpunum>" to the data file.
+ * Write "oemdata <cpunum> <offset> to the data file.
+ * Read from the data file.
+ * Close the data file.
+ *
+ * Start state is NO_DATA.
+ *
+ * NO_DATA
+ * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
+ * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
+ * write "oemdata <cpunum> <offset> -> return -EINVAL.
+ * read data -> return EOF.
+ * close -> unchanged. Free record areas.
+ *
+ * LOG_RECORD
+ * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
+ * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
+ * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
+ * read data -> return the INIT/MCA/CMC/CPE record.
+ * close -> unchanged. Keep record areas.
+ *
+ * OEMDATA
+ * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
+ * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
+ * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
+ * read data -> return the formatted oemdata.
+ * close -> unchanged. Keep record areas.
+ *
+ * Closing the data file does not change the state. This allows shell scripts
+ * to manipulate salinfo data, each shell redirection opens the file, does one
+ * action then closes it again. The record areas are only freed at close when
+ * the state is NO_DATA.
+ */
+enum salinfo_state {
+ STATE_NO_DATA,
+ STATE_LOG_RECORD,
+ STATE_OEMDATA,
+};
+
+struct salinfo_data {
+ volatile cpumask_t cpu_event; /* which cpus have outstanding events */
+ struct semaphore sem; /* count of cpus with outstanding events (bits set in cpu_event) */
+ u8 *log_buffer;
+ u64 log_size;
+ u8 *oemdata; /* decoded oem data */
+ u64 oemdata_size;
+ int open; /* single-open to prevent races */
+ u8 type;
+ u8 saved_num; /* using a saved record? */
+ enum salinfo_state state :8; /* processing state */
+ u8 padding;
+ int cpu_check; /* next CPU to check */
+ struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
+};
+
+static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
+
+static spinlock_t data_lock, data_saved_lock;
+
+/** salinfo_platform_oemdata - optional callback to decode oemdata from an error
+ * record.
+ * @sect_header: pointer to the start of the section to decode.
+ * @oemdata: returns vmalloc area containing the decded output.
+ * @oemdata_size: returns length of decoded output (strlen).
+ *
+ * Description: If user space asks for oem data to be decoded by the kernel
+ * and/or prom and the platform has set salinfo_platform_oemdata to the address
+ * of a platform specific routine then call that routine. salinfo_platform_oemdata
+ * vmalloc's and formats its output area, returning the address of the text
+ * and its strlen. Returns 0 for success, -ve for error. The callback is
+ * invoked on the cpu that generated the error record.
+ */
+int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
+
+struct salinfo_platform_oemdata_parms {
+ const u8 *efi_guid;
+ u8 **oemdata;
+ u64 *oemdata_size;
+ int ret;
+};
+
+static void
+salinfo_platform_oemdata_cpu(void *context)
+{
+ struct salinfo_platform_oemdata_parms *parms = context;
+ parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
+}
+
+static void
+shift1_data_saved (struct salinfo_data *data, int shift)
+{
+ memcpy(data->data_saved+shift, data->data_saved+shift+1,
+ (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
+ memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
+ sizeof(data->data_saved[0]));
+}
+
+/* This routine is invoked in interrupt context. Note: mca.c enables
+ * interrupts before calling this code for CMC/CPE. MCA and INIT events are
+ * not irq safe, do not call any routines that use spinlocks, they may deadlock.
+ * MCA and INIT records are recorded, a timer event will look for any
+ * outstanding events and wake up the user space code.
+ *
+ * The buffer passed from mca.c points to the output from ia64_log_get. This is
+ * a persistent buffer but its contents can change between the interrupt and
+ * when user space processes the record. Save the record id to identify
+ * changes.
+ */
+void
+salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
+{
+ struct salinfo_data *data = salinfo_data + type;
+ struct salinfo_data_saved *data_saved;
+ unsigned long flags = 0;
+ int i;
+ int saved_size = ARRAY_SIZE(data->data_saved);
+
+ BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
+
+ if (irqsafe)
+ spin_lock_irqsave(&data_saved_lock, flags);
+ for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
+ if (!data_saved->buffer)
+ break;
+ }
+ if (i == saved_size) {
+ if (!data->saved_num) {
+ shift1_data_saved(data, 0);
+ data_saved = data->data_saved + saved_size - 1;
+ } else
+ data_saved = NULL;
+ }
+ if (data_saved) {
+ data_saved->cpu = smp_processor_id();
+ data_saved->id = ((sal_log_record_header_t *)buffer)->id;
+ data_saved->size = size;
+ data_saved->buffer = buffer;
+ }
+ if (irqsafe)
+ spin_unlock_irqrestore(&data_saved_lock, flags);
+
+ if (!test_and_set_bit(smp_processor_id(), &data->cpu_event)) {
+ if (irqsafe)
+ up(&data->sem);
+ }
+}
+
+/* Check for outstanding MCA/INIT records every minute (arbitrary) */
+#define SALINFO_TIMER_DELAY (60*HZ)
+static struct timer_list salinfo_timer;
+
+static void
+salinfo_timeout_check(struct salinfo_data *data)
+{
+ int i;
+ if (!data->open)
+ return;
+ for (i = 0; i < NR_CPUS; ++i) {
+ if (test_bit(i, &data->cpu_event)) {
+ /* double up() is not a problem, user space will see no
+ * records for the additional "events".
+ */
+ up(&data->sem);
+ }
+ }
+}
+
+static void
+salinfo_timeout (unsigned long arg)
+{
+ salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
+ salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
+ salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
+ add_timer(&salinfo_timer);
+}
+
+static int
+salinfo_event_open(struct inode *inode, struct file *file)
+{
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ return 0;
+}
+
+static ssize_t
+salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
+{
+ struct inode *inode = file->f_dentry->d_inode;
+ struct proc_dir_entry *entry = PDE(inode);
+ struct salinfo_data *data = entry->data;
+ char cmd[32];
+ size_t size;
+ int i, n, cpu = -1;
+
+retry:
+ if (down_trylock(&data->sem)) {
+ if (file->f_flags & O_NONBLOCK)
+ return -EAGAIN;
+ if (down_interruptible(&data->sem))
+ return -ERESTARTSYS;
+ }
+
+ n = data->cpu_check;
+ for (i = 0; i < NR_CPUS; i++) {
+ if (test_bit(n, &data->cpu_event)) {
+ cpu = n;
+ break;
+ }
+ if (++n == NR_CPUS)
+ n = 0;
+ }
+
+ if (cpu == -1)
+ goto retry;
+
+ /* events are sticky until the user says "clear" */
+ up(&data->sem);
+
+ /* for next read, start checking at next CPU */
+ data->cpu_check = cpu;
+ if (++data->cpu_check == NR_CPUS)
+ data->cpu_check = 0;
+
+ snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
+
+ size = strlen(cmd);
+ if (size > count)
+ size = count;
+ if (copy_to_user(buffer, cmd, size))
+ return -EFAULT;
+
+ return size;
+}
+
+static struct file_operations salinfo_event_fops = {
+ .open = salinfo_event_open,
+ .read = salinfo_event_read,
+};
+
+static int
+salinfo_log_open(struct inode *inode, struct file *file)
+{
+ struct proc_dir_entry *entry = PDE(inode);
+ struct salinfo_data *data = entry->data;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ spin_lock(&data_lock);
+ if (data->open) {
+ spin_unlock(&data_lock);
+ return -EBUSY;
+ }
+ data->open = 1;
+ spin_unlock(&data_lock);
+
+ if (data->state == STATE_NO_DATA &&
+ !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
+ data->open = 0;
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int
+salinfo_log_release(struct inode *inode, struct file *file)
+{
+ struct proc_dir_entry *entry = PDE(inode);
+ struct salinfo_data *data = entry->data;
+
+ if (data->state == STATE_NO_DATA) {
+ vfree(data->log_buffer);
+ vfree(data->oemdata);
+ data->log_buffer = NULL;
+ data->oemdata = NULL;
+ }
+ spin_lock(&data_lock);
+ data->open = 0;
+ spin_unlock(&data_lock);
+ return 0;
+}
+
+static void
+call_on_cpu(int cpu, void (*fn)(void *), void *arg)
+{
+ cpumask_t save_cpus_allowed, new_cpus_allowed;
+ memcpy(&save_cpus_allowed, &current->cpus_allowed, sizeof(save_cpus_allowed));
+ memset(&new_cpus_allowed, 0, sizeof(new_cpus_allowed));
+ set_bit(cpu, &new_cpus_allowed);
+ set_cpus_allowed(current, new_cpus_allowed);
+ (*fn)(arg);
+ set_cpus_allowed(current, save_cpus_allowed);
+}
+
+static void
+salinfo_log_read_cpu(void *context)
+{
+ struct salinfo_data *data = context;
+ sal_log_record_header_t *rh;
+ data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
+ rh = (sal_log_record_header_t *)(data->log_buffer);
+ /* Clear corrected errors as they are read from SAL */
+ if (rh->severity == sal_log_severity_corrected)
+ ia64_sal_clear_state_info(data->type);
+}
+
+static void
+salinfo_log_new_read(int cpu, struct salinfo_data *data)
+{
+ struct salinfo_data_saved *data_saved;
+ unsigned long flags;
+ int i;
+ int saved_size = ARRAY_SIZE(data->data_saved);
+
+ data->saved_num = 0;
+ spin_lock_irqsave(&data_saved_lock, flags);
+retry:
+ for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
+ if (data_saved->buffer && data_saved->cpu == cpu) {
+ sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
+ data->log_size = data_saved->size;
+ memcpy(data->log_buffer, rh, data->log_size);
+ barrier(); /* id check must not be moved */
+ if (rh->id == data_saved->id) {
+ data->saved_num = i+1;
+ break;
+ }
+ /* saved record changed by mca.c since interrupt, discard it */
+ shift1_data_saved(data, i);
+ goto retry;
+ }
+ }
+ spin_unlock_irqrestore(&data_saved_lock, flags);
+
+ if (!data->saved_num)
+ call_on_cpu(cpu, salinfo_log_read_cpu, data);
+ if (!data->log_size) {
+ data->state = STATE_NO_DATA;
+ clear_bit(cpu, &data->cpu_event);
+ } else {
+ data->state = STATE_LOG_RECORD;
+ }
+}
+
+static ssize_t
+salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
+{
+ struct inode *inode = file->f_dentry->d_inode;
+ struct proc_dir_entry *entry = PDE(inode);
+ struct salinfo_data *data = entry->data;
+ u8 *buf;
+ u64 bufsize;
+
+ if (data->state == STATE_LOG_RECORD) {
+ buf = data->log_buffer;
+ bufsize = data->log_size;
+ } else if (data->state == STATE_OEMDATA) {
+ buf = data->oemdata;
+ bufsize = data->oemdata_size;
+ } else {
+ buf = NULL;
+ bufsize = 0;
+ }
+ return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
+}
+
+static void
+salinfo_log_clear_cpu(void *context)
+{
+ struct salinfo_data *data = context;
+ ia64_sal_clear_state_info(data->type);
+}
+
+static int
+salinfo_log_clear(struct salinfo_data *data, int cpu)
+{
+ sal_log_record_header_t *rh;
+ data->state = STATE_NO_DATA;
+ if (!test_bit(cpu, &data->cpu_event))
+ return 0;
+ down(&data->sem);
+ clear_bit(cpu, &data->cpu_event);
+ if (data->saved_num) {
+ unsigned long flags;
+ spin_lock_irqsave(&data_saved_lock, flags);
+ shift1_data_saved(data, data->saved_num - 1 );
+ data->saved_num = 0;
+ spin_unlock_irqrestore(&data_saved_lock, flags);
+ }
+ rh = (sal_log_record_header_t *)(data->log_buffer);
+ /* Corrected errors have already been cleared from SAL */
+ if (rh->severity != sal_log_severity_corrected)
+ call_on_cpu(cpu, salinfo_log_clear_cpu, data);
+ /* clearing a record may make a new record visible */
+ salinfo_log_new_read(cpu, data);
+ if (data->state == STATE_LOG_RECORD &&
+ !test_and_set_bit(cpu, &data->cpu_event))
+ up(&data->sem);
+ return 0;
+}
+
+static ssize_t
+salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
+{
+ struct inode *inode = file->f_dentry->d_inode;
+ struct proc_dir_entry *entry = PDE(inode);
+ struct salinfo_data *data = entry->data;
+ char cmd[32];
+ size_t size;
+ u32 offset;
+ int cpu;
+
+ size = sizeof(cmd);
+ if (count < size)
+ size = count;
+ if (copy_from_user(cmd, buffer, size))
+ return -EFAULT;
+
+ if (sscanf(cmd, "read %d", &cpu) == 1) {
+ salinfo_log_new_read(cpu, data);
+ } else if (sscanf(cmd, "clear %d", &cpu) == 1) {
+ int ret;
+ if ((ret = salinfo_log_clear(data, cpu)))
+ count = ret;
+ } else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
+ if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
+ return -EINVAL;
+ if (offset > data->log_size - sizeof(efi_guid_t))
+ return -EINVAL;
+ data->state = STATE_OEMDATA;
+ if (salinfo_platform_oemdata) {
+ struct salinfo_platform_oemdata_parms parms = {
+ .efi_guid = data->log_buffer + offset,
+ .oemdata = &data->oemdata,
+ .oemdata_size = &data->oemdata_size
+ };
+ call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
+ if (parms.ret)
+ count = parms.ret;
+ } else
+ data->oemdata_size = 0;
+ } else
+ return -EINVAL;
+
+ return count;
+}
+
+static struct file_operations salinfo_data_fops = {
+ .open = salinfo_log_open,
+ .release = salinfo_log_release,
+ .read = salinfo_log_read,
+ .write = salinfo_log_write,
+};
+
+static int __init
+salinfo_init(void)
+{
+ struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
+ struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
+ struct proc_dir_entry *dir, *entry;
+ struct salinfo_data *data;
+ int i, j, online;
+
+ salinfo_dir = proc_mkdir("sal", NULL);
+ if (!salinfo_dir)
+ return 0;
+
+ for (i=0; i < NR_SALINFO_ENTRIES; i++) {
+ /* pass the feature bit in question as misc data */
+ *sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
+ salinfo_read, (void *)salinfo_entries[i].feature);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
+ data = salinfo_data + i;
+ data->type = i;
+ sema_init(&data->sem, 0);
+ dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
+ if (!dir)
+ continue;
+
+ entry = create_proc_entry("event", S_IRUSR, dir);
+ if (!entry)
+ continue;
+ entry->data = data;
+ entry->proc_fops = &salinfo_event_fops;
+ *sdir++ = entry;
+
+ entry = create_proc_entry("data", S_IRUSR | S_IWUSR, dir);
+ if (!entry)
+ continue;
+ entry->data = data;
+ entry->proc_fops = &salinfo_data_fops;
+ *sdir++ = entry;
+
+ /* we missed any events before now */
+ online = 0;
+ for (j = 0; j < NR_CPUS; j++)
+ if (cpu_online(j)) {
+ set_bit(j, &data->cpu_event);
+ ++online;
+ }
+ sema_init(&data->sem, online);
+
+ *sdir++ = dir;
+ }
+
+ *sdir++ = salinfo_dir;
+
+ init_timer(&salinfo_timer);
+ salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
+ salinfo_timer.function = &salinfo_timeout;
+ add_timer(&salinfo_timer);
+
+ return 0;
+}
+
+/*
+ * 'data' contains an integer that corresponds to the feature we're
+ * testing
+ */
+static int
+salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
+{
+ int len = 0;
+
+ len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
+
+ if (len <= off+count) *eof = 1;
+
+ *start = page + off;
+ len -= off;
+
+ if (len>count) len = count;
+ if (len<0) len = 0;
+
+ return len;
+}
+
+module_init(salinfo_init);
diff --git a/arch/ia64/kernel/semaphore.c b/arch/ia64/kernel/semaphore.c
new file mode 100644
index 0000000..2724ef3
--- /dev/null
+++ b/arch/ia64/kernel/semaphore.c
@@ -0,0 +1,165 @@
+/*
+ * IA-64 semaphore implementation (derived from x86 version).
+ *
+ * Copyright (C) 1999-2000, 2002 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+
+/*
+ * Semaphores are implemented using a two-way counter: The "count"
+ * variable is decremented for each process that tries to acquire the
+ * semaphore, while the "sleepers" variable is a count of such
+ * acquires.
+ *
+ * Notably, the inline "up()" and "down()" functions can efficiently
+ * test if they need to do any extra work (up needs to do something
+ * only if count was negative before the increment operation.
+ *
+ * "sleeping" and the contention routine ordering is protected
+ * by the spinlock in the semaphore's waitqueue head.
+ *
+ * Note that these functions are only called when there is contention
+ * on the lock, and as such all this is the "non-critical" part of the
+ * whole semaphore business. The critical part is the inline stuff in
+ * <asm/semaphore.h> where we want to avoid any extra jumps and calls.
+ */
+#include <linux/sched.h>
+#include <linux/init.h>
+
+#include <asm/errno.h>
+#include <asm/semaphore.h>
+
+/*
+ * Logic:
+ * - Only on a boundary condition do we need to care. When we go
+ * from a negative count to a non-negative, we wake people up.
+ * - When we go from a non-negative count to a negative do we
+ * (a) synchronize with the "sleepers" count and (b) make sure
+ * that we're on the wakeup list before we synchronize so that
+ * we cannot lose wakeup events.
+ */
+
+void
+__up (struct semaphore *sem)
+{
+ wake_up(&sem->wait);
+}
+
+void __sched __down (struct semaphore *sem)
+{
+ struct task_struct *tsk = current;
+ DECLARE_WAITQUEUE(wait, tsk);
+ unsigned long flags;
+
+ tsk->state = TASK_UNINTERRUPTIBLE;
+ spin_lock_irqsave(&sem->wait.lock, flags);
+ add_wait_queue_exclusive_locked(&sem->wait, &wait);
+
+ sem->sleepers++;
+ for (;;) {
+ int sleepers = sem->sleepers;
+
+ /*
+ * Add "everybody else" into it. They aren't
+ * playing, because we own the spinlock in
+ * the wait_queue_head.
+ */
+ if (!atomic_add_negative(sleepers - 1, &sem->count)) {
+ sem->sleepers = 0;
+ break;
+ }
+ sem->sleepers = 1; /* us - see -1 above */
+ spin_unlock_irqrestore(&sem->wait.lock, flags);
+
+ schedule();
+
+ spin_lock_irqsave(&sem->wait.lock, flags);
+ tsk->state = TASK_UNINTERRUPTIBLE;
+ }
+ remove_wait_queue_locked(&sem->wait, &wait);
+ wake_up_locked(&sem->wait);
+ spin_unlock_irqrestore(&sem->wait.lock, flags);
+ tsk->state = TASK_RUNNING;
+}
+
+int __sched __down_interruptible (struct semaphore * sem)
+{
+ int retval = 0;
+ struct task_struct *tsk = current;
+ DECLARE_WAITQUEUE(wait, tsk);
+ unsigned long flags;
+
+ tsk->state = TASK_INTERRUPTIBLE;
+ spin_lock_irqsave(&sem->wait.lock, flags);
+ add_wait_queue_exclusive_locked(&sem->wait, &wait);
+
+ sem->sleepers ++;
+ for (;;) {
+ int sleepers = sem->sleepers;
+
+ /*
+ * With signals pending, this turns into
+ * the trylock failure case - we won't be
+ * sleeping, and we* can't get the lock as
+ * it has contention. Just correct the count
+ * and exit.
+ */
+ if (signal_pending(current)) {
+ retval = -EINTR;
+ sem->sleepers = 0;
+ atomic_add(sleepers, &sem->count);
+ break;
+ }
+
+ /*
+ * Add "everybody else" into it. They aren't
+ * playing, because we own the spinlock in
+ * wait_queue_head. The "-1" is because we're
+ * still hoping to get the semaphore.
+ */
+ if (!atomic_add_negative(sleepers - 1, &sem->count)) {
+ sem->sleepers = 0;
+ break;
+ }
+ sem->sleepers = 1; /* us - see -1 above */
+ spin_unlock_irqrestore(&sem->wait.lock, flags);
+
+ schedule();
+
+ spin_lock_irqsave(&sem->wait.lock, flags);
+ tsk->state = TASK_INTERRUPTIBLE;
+ }
+ remove_wait_queue_locked(&sem->wait, &wait);
+ wake_up_locked(&sem->wait);
+ spin_unlock_irqrestore(&sem->wait.lock, flags);
+
+ tsk->state = TASK_RUNNING;
+ return retval;
+}
+
+/*
+ * Trylock failed - make sure we correct for having decremented the
+ * count.
+ */
+int
+__down_trylock (struct semaphore *sem)
+{
+ unsigned long flags;
+ int sleepers;
+
+ spin_lock_irqsave(&sem->wait.lock, flags);
+ sleepers = sem->sleepers + 1;
+ sem->sleepers = 0;
+
+ /*
+ * Add "everybody else" and us into it. They aren't
+ * playing, because we own the spinlock in the
+ * wait_queue_head.
+ */
+ if (!atomic_add_negative(sleepers, &sem->count)) {
+ wake_up_locked(&sem->wait);
+ }
+
+ spin_unlock_irqrestore(&sem->wait.lock, flags);
+ return 1;
+}
diff --git a/arch/ia64/kernel/setup.c b/arch/ia64/kernel/setup.c
new file mode 100644
index 0000000..f05650c
--- /dev/null
+++ b/arch/ia64/kernel/setup.c
@@ -0,0 +1,723 @@
+/*
+ * Architecture-specific setup.
+ *
+ * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ *
+ * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
+ * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
+ * 03/31/00 R.Seth cpu_initialized and current->processor fixes
+ * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
+ * 02/01/00 R.Seth fixed get_cpuinfo for SMP
+ * 01/07/99 S.Eranian added the support for command line argument
+ * 06/24/99 W.Drummond added boot_cpu_data.
+ */
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/init.h>
+
+#include <linux/acpi.h>
+#include <linux/bootmem.h>
+#include <linux/console.h>
+#include <linux/delay.h>
+#include <linux/kernel.h>
+#include <linux/reboot.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/string.h>
+#include <linux/threads.h>
+#include <linux/tty.h>
+#include <linux/serial.h>
+#include <linux/serial_core.h>
+#include <linux/efi.h>
+#include <linux/initrd.h>
+
+#include <asm/ia32.h>
+#include <asm/machvec.h>
+#include <asm/mca.h>
+#include <asm/meminit.h>
+#include <asm/page.h>
+#include <asm/patch.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/sal.h>
+#include <asm/sections.h>
+#include <asm/serial.h>
+#include <asm/setup.h>
+#include <asm/smp.h>
+#include <asm/system.h>
+#include <asm/unistd.h>
+
+#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
+# error "struct cpuinfo_ia64 too big!"
+#endif
+
+#ifdef CONFIG_SMP
+unsigned long __per_cpu_offset[NR_CPUS];
+EXPORT_SYMBOL(__per_cpu_offset);
+#endif
+
+DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
+DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
+DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
+unsigned long ia64_cycles_per_usec;
+struct ia64_boot_param *ia64_boot_param;
+struct screen_info screen_info;
+
+unsigned long ia64_max_cacheline_size;
+unsigned long ia64_iobase; /* virtual address for I/O accesses */
+EXPORT_SYMBOL(ia64_iobase);
+struct io_space io_space[MAX_IO_SPACES];
+EXPORT_SYMBOL(io_space);
+unsigned int num_io_spaces;
+
+/*
+ * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
+ * mask specifies a mask of address bits that must be 0 in order for two buffers to be
+ * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
+ * address of the second buffer must be aligned to (merge_mask+1) in order to be
+ * mergeable). By default, we assume there is no I/O MMU which can merge physically
+ * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
+ * page-size of 2^64.
+ */
+unsigned long ia64_max_iommu_merge_mask = ~0UL;
+EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
+
+/*
+ * We use a special marker for the end of memory and it uses the extra (+1) slot
+ */
+struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1];
+int num_rsvd_regions;
+
+
+/*
+ * Filter incoming memory segments based on the primitive map created from the boot
+ * parameters. Segments contained in the map are removed from the memory ranges. A
+ * caller-specified function is called with the memory ranges that remain after filtering.
+ * This routine does not assume the incoming segments are sorted.
+ */
+int
+filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
+{
+ unsigned long range_start, range_end, prev_start;
+ void (*func)(unsigned long, unsigned long, int);
+ int i;
+
+#if IGNORE_PFN0
+ if (start == PAGE_OFFSET) {
+ printk(KERN_WARNING "warning: skipping physical page 0\n");
+ start += PAGE_SIZE;
+ if (start >= end) return 0;
+ }
+#endif
+ /*
+ * lowest possible address(walker uses virtual)
+ */
+ prev_start = PAGE_OFFSET;
+ func = arg;
+
+ for (i = 0; i < num_rsvd_regions; ++i) {
+ range_start = max(start, prev_start);
+ range_end = min(end, rsvd_region[i].start);
+
+ if (range_start < range_end)
+ call_pernode_memory(__pa(range_start), range_end - range_start, func);
+
+ /* nothing more available in this segment */
+ if (range_end == end) return 0;
+
+ prev_start = rsvd_region[i].end;
+ }
+ /* end of memory marker allows full processing inside loop body */
+ return 0;
+}
+
+static void
+sort_regions (struct rsvd_region *rsvd_region, int max)
+{
+ int j;
+
+ /* simple bubble sorting */
+ while (max--) {
+ for (j = 0; j < max; ++j) {
+ if (rsvd_region[j].start > rsvd_region[j+1].start) {
+ struct rsvd_region tmp;
+ tmp = rsvd_region[j];
+ rsvd_region[j] = rsvd_region[j + 1];
+ rsvd_region[j + 1] = tmp;
+ }
+ }
+ }
+}
+
+/**
+ * reserve_memory - setup reserved memory areas
+ *
+ * Setup the reserved memory areas set aside for the boot parameters,
+ * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
+ * see include/asm-ia64/meminit.h if you need to define more.
+ */
+void
+reserve_memory (void)
+{
+ int n = 0;
+
+ /*
+ * none of the entries in this table overlap
+ */
+ rsvd_region[n].start = (unsigned long) ia64_boot_param;
+ rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
+ n++;
+
+ rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
+ rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
+ n++;
+
+ rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
+ rsvd_region[n].end = (rsvd_region[n].start
+ + strlen(__va(ia64_boot_param->command_line)) + 1);
+ n++;
+
+ rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
+ rsvd_region[n].end = (unsigned long) ia64_imva(_end);
+ n++;
+
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (ia64_boot_param->initrd_start) {
+ rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
+ rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
+ n++;
+ }
+#endif
+
+ /* end of memory marker */
+ rsvd_region[n].start = ~0UL;
+ rsvd_region[n].end = ~0UL;
+ n++;
+
+ num_rsvd_regions = n;
+
+ sort_regions(rsvd_region, num_rsvd_regions);
+}
+
+/**
+ * find_initrd - get initrd parameters from the boot parameter structure
+ *
+ * Grab the initrd start and end from the boot parameter struct given us by
+ * the boot loader.
+ */
+void
+find_initrd (void)
+{
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (ia64_boot_param->initrd_start) {
+ initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
+ initrd_end = initrd_start+ia64_boot_param->initrd_size;
+
+ printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
+ initrd_start, ia64_boot_param->initrd_size);
+ }
+#endif
+}
+
+static void __init
+io_port_init (void)
+{
+ extern unsigned long ia64_iobase;
+ unsigned long phys_iobase;
+
+ /*
+ * Set `iobase' to the appropriate address in region 6 (uncached access range).
+ *
+ * The EFI memory map is the "preferred" location to get the I/O port space base,
+ * rather the relying on AR.KR0. This should become more clear in future SAL
+ * specs. We'll fall back to getting it out of AR.KR0 if no appropriate entry is
+ * found in the memory map.
+ */
+ phys_iobase = efi_get_iobase();
+ if (phys_iobase)
+ /* set AR.KR0 since this is all we use it for anyway */
+ ia64_set_kr(IA64_KR_IO_BASE, phys_iobase);
+ else {
+ phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
+ printk(KERN_INFO "No I/O port range found in EFI memory map, falling back "
+ "to AR.KR0\n");
+ printk(KERN_INFO "I/O port base = 0x%lx\n", phys_iobase);
+ }
+ ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
+
+ /* setup legacy IO port space */
+ io_space[0].mmio_base = ia64_iobase;
+ io_space[0].sparse = 1;
+ num_io_spaces = 1;
+}
+
+/**
+ * early_console_setup - setup debugging console
+ *
+ * Consoles started here require little enough setup that we can start using
+ * them very early in the boot process, either right after the machine
+ * vector initialization, or even before if the drivers can detect their hw.
+ *
+ * Returns non-zero if a console couldn't be setup.
+ */
+static inline int __init
+early_console_setup (char *cmdline)
+{
+#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
+ {
+ extern int sn_serial_console_early_setup(void);
+ if (!sn_serial_console_early_setup())
+ return 0;
+ }
+#endif
+#ifdef CONFIG_EFI_PCDP
+ if (!efi_setup_pcdp_console(cmdline))
+ return 0;
+#endif
+#ifdef CONFIG_SERIAL_8250_CONSOLE
+ if (!early_serial_console_init(cmdline))
+ return 0;
+#endif
+
+ return -1;
+}
+
+static inline void
+mark_bsp_online (void)
+{
+#ifdef CONFIG_SMP
+ /* If we register an early console, allow CPU 0 to printk */
+ cpu_set(smp_processor_id(), cpu_online_map);
+#endif
+}
+
+void __init
+setup_arch (char **cmdline_p)
+{
+ unw_init();
+
+ ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
+
+ *cmdline_p = __va(ia64_boot_param->command_line);
+ strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
+
+ efi_init();
+ io_port_init();
+
+#ifdef CONFIG_IA64_GENERIC
+ {
+ const char *mvec_name = strstr (*cmdline_p, "machvec=");
+ char str[64];
+
+ if (mvec_name) {
+ const char *end;
+ size_t len;
+
+ mvec_name += 8;
+ end = strchr (mvec_name, ' ');
+ if (end)
+ len = end - mvec_name;
+ else
+ len = strlen (mvec_name);
+ len = min(len, sizeof (str) - 1);
+ strncpy (str, mvec_name, len);
+ str[len] = '\0';
+ mvec_name = str;
+ } else
+ mvec_name = acpi_get_sysname();
+ machvec_init(mvec_name);
+ }
+#endif
+
+ if (early_console_setup(*cmdline_p) == 0)
+ mark_bsp_online();
+
+#ifdef CONFIG_ACPI_BOOT
+ /* Initialize the ACPI boot-time table parser */
+ acpi_table_init();
+# ifdef CONFIG_ACPI_NUMA
+ acpi_numa_init();
+# endif
+#else
+# ifdef CONFIG_SMP
+ smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
+# endif
+#endif /* CONFIG_APCI_BOOT */
+
+ find_memory();
+
+ /* process SAL system table: */
+ ia64_sal_init(efi.sal_systab);
+
+#ifdef CONFIG_SMP
+ cpu_physical_id(0) = hard_smp_processor_id();
+#endif
+
+ cpu_init(); /* initialize the bootstrap CPU */
+
+#ifdef CONFIG_ACPI_BOOT
+ acpi_boot_init();
+#endif
+
+#ifdef CONFIG_VT
+ if (!conswitchp) {
+# if defined(CONFIG_DUMMY_CONSOLE)
+ conswitchp = &dummy_con;
+# endif
+# if defined(CONFIG_VGA_CONSOLE)
+ /*
+ * Non-legacy systems may route legacy VGA MMIO range to system
+ * memory. vga_con probes the MMIO hole, so memory looks like
+ * a VGA device to it. The EFI memory map can tell us if it's
+ * memory so we can avoid this problem.
+ */
+ if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
+ conswitchp = &vga_con;
+# endif
+ }
+#endif
+
+ /* enable IA-64 Machine Check Abort Handling unless disabled */
+ if (!strstr(saved_command_line, "nomca"))
+ ia64_mca_init();
+
+ platform_setup(cmdline_p);
+ paging_init();
+}
+
+/*
+ * Display cpu info for all cpu's.
+ */
+static int
+show_cpuinfo (struct seq_file *m, void *v)
+{
+#ifdef CONFIG_SMP
+# define lpj c->loops_per_jiffy
+# define cpunum c->cpu
+#else
+# define lpj loops_per_jiffy
+# define cpunum 0
+#endif
+ static struct {
+ unsigned long mask;
+ const char *feature_name;
+ } feature_bits[] = {
+ { 1UL << 0, "branchlong" },
+ { 1UL << 1, "spontaneous deferral"},
+ { 1UL << 2, "16-byte atomic ops" }
+ };
+ char family[32], features[128], *cp, sep;
+ struct cpuinfo_ia64 *c = v;
+ unsigned long mask;
+ int i;
+
+ mask = c->features;
+
+ switch (c->family) {
+ case 0x07: memcpy(family, "Itanium", 8); break;
+ case 0x1f: memcpy(family, "Itanium 2", 10); break;
+ default: sprintf(family, "%u", c->family); break;
+ }
+
+ /* build the feature string: */
+ memcpy(features, " standard", 10);
+ cp = features;
+ sep = 0;
+ for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
+ if (mask & feature_bits[i].mask) {
+ if (sep)
+ *cp++ = sep;
+ sep = ',';
+ *cp++ = ' ';
+ strcpy(cp, feature_bits[i].feature_name);
+ cp += strlen(feature_bits[i].feature_name);
+ mask &= ~feature_bits[i].mask;
+ }
+ }
+ if (mask) {
+ /* print unknown features as a hex value: */
+ if (sep)
+ *cp++ = sep;
+ sprintf(cp, " 0x%lx", mask);
+ }
+
+ seq_printf(m,
+ "processor : %d\n"
+ "vendor : %s\n"
+ "arch : IA-64\n"
+ "family : %s\n"
+ "model : %u\n"
+ "revision : %u\n"
+ "archrev : %u\n"
+ "features :%s\n" /* don't change this---it _is_ right! */
+ "cpu number : %lu\n"
+ "cpu regs : %u\n"
+ "cpu MHz : %lu.%06lu\n"
+ "itc MHz : %lu.%06lu\n"
+ "BogoMIPS : %lu.%02lu\n\n",
+ cpunum, c->vendor, family, c->model, c->revision, c->archrev,
+ features, c->ppn, c->number,
+ c->proc_freq / 1000000, c->proc_freq % 1000000,
+ c->itc_freq / 1000000, c->itc_freq % 1000000,
+ lpj*HZ/500000, (lpj*HZ/5000) % 100);
+ return 0;
+}
+
+static void *
+c_start (struct seq_file *m, loff_t *pos)
+{
+#ifdef CONFIG_SMP
+ while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
+ ++*pos;
+#endif
+ return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
+}
+
+static void *
+c_next (struct seq_file *m, void *v, loff_t *pos)
+{
+ ++*pos;
+ return c_start(m, pos);
+}
+
+static void
+c_stop (struct seq_file *m, void *v)
+{
+}
+
+struct seq_operations cpuinfo_op = {
+ .start = c_start,
+ .next = c_next,
+ .stop = c_stop,
+ .show = show_cpuinfo
+};
+
+void
+identify_cpu (struct cpuinfo_ia64 *c)
+{
+ union {
+ unsigned long bits[5];
+ struct {
+ /* id 0 & 1: */
+ char vendor[16];
+
+ /* id 2 */
+ u64 ppn; /* processor serial number */
+
+ /* id 3: */
+ unsigned number : 8;
+ unsigned revision : 8;
+ unsigned model : 8;
+ unsigned family : 8;
+ unsigned archrev : 8;
+ unsigned reserved : 24;
+
+ /* id 4: */
+ u64 features;
+ } field;
+ } cpuid;
+ pal_vm_info_1_u_t vm1;
+ pal_vm_info_2_u_t vm2;
+ pal_status_t status;
+ unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
+ int i;
+
+ for (i = 0; i < 5; ++i)
+ cpuid.bits[i] = ia64_get_cpuid(i);
+
+ memcpy(c->vendor, cpuid.field.vendor, 16);
+#ifdef CONFIG_SMP
+ c->cpu = smp_processor_id();
+#endif
+ c->ppn = cpuid.field.ppn;
+ c->number = cpuid.field.number;
+ c->revision = cpuid.field.revision;
+ c->model = cpuid.field.model;
+ c->family = cpuid.field.family;
+ c->archrev = cpuid.field.archrev;
+ c->features = cpuid.field.features;
+
+ status = ia64_pal_vm_summary(&vm1, &vm2);
+ if (status == PAL_STATUS_SUCCESS) {
+ impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
+ phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
+ }
+ c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
+ c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
+}
+
+void
+setup_per_cpu_areas (void)
+{
+ /* start_kernel() requires this... */
+}
+
+static void
+get_max_cacheline_size (void)
+{
+ unsigned long line_size, max = 1;
+ u64 l, levels, unique_caches;
+ pal_cache_config_info_t cci;
+ s64 status;
+
+ status = ia64_pal_cache_summary(&levels, &unique_caches);
+ if (status != 0) {
+ printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
+ __FUNCTION__, status);
+ max = SMP_CACHE_BYTES;
+ goto out;
+ }
+
+ for (l = 0; l < levels; ++l) {
+ status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
+ &cci);
+ if (status != 0) {
+ printk(KERN_ERR
+ "%s: ia64_pal_cache_config_info(l=%lu) failed (status=%ld)\n",
+ __FUNCTION__, l, status);
+ max = SMP_CACHE_BYTES;
+ }
+ line_size = 1 << cci.pcci_line_size;
+ if (line_size > max)
+ max = line_size;
+ }
+ out:
+ if (max > ia64_max_cacheline_size)
+ ia64_max_cacheline_size = max;
+}
+
+/*
+ * cpu_init() initializes state that is per-CPU. This function acts
+ * as a 'CPU state barrier', nothing should get across.
+ */
+void
+cpu_init (void)
+{
+ extern void __devinit ia64_mmu_init (void *);
+ unsigned long num_phys_stacked;
+ pal_vm_info_2_u_t vmi;
+ unsigned int max_ctx;
+ struct cpuinfo_ia64 *cpu_info;
+ void *cpu_data;
+
+ cpu_data = per_cpu_init();
+
+ /*
+ * We set ar.k3 so that assembly code in MCA handler can compute
+ * physical addresses of per cpu variables with a simple:
+ * phys = ar.k3 + &per_cpu_var
+ */
+ ia64_set_kr(IA64_KR_PER_CPU_DATA,
+ ia64_tpa(cpu_data) - (long) __per_cpu_start);
+
+ get_max_cacheline_size();
+
+ /*
+ * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
+ * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
+ * depends on the data returned by identify_cpu(). We break the dependency by
+ * accessing cpu_data() through the canonical per-CPU address.
+ */
+ cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
+ identify_cpu(cpu_info);
+
+#ifdef CONFIG_MCKINLEY
+ {
+# define FEATURE_SET 16
+ struct ia64_pal_retval iprv;
+
+ if (cpu_info->family == 0x1f) {
+ PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
+ if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
+ PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
+ (iprv.v1 | 0x80), FEATURE_SET, 0);
+ }
+ }
+#endif
+
+ /* Clear the stack memory reserved for pt_regs: */
+ memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));
+
+ ia64_set_kr(IA64_KR_FPU_OWNER, 0);
+
+ /*
+ * Initialize the page-table base register to a global
+ * directory with all zeroes. This ensure that we can handle
+ * TLB-misses to user address-space even before we created the
+ * first user address-space. This may happen, e.g., due to
+ * aggressive use of lfetch.fault.
+ */
+ ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
+
+ /*
+ * Initialize default control register to defer all speculative faults. The
+ * kernel MUST NOT depend on a particular setting of these bits (in other words,
+ * the kernel must have recovery code for all speculative accesses). Turn on
+ * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
+ * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
+ * be fine).
+ */
+ ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
+ | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
+ atomic_inc(&init_mm.mm_count);
+ current->active_mm = &init_mm;
+ if (current->mm)
+ BUG();
+
+ ia64_mmu_init(ia64_imva(cpu_data));
+ ia64_mca_cpu_init(ia64_imva(cpu_data));
+
+#ifdef CONFIG_IA32_SUPPORT
+ ia32_cpu_init();
+#endif
+
+ /* Clear ITC to eliminiate sched_clock() overflows in human time. */
+ ia64_set_itc(0);
+
+ /* disable all local interrupt sources: */
+ ia64_set_itv(1 << 16);
+ ia64_set_lrr0(1 << 16);
+ ia64_set_lrr1(1 << 16);
+ ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
+ ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
+
+ /* clear TPR & XTP to enable all interrupt classes: */
+ ia64_setreg(_IA64_REG_CR_TPR, 0);
+#ifdef CONFIG_SMP
+ normal_xtp();
+#endif
+
+ /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
+ if (ia64_pal_vm_summary(NULL, &vmi) == 0)
+ max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
+ else {
+ printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
+ max_ctx = (1U << 15) - 1; /* use architected minimum */
+ }
+ while (max_ctx < ia64_ctx.max_ctx) {
+ unsigned int old = ia64_ctx.max_ctx;
+ if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
+ break;
+ }
+
+ if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
+ printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
+ "stacked regs\n");
+ num_phys_stacked = 96;
+ }
+ /* size of physical stacked register partition plus 8 bytes: */
+ __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
+ platform_cpu_init();
+}
+
+void
+check_bugs (void)
+{
+ ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
+ (unsigned long) __end___mckinley_e9_bundles);
+}
diff --git a/arch/ia64/kernel/sigframe.h b/arch/ia64/kernel/sigframe.h
new file mode 100644
index 0000000..37b986c
--- /dev/null
+++ b/arch/ia64/kernel/sigframe.h
@@ -0,0 +1,25 @@
+struct sigscratch {
+ unsigned long scratch_unat; /* ar.unat for the general registers saved in pt */
+ unsigned long ar_pfs; /* for syscalls, the user-level function-state */
+ struct pt_regs pt;
+};
+
+struct sigframe {
+ /*
+ * Place signal handler args where user-level unwinder can find them easily.
+ * DO NOT MOVE THESE. They are part of the IA-64 Linux ABI and there is
+ * user-level code that depends on their presence!
+ */
+ unsigned long arg0; /* signum */
+ unsigned long arg1; /* siginfo pointer */
+ unsigned long arg2; /* sigcontext pointer */
+ /*
+ * End of architected state.
+ */
+
+ void __user *handler; /* pointer to the plabel of the signal handler */
+ struct siginfo info;
+ struct sigcontext sc;
+};
+
+extern long ia64_do_signal (sigset_t *, struct sigscratch *, long);
diff --git a/arch/ia64/kernel/signal.c b/arch/ia64/kernel/signal.c
new file mode 100644
index 0000000..6891d86
--- /dev/null
+++ b/arch/ia64/kernel/signal.c
@@ -0,0 +1,691 @@
+/*
+ * Architecture-specific signal handling support.
+ *
+ * Copyright (C) 1999-2004 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Derived from i386 and Alpha versions.
+ */
+
+#include <linux/config.h>
+#include <linux/errno.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/ptrace.h>
+#include <linux/sched.h>
+#include <linux/signal.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/stddef.h>
+#include <linux/tty.h>
+#include <linux/binfmts.h>
+#include <linux/unistd.h>
+#include <linux/wait.h>
+
+#include <asm/ia32.h>
+#include <asm/intrinsics.h>
+#include <asm/uaccess.h>
+#include <asm/rse.h>
+#include <asm/sigcontext.h>
+
+#include "sigframe.h"
+
+#define DEBUG_SIG 0
+#define STACK_ALIGN 16 /* minimal alignment for stack pointer */
+#define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP)))
+
+#if _NSIG_WORDS > 1
+# define PUT_SIGSET(k,u) __copy_to_user((u)->sig, (k)->sig, sizeof(sigset_t))
+# define GET_SIGSET(k,u) __copy_from_user((k)->sig, (u)->sig, sizeof(sigset_t))
+#else
+# define PUT_SIGSET(k,u) __put_user((k)->sig[0], &(u)->sig[0])
+# define GET_SIGSET(k,u) __get_user((k)->sig[0], &(u)->sig[0])
+#endif
+
+long
+ia64_rt_sigsuspend (sigset_t __user *uset, size_t sigsetsize, struct sigscratch *scr)
+{
+ sigset_t oldset, set;
+
+ /* XXX: Don't preclude handling different sized sigset_t's. */
+ if (sigsetsize != sizeof(sigset_t))
+ return -EINVAL;
+
+ if (!access_ok(VERIFY_READ, uset, sigsetsize))
+ return -EFAULT;
+
+ if (GET_SIGSET(&set, uset))
+ return -EFAULT;
+
+ sigdelsetmask(&set, ~_BLOCKABLE);
+
+ spin_lock_irq(&current->sighand->siglock);
+ {
+ oldset = current->blocked;
+ current->blocked = set;
+ recalc_sigpending();
+ }
+ spin_unlock_irq(&current->sighand->siglock);
+
+ /*
+ * The return below usually returns to the signal handler. We need to
+ * pre-set the correct error code here to ensure that the right values
+ * get saved in sigcontext by ia64_do_signal.
+ */
+ scr->pt.r8 = EINTR;
+ scr->pt.r10 = -1;
+
+ while (1) {
+ current->state = TASK_INTERRUPTIBLE;
+ schedule();
+ if (ia64_do_signal(&oldset, scr, 1))
+ return -EINTR;
+ }
+}
+
+asmlinkage long
+sys_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, long arg2,
+ long arg3, long arg4, long arg5, long arg6, long arg7,
+ struct pt_regs regs)
+{
+ return do_sigaltstack(uss, uoss, regs.r12);
+}
+
+static long
+restore_sigcontext (struct sigcontext __user *sc, struct sigscratch *scr)
+{
+ unsigned long ip, flags, nat, um, cfm;
+ long err;
+
+ /* Always make any pending restarted system calls return -EINTR */
+ current_thread_info()->restart_block.fn = do_no_restart_syscall;
+
+ /* restore scratch that always needs gets updated during signal delivery: */
+ err = __get_user(flags, &sc->sc_flags);
+ err |= __get_user(nat, &sc->sc_nat);
+ err |= __get_user(ip, &sc->sc_ip); /* instruction pointer */
+ err |= __get_user(cfm, &sc->sc_cfm);
+ err |= __get_user(um, &sc->sc_um); /* user mask */
+ err |= __get_user(scr->pt.ar_rsc, &sc->sc_ar_rsc);
+ err |= __get_user(scr->pt.ar_unat, &sc->sc_ar_unat);
+ err |= __get_user(scr->pt.ar_fpsr, &sc->sc_ar_fpsr);
+ err |= __get_user(scr->pt.ar_pfs, &sc->sc_ar_pfs);
+ err |= __get_user(scr->pt.pr, &sc->sc_pr); /* predicates */
+ err |= __get_user(scr->pt.b0, &sc->sc_br[0]); /* b0 (rp) */
+ err |= __get_user(scr->pt.b6, &sc->sc_br[6]); /* b6 */
+ err |= __copy_from_user(&scr->pt.r1, &sc->sc_gr[1], 8); /* r1 */
+ err |= __copy_from_user(&scr->pt.r8, &sc->sc_gr[8], 4*8); /* r8-r11 */
+ err |= __copy_from_user(&scr->pt.r12, &sc->sc_gr[12], 2*8); /* r12-r13 */
+ err |= __copy_from_user(&scr->pt.r15, &sc->sc_gr[15], 8); /* r15 */
+
+ scr->pt.cr_ifs = cfm | (1UL << 63);
+
+ /* establish new instruction pointer: */
+ scr->pt.cr_iip = ip & ~0x3UL;
+ ia64_psr(&scr->pt)->ri = ip & 0x3;
+ scr->pt.cr_ipsr = (scr->pt.cr_ipsr & ~IA64_PSR_UM) | (um & IA64_PSR_UM);
+
+ scr->scratch_unat = ia64_put_scratch_nat_bits(&scr->pt, nat);
+
+ if (!(flags & IA64_SC_FLAG_IN_SYSCALL)) {
+ /* Restore most scratch-state only when not in syscall. */
+ err |= __get_user(scr->pt.ar_ccv, &sc->sc_ar_ccv); /* ar.ccv */
+ err |= __get_user(scr->pt.b7, &sc->sc_br[7]); /* b7 */
+ err |= __get_user(scr->pt.r14, &sc->sc_gr[14]); /* r14 */
+ err |= __copy_from_user(&scr->pt.ar_csd, &sc->sc_ar25, 2*8); /* ar.csd & ar.ssd */
+ err |= __copy_from_user(&scr->pt.r2, &sc->sc_gr[2], 2*8); /* r2-r3 */
+ err |= __copy_from_user(&scr->pt.r16, &sc->sc_gr[16], 16*8); /* r16-r31 */
+ }
+
+ if ((flags & IA64_SC_FLAG_FPH_VALID) != 0) {
+ struct ia64_psr *psr = ia64_psr(&scr->pt);
+
+ __copy_from_user(current->thread.fph, &sc->sc_fr[32], 96*16);
+ psr->mfh = 0; /* drop signal handler's fph contents... */
+ if (psr->dfh)
+ ia64_drop_fpu(current);
+ else {
+ /* We already own the local fph, otherwise psr->dfh wouldn't be 0. */
+ __ia64_load_fpu(current->thread.fph);
+ ia64_set_local_fpu_owner(current);
+ }
+ }
+ return err;
+}
+
+int
+copy_siginfo_to_user (siginfo_t __user *to, siginfo_t *from)
+{
+ if (!access_ok(VERIFY_WRITE, to, sizeof(siginfo_t)))
+ return -EFAULT;
+ if (from->si_code < 0) {
+ if (__copy_to_user(to, from, sizeof(siginfo_t)))
+ return -EFAULT;
+ return 0;
+ } else {
+ int err;
+
+ /*
+ * If you change siginfo_t structure, please be sure this code is fixed
+ * accordingly. It should never copy any pad contained in the structure
+ * to avoid security leaks, but must copy the generic 3 ints plus the
+ * relevant union member.
+ */
+ err = __put_user(from->si_signo, &to->si_signo);
+ err |= __put_user(from->si_errno, &to->si_errno);
+ err |= __put_user((short)from->si_code, &to->si_code);
+ switch (from->si_code >> 16) {
+ case __SI_FAULT >> 16:
+ err |= __put_user(from->si_flags, &to->si_flags);
+ err |= __put_user(from->si_isr, &to->si_isr);
+ case __SI_POLL >> 16:
+ err |= __put_user(from->si_addr, &to->si_addr);
+ err |= __put_user(from->si_imm, &to->si_imm);
+ break;
+ case __SI_TIMER >> 16:
+ err |= __put_user(from->si_tid, &to->si_tid);
+ err |= __put_user(from->si_overrun, &to->si_overrun);
+ err |= __put_user(from->si_ptr, &to->si_ptr);
+ break;
+ case __SI_RT >> 16: /* Not generated by the kernel as of now. */
+ case __SI_MESGQ >> 16:
+ err |= __put_user(from->si_uid, &to->si_uid);
+ err |= __put_user(from->si_pid, &to->si_pid);
+ err |= __put_user(from->si_ptr, &to->si_ptr);
+ break;
+ case __SI_CHLD >> 16:
+ err |= __put_user(from->si_utime, &to->si_utime);
+ err |= __put_user(from->si_stime, &to->si_stime);
+ err |= __put_user(from->si_status, &to->si_status);
+ default:
+ err |= __put_user(from->si_uid, &to->si_uid);
+ err |= __put_user(from->si_pid, &to->si_pid);
+ break;
+ }
+ return err;
+ }
+}
+
+long
+ia64_rt_sigreturn (struct sigscratch *scr)
+{
+ extern char ia64_strace_leave_kernel, ia64_leave_kernel;
+ struct sigcontext __user *sc;
+ struct siginfo si;
+ sigset_t set;
+ long retval;
+
+ sc = &((struct sigframe __user *) (scr->pt.r12 + 16))->sc;
+
+ /*
+ * When we return to the previously executing context, r8 and r10 have already
+ * been setup the way we want them. Indeed, if the signal wasn't delivered while
+ * in a system call, we must not touch r8 or r10 as otherwise user-level state
+ * could be corrupted.
+ */
+ retval = (long) &ia64_leave_kernel;
+ if (test_thread_flag(TIF_SYSCALL_TRACE))
+ /*
+ * strace expects to be notified after sigreturn returns even though the
+ * context to which we return may not be in the middle of a syscall.
+ * Thus, the return-value that strace displays for sigreturn is
+ * meaningless.
+ */
+ retval = (long) &ia64_strace_leave_kernel;
+
+ if (!access_ok(VERIFY_READ, sc, sizeof(*sc)))
+ goto give_sigsegv;
+
+ if (GET_SIGSET(&set, &sc->sc_mask))
+ goto give_sigsegv;
+
+ sigdelsetmask(&set, ~_BLOCKABLE);
+
+ spin_lock_irq(&current->sighand->siglock);
+ {
+ current->blocked = set;
+ recalc_sigpending();
+ }
+ spin_unlock_irq(&current->sighand->siglock);
+
+ if (restore_sigcontext(sc, scr))
+ goto give_sigsegv;
+
+#if DEBUG_SIG
+ printk("SIG return (%s:%d): sp=%lx ip=%lx\n",
+ current->comm, current->pid, scr->pt.r12, scr->pt.cr_iip);
+#endif
+ /*
+ * It is more difficult to avoid calling this function than to
+ * call it and ignore errors.
+ */
+ do_sigaltstack(&sc->sc_stack, NULL, scr->pt.r12);
+ return retval;
+
+ give_sigsegv:
+ si.si_signo = SIGSEGV;
+ si.si_errno = 0;
+ si.si_code = SI_KERNEL;
+ si.si_pid = current->pid;
+ si.si_uid = current->uid;
+ si.si_addr = sc;
+ force_sig_info(SIGSEGV, &si, current);
+ return retval;
+}
+
+/*
+ * This does just the minimum required setup of sigcontext.
+ * Specifically, it only installs data that is either not knowable at
+ * the user-level or that gets modified before execution in the
+ * trampoline starts. Everything else is done at the user-level.
+ */
+static long
+setup_sigcontext (struct sigcontext __user *sc, sigset_t *mask, struct sigscratch *scr)
+{
+ unsigned long flags = 0, ifs, cfm, nat;
+ long err;
+
+ ifs = scr->pt.cr_ifs;
+
+ if (on_sig_stack((unsigned long) sc))
+ flags |= IA64_SC_FLAG_ONSTACK;
+ if ((ifs & (1UL << 63)) == 0)
+ /* if cr_ifs doesn't have the valid bit set, we got here through a syscall */
+ flags |= IA64_SC_FLAG_IN_SYSCALL;
+ cfm = ifs & ((1UL << 38) - 1);
+ ia64_flush_fph(current);
+ if ((current->thread.flags & IA64_THREAD_FPH_VALID)) {
+ flags |= IA64_SC_FLAG_FPH_VALID;
+ __copy_to_user(&sc->sc_fr[32], current->thread.fph, 96*16);
+ }
+
+ nat = ia64_get_scratch_nat_bits(&scr->pt, scr->scratch_unat);
+
+ err = __put_user(flags, &sc->sc_flags);
+ err |= __put_user(nat, &sc->sc_nat);
+ err |= PUT_SIGSET(mask, &sc->sc_mask);
+ err |= __put_user(cfm, &sc->sc_cfm);
+ err |= __put_user(scr->pt.cr_ipsr & IA64_PSR_UM, &sc->sc_um);
+ err |= __put_user(scr->pt.ar_rsc, &sc->sc_ar_rsc);
+ err |= __put_user(scr->pt.ar_unat, &sc->sc_ar_unat); /* ar.unat */
+ err |= __put_user(scr->pt.ar_fpsr, &sc->sc_ar_fpsr); /* ar.fpsr */
+ err |= __put_user(scr->pt.ar_pfs, &sc->sc_ar_pfs);
+ err |= __put_user(scr->pt.pr, &sc->sc_pr); /* predicates */
+ err |= __put_user(scr->pt.b0, &sc->sc_br[0]); /* b0 (rp) */
+ err |= __put_user(scr->pt.b6, &sc->sc_br[6]); /* b6 */
+ err |= __copy_to_user(&sc->sc_gr[1], &scr->pt.r1, 8); /* r1 */
+ err |= __copy_to_user(&sc->sc_gr[8], &scr->pt.r8, 4*8); /* r8-r11 */
+ err |= __copy_to_user(&sc->sc_gr[12], &scr->pt.r12, 2*8); /* r12-r13 */
+ err |= __copy_to_user(&sc->sc_gr[15], &scr->pt.r15, 8); /* r15 */
+ err |= __put_user(scr->pt.cr_iip + ia64_psr(&scr->pt)->ri, &sc->sc_ip);
+
+ if (flags & IA64_SC_FLAG_IN_SYSCALL) {
+ /* Clear scratch registers if the signal interrupted a system call. */
+ err |= __put_user(0, &sc->sc_ar_ccv); /* ar.ccv */
+ err |= __put_user(0, &sc->sc_br[7]); /* b7 */
+ err |= __put_user(0, &sc->sc_gr[14]); /* r14 */
+ err |= __clear_user(&sc->sc_ar25, 2*8); /* ar.csd & ar.ssd */
+ err |= __clear_user(&sc->sc_gr[2], 2*8); /* r2-r3 */
+ err |= __clear_user(&sc->sc_gr[16], 16*8); /* r16-r31 */
+ } else {
+ /* Copy scratch regs to sigcontext if the signal didn't interrupt a syscall. */
+ err |= __put_user(scr->pt.ar_ccv, &sc->sc_ar_ccv); /* ar.ccv */
+ err |= __put_user(scr->pt.b7, &sc->sc_br[7]); /* b7 */
+ err |= __put_user(scr->pt.r14, &sc->sc_gr[14]); /* r14 */
+ err |= __copy_to_user(&sc->sc_ar25, &scr->pt.ar_csd, 2*8); /* ar.csd & ar.ssd */
+ err |= __copy_to_user(&sc->sc_gr[2], &scr->pt.r2, 2*8); /* r2-r3 */
+ err |= __copy_to_user(&sc->sc_gr[16], &scr->pt.r16, 16*8); /* r16-r31 */
+ }
+ return err;
+}
+
+/*
+ * Check whether the register-backing store is already on the signal stack.
+ */
+static inline int
+rbs_on_sig_stack (unsigned long bsp)
+{
+ return (bsp - current->sas_ss_sp < current->sas_ss_size);
+}
+
+static long
+force_sigsegv_info (int sig, void __user *addr)
+{
+ unsigned long flags;
+ struct siginfo si;
+
+ if (sig == SIGSEGV) {
+ /*
+ * Acquiring siglock around the sa_handler-update is almost
+ * certainly overkill, but this isn't a
+ * performance-critical path and I'd rather play it safe
+ * here than having to debug a nasty race if and when
+ * something changes in kernel/signal.c that would make it
+ * no longer safe to modify sa_handler without holding the
+ * lock.
+ */
+ spin_lock_irqsave(&current->sighand->siglock, flags);
+ current->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
+ spin_unlock_irqrestore(&current->sighand->siglock, flags);
+ }
+ si.si_signo = SIGSEGV;
+ si.si_errno = 0;
+ si.si_code = SI_KERNEL;
+ si.si_pid = current->pid;
+ si.si_uid = current->uid;
+ si.si_addr = addr;
+ force_sig_info(SIGSEGV, &si, current);
+ return 0;
+}
+
+static long
+setup_frame (int sig, struct k_sigaction *ka, siginfo_t *info, sigset_t *set,
+ struct sigscratch *scr)
+{
+ extern char __kernel_sigtramp[];
+ unsigned long tramp_addr, new_rbs = 0;
+ struct sigframe __user *frame;
+ long err;
+
+ frame = (void __user *) scr->pt.r12;
+ tramp_addr = (unsigned long) __kernel_sigtramp;
+ if ((ka->sa.sa_flags & SA_ONSTACK) && sas_ss_flags((unsigned long) frame) == 0) {
+ frame = (void __user *) ((current->sas_ss_sp + current->sas_ss_size)
+ & ~(STACK_ALIGN - 1));
+ /*
+ * We need to check for the register stack being on the signal stack
+ * separately, because it's switched separately (memory stack is switched
+ * in the kernel, register stack is switched in the signal trampoline).
+ */
+ if (!rbs_on_sig_stack(scr->pt.ar_bspstore))
+ new_rbs = (current->sas_ss_sp + sizeof(long) - 1) & ~(sizeof(long) - 1);
+ }
+ frame = (void __user *) frame - ((sizeof(*frame) + STACK_ALIGN - 1) & ~(STACK_ALIGN - 1));
+
+ if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+ return force_sigsegv_info(sig, frame);
+
+ err = __put_user(sig, &frame->arg0);
+ err |= __put_user(&frame->info, &frame->arg1);
+ err |= __put_user(&frame->sc, &frame->arg2);
+ err |= __put_user(new_rbs, &frame->sc.sc_rbs_base);
+ err |= __put_user(0, &frame->sc.sc_loadrs); /* initialize to zero */
+ err |= __put_user(ka->sa.sa_handler, &frame->handler);
+
+ err |= copy_siginfo_to_user(&frame->info, info);
+
+ err |= __put_user(current->sas_ss_sp, &frame->sc.sc_stack.ss_sp);
+ err |= __put_user(current->sas_ss_size, &frame->sc.sc_stack.ss_size);
+ err |= __put_user(sas_ss_flags(scr->pt.r12), &frame->sc.sc_stack.ss_flags);
+ err |= setup_sigcontext(&frame->sc, set, scr);
+
+ if (unlikely(err))
+ return force_sigsegv_info(sig, frame);
+
+ scr->pt.r12 = (unsigned long) frame - 16; /* new stack pointer */
+ scr->pt.ar_fpsr = FPSR_DEFAULT; /* reset fpsr for signal handler */
+ scr->pt.cr_iip = tramp_addr;
+ ia64_psr(&scr->pt)->ri = 0; /* start executing in first slot */
+ ia64_psr(&scr->pt)->be = 0; /* force little-endian byte-order */
+ /*
+ * Force the interruption function mask to zero. This has no effect when a
+ * system-call got interrupted by a signal (since, in that case, scr->pt_cr_ifs is
+ * ignored), but it has the desirable effect of making it possible to deliver a
+ * signal with an incomplete register frame (which happens when a mandatory RSE
+ * load faults). Furthermore, it has no negative effect on the getting the user's
+ * dirty partition preserved, because that's governed by scr->pt.loadrs.
+ */
+ scr->pt.cr_ifs = (1UL << 63);
+
+ /*
+ * Note: this affects only the NaT bits of the scratch regs (the ones saved in
+ * pt_regs), which is exactly what we want.
+ */
+ scr->scratch_unat = 0; /* ensure NaT bits of r12 is clear */
+
+#if DEBUG_SIG
+ printk("SIG deliver (%s:%d): sig=%d sp=%lx ip=%lx handler=%p\n",
+ current->comm, current->pid, sig, scr->pt.r12, frame->sc.sc_ip, frame->handler);
+#endif
+ return 1;
+}
+
+static long
+handle_signal (unsigned long sig, struct k_sigaction *ka, siginfo_t *info, sigset_t *oldset,
+ struct sigscratch *scr)
+{
+ if (IS_IA32_PROCESS(&scr->pt)) {
+ /* send signal to IA-32 process */
+ if (!ia32_setup_frame1(sig, ka, info, oldset, &scr->pt))
+ return 0;
+ } else
+ /* send signal to IA-64 process */
+ if (!setup_frame(sig, ka, info, oldset, scr))
+ return 0;
+
+ if (!(ka->sa.sa_flags & SA_NODEFER)) {
+ spin_lock_irq(&current->sighand->siglock);
+ {
+ sigorsets(&current->blocked, &current->blocked, &ka->sa.sa_mask);
+ sigaddset(&current->blocked, sig);
+ recalc_sigpending();
+ }
+ spin_unlock_irq(&current->sighand->siglock);
+ }
+ return 1;
+}
+
+/*
+ * Note that `init' is a special process: it doesn't get signals it doesn't want to
+ * handle. Thus you cannot kill init even with a SIGKILL even by mistake.
+ */
+long
+ia64_do_signal (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
+{
+ struct k_sigaction ka;
+ siginfo_t info;
+ long restart = in_syscall;
+ long errno = scr->pt.r8;
+# define ERR_CODE(c) (IS_IA32_PROCESS(&scr->pt) ? -(c) : (c))
+
+ /*
+ * In the ia64_leave_kernel code path, we want the common case to go fast, which
+ * is why we may in certain cases get here from kernel mode. Just return without
+ * doing anything if so.
+ */
+ if (!user_mode(&scr->pt))
+ return 0;
+
+ if (!oldset)
+ oldset = &current->blocked;
+
+ /*
+ * This only loops in the rare cases of handle_signal() failing, in which case we
+ * need to push through a forced SIGSEGV.
+ */
+ while (1) {
+ int signr = get_signal_to_deliver(&info, &ka, &scr->pt, NULL);
+
+ /*
+ * get_signal_to_deliver() may have run a debugger (via notify_parent())
+ * and the debugger may have modified the state (e.g., to arrange for an
+ * inferior call), thus it's important to check for restarting _after_
+ * get_signal_to_deliver().
+ */
+ if (IS_IA32_PROCESS(&scr->pt)) {
+ if (in_syscall) {
+ if (errno >= 0)
+ restart = 0;
+ else
+ errno = -errno;
+ }
+ } else if ((long) scr->pt.r10 != -1)
+ /*
+ * A system calls has to be restarted only if one of the error codes
+ * ERESTARTNOHAND, ERESTARTSYS, or ERESTARTNOINTR is returned. If r10
+ * isn't -1 then r8 doesn't hold an error code and we don't need to
+ * restart the syscall, so we can clear the "restart" flag here.
+ */
+ restart = 0;
+
+ if (signr <= 0)
+ break;
+
+ if (unlikely(restart)) {
+ switch (errno) {
+ case ERESTART_RESTARTBLOCK:
+ case ERESTARTNOHAND:
+ scr->pt.r8 = ERR_CODE(EINTR);
+ /* note: scr->pt.r10 is already -1 */
+ break;
+
+ case ERESTARTSYS:
+ if ((ka.sa.sa_flags & SA_RESTART) == 0) {
+ scr->pt.r8 = ERR_CODE(EINTR);
+ /* note: scr->pt.r10 is already -1 */
+ break;
+ }
+ case ERESTARTNOINTR:
+ if (IS_IA32_PROCESS(&scr->pt)) {
+ scr->pt.r8 = scr->pt.r1;
+ scr->pt.cr_iip -= 2;
+ } else
+ ia64_decrement_ip(&scr->pt);
+ restart = 0; /* don't restart twice if handle_signal() fails... */
+ }
+ }
+
+ /*
+ * Whee! Actually deliver the signal. If the delivery failed, we need to
+ * continue to iterate in this loop so we can deliver the SIGSEGV...
+ */
+ if (handle_signal(signr, &ka, &info, oldset, scr))
+ return 1;
+ }
+
+ /* Did we come from a system call? */
+ if (restart) {
+ /* Restart the system call - no handlers present */
+ if (errno == ERESTARTNOHAND || errno == ERESTARTSYS || errno == ERESTARTNOINTR
+ || errno == ERESTART_RESTARTBLOCK)
+ {
+ if (IS_IA32_PROCESS(&scr->pt)) {
+ scr->pt.r8 = scr->pt.r1;
+ scr->pt.cr_iip -= 2;
+ if (errno == ERESTART_RESTARTBLOCK)
+ scr->pt.r8 = 0; /* x86 version of __NR_restart_syscall */
+ } else {
+ /*
+ * Note: the syscall number is in r15 which is saved in
+ * pt_regs so all we need to do here is adjust ip so that
+ * the "break" instruction gets re-executed.
+ */
+ ia64_decrement_ip(&scr->pt);
+ if (errno == ERESTART_RESTARTBLOCK)
+ scr->pt.r15 = __NR_restart_syscall;
+ }
+ }
+ }
+ return 0;
+}
+
+/* Set a delayed signal that was detected in MCA/INIT/NMI/PMI context where it
+ * could not be delivered. It is important that the target process is not
+ * allowed to do any more work in user space. Possible cases for the target
+ * process:
+ *
+ * - It is sleeping and will wake up soon. Store the data in the current task,
+ * the signal will be sent when the current task returns from the next
+ * interrupt.
+ *
+ * - It is running in user context. Store the data in the current task, the
+ * signal will be sent when the current task returns from the next interrupt.
+ *
+ * - It is running in kernel context on this or another cpu and will return to
+ * user context. Store the data in the target task, the signal will be sent
+ * to itself when the target task returns to user space.
+ *
+ * - It is running in kernel context on this cpu and will sleep before
+ * returning to user context. Because this is also the current task, the
+ * signal will not get delivered and the task could sleep indefinitely.
+ * Store the data in the idle task for this cpu, the signal will be sent
+ * after the idle task processes its next interrupt.
+ *
+ * To cover all cases, store the data in the target task, the current task and
+ * the idle task on this cpu. Whatever happens, the signal will be delivered
+ * to the target task before it can do any useful user space work. Multiple
+ * deliveries have no unwanted side effects.
+ *
+ * Note: This code is executed in MCA/INIT/NMI/PMI context, with interrupts
+ * disabled. It must not take any locks nor use kernel structures or services
+ * that require locks.
+ */
+
+/* To ensure that we get the right pid, check its start time. To avoid extra
+ * include files in thread_info.h, convert the task start_time to unsigned long,
+ * giving us a cycle time of > 580 years.
+ */
+static inline unsigned long
+start_time_ul(const struct task_struct *t)
+{
+ return t->start_time.tv_sec * NSEC_PER_SEC + t->start_time.tv_nsec;
+}
+
+void
+set_sigdelayed(pid_t pid, int signo, int code, void __user *addr)
+{
+ struct task_struct *t;
+ unsigned long start_time = 0;
+ int i;
+
+ for (i = 1; i <= 3; ++i) {
+ switch (i) {
+ case 1:
+ t = find_task_by_pid(pid);
+ if (t)
+ start_time = start_time_ul(t);
+ break;
+ case 2:
+ t = current;
+ break;
+ default:
+ t = idle_task(smp_processor_id());
+ break;
+ }
+
+ if (!t)
+ return;
+ t->thread_info->sigdelayed.signo = signo;
+ t->thread_info->sigdelayed.code = code;
+ t->thread_info->sigdelayed.addr = addr;
+ t->thread_info->sigdelayed.start_time = start_time;
+ t->thread_info->sigdelayed.pid = pid;
+ wmb();
+ set_tsk_thread_flag(t, TIF_SIGDELAYED);
+ }
+}
+
+/* Called from entry.S when it detects TIF_SIGDELAYED, a delayed signal that
+ * was detected in MCA/INIT/NMI/PMI context where it could not be delivered.
+ */
+
+void
+do_sigdelayed(void)
+{
+ struct siginfo siginfo;
+ pid_t pid;
+ struct task_struct *t;
+
+ clear_thread_flag(TIF_SIGDELAYED);
+ memset(&siginfo, 0, sizeof(siginfo));
+ siginfo.si_signo = current_thread_info()->sigdelayed.signo;
+ siginfo.si_code = current_thread_info()->sigdelayed.code;
+ siginfo.si_addr = current_thread_info()->sigdelayed.addr;
+ pid = current_thread_info()->sigdelayed.pid;
+ t = find_task_by_pid(pid);
+ if (!t)
+ return;
+ if (current_thread_info()->sigdelayed.start_time != start_time_ul(t))
+ return;
+ force_sig_info(siginfo.si_signo, &siginfo, t);
+}
diff --git a/arch/ia64/kernel/smp.c b/arch/ia64/kernel/smp.c
new file mode 100644
index 0000000..953095e
--- /dev/null
+++ b/arch/ia64/kernel/smp.c
@@ -0,0 +1,376 @@
+/*
+ * SMP Support
+ *
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999, 2001, 2003 David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Lots of stuff stolen from arch/alpha/kernel/smp.c
+ *
+ * 01/05/16 Rohit Seth <rohit.seth@intel.com> IA64-SMP functions. Reorganized
+ * the existing code (on the lines of x86 port).
+ * 00/09/11 David Mosberger <davidm@hpl.hp.com> Do loops_per_jiffy
+ * calibration on each CPU.
+ * 00/08/23 Asit Mallick <asit.k.mallick@intel.com> fixed logical processor id
+ * 00/03/31 Rohit Seth <rohit.seth@intel.com> Fixes for Bootstrap Processor
+ * & cpu_online_map now gets done here (instead of setup.c)
+ * 99/10/05 davidm Update to bring it in sync with new command-line processing
+ * scheme.
+ * 10/13/00 Goutham Rao <goutham.rao@intel.com> Updated smp_call_function and
+ * smp_call_function_single to resend IPI on timeouts
+ */
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/smp.h>
+#include <linux/kernel_stat.h>
+#include <linux/mm.h>
+#include <linux/cache.h>
+#include <linux/delay.h>
+#include <linux/efi.h>
+#include <linux/bitops.h>
+
+#include <asm/atomic.h>
+#include <asm/current.h>
+#include <asm/delay.h>
+#include <asm/machvec.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace.h>
+#include <asm/sal.h>
+#include <asm/system.h>
+#include <asm/tlbflush.h>
+#include <asm/unistd.h>
+#include <asm/mca.h>
+
+/*
+ * Structure and data for smp_call_function(). This is designed to minimise static memory
+ * requirements. It also looks cleaner.
+ */
+static __cacheline_aligned DEFINE_SPINLOCK(call_lock);
+
+struct call_data_struct {
+ void (*func) (void *info);
+ void *info;
+ long wait;
+ atomic_t started;
+ atomic_t finished;
+};
+
+static volatile struct call_data_struct *call_data;
+
+#define IPI_CALL_FUNC 0
+#define IPI_CPU_STOP 1
+
+/* This needs to be cacheline aligned because it is written to by *other* CPUs. */
+static DEFINE_PER_CPU(u64, ipi_operation) ____cacheline_aligned;
+
+extern void cpu_halt (void);
+
+void
+lock_ipi_calllock(void)
+{
+ spin_lock_irq(&call_lock);
+}
+
+void
+unlock_ipi_calllock(void)
+{
+ spin_unlock_irq(&call_lock);
+}
+
+static void
+stop_this_cpu (void)
+{
+ /*
+ * Remove this CPU:
+ */
+ cpu_clear(smp_processor_id(), cpu_online_map);
+ max_xtp();
+ local_irq_disable();
+ cpu_halt();
+}
+
+void
+cpu_die(void)
+{
+ max_xtp();
+ local_irq_disable();
+ cpu_halt();
+ /* Should never be here */
+ BUG();
+ for (;;);
+}
+
+irqreturn_t
+handle_IPI (int irq, void *dev_id, struct pt_regs *regs)
+{
+ int this_cpu = get_cpu();
+ unsigned long *pending_ipis = &__ia64_per_cpu_var(ipi_operation);
+ unsigned long ops;
+
+ mb(); /* Order interrupt and bit testing. */
+ while ((ops = xchg(pending_ipis, 0)) != 0) {
+ mb(); /* Order bit clearing and data access. */
+ do {
+ unsigned long which;
+
+ which = ffz(~ops);
+ ops &= ~(1 << which);
+
+ switch (which) {
+ case IPI_CALL_FUNC:
+ {
+ struct call_data_struct *data;
+ void (*func)(void *info);
+ void *info;
+ int wait;
+
+ /* release the 'pointer lock' */
+ data = (struct call_data_struct *) call_data;
+ func = data->func;
+ info = data->info;
+ wait = data->wait;
+
+ mb();
+ atomic_inc(&data->started);
+ /*
+ * At this point the structure may be gone unless
+ * wait is true.
+ */
+ (*func)(info);
+
+ /* Notify the sending CPU that the task is done. */
+ mb();
+ if (wait)
+ atomic_inc(&data->finished);
+ }
+ break;
+
+ case IPI_CPU_STOP:
+ stop_this_cpu();
+ break;
+
+ default:
+ printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", this_cpu, which);
+ break;
+ }
+ } while (ops);
+ mb(); /* Order data access and bit testing. */
+ }
+ put_cpu();
+ return IRQ_HANDLED;
+}
+
+/*
+ * Called with preeemption disabled.
+ */
+static inline void
+send_IPI_single (int dest_cpu, int op)
+{
+ set_bit(op, &per_cpu(ipi_operation, dest_cpu));
+ platform_send_ipi(dest_cpu, IA64_IPI_VECTOR, IA64_IPI_DM_INT, 0);
+}
+
+/*
+ * Called with preeemption disabled.
+ */
+static inline void
+send_IPI_allbutself (int op)
+{
+ unsigned int i;
+
+ for (i = 0; i < NR_CPUS; i++) {
+ if (cpu_online(i) && i != smp_processor_id())
+ send_IPI_single(i, op);
+ }
+}
+
+/*
+ * Called with preeemption disabled.
+ */
+static inline void
+send_IPI_all (int op)
+{
+ int i;
+
+ for (i = 0; i < NR_CPUS; i++)
+ if (cpu_online(i))
+ send_IPI_single(i, op);
+}
+
+/*
+ * Called with preeemption disabled.
+ */
+static inline void
+send_IPI_self (int op)
+{
+ send_IPI_single(smp_processor_id(), op);
+}
+
+/*
+ * Called with preeemption disabled.
+ */
+void
+smp_send_reschedule (int cpu)
+{
+ platform_send_ipi(cpu, IA64_IPI_RESCHEDULE, IA64_IPI_DM_INT, 0);
+}
+
+void
+smp_flush_tlb_all (void)
+{
+ on_each_cpu((void (*)(void *))local_flush_tlb_all, NULL, 1, 1);
+}
+
+void
+smp_flush_tlb_mm (struct mm_struct *mm)
+{
+ /* this happens for the common case of a single-threaded fork(): */
+ if (likely(mm == current->active_mm && atomic_read(&mm->mm_users) == 1))
+ {
+ local_finish_flush_tlb_mm(mm);
+ return;
+ }
+
+ /*
+ * We could optimize this further by using mm->cpu_vm_mask to track which CPUs
+ * have been running in the address space. It's not clear that this is worth the
+ * trouble though: to avoid races, we have to raise the IPI on the target CPU
+ * anyhow, and once a CPU is interrupted, the cost of local_flush_tlb_all() is
+ * rather trivial.
+ */
+ on_each_cpu((void (*)(void *))local_finish_flush_tlb_mm, mm, 1, 1);
+}
+
+/*
+ * Run a function on another CPU
+ * <func> The function to run. This must be fast and non-blocking.
+ * <info> An arbitrary pointer to pass to the function.
+ * <nonatomic> Currently unused.
+ * <wait> If true, wait until function has completed on other CPUs.
+ * [RETURNS] 0 on success, else a negative status code.
+ *
+ * Does not return until the remote CPU is nearly ready to execute <func>
+ * or is or has executed.
+ */
+
+int
+smp_call_function_single (int cpuid, void (*func) (void *info), void *info, int nonatomic,
+ int wait)
+{
+ struct call_data_struct data;
+ int cpus = 1;
+ int me = get_cpu(); /* prevent preemption and reschedule on another processor */
+
+ if (cpuid == me) {
+ printk("%s: trying to call self\n", __FUNCTION__);
+ put_cpu();
+ return -EBUSY;
+ }
+
+ data.func = func;
+ data.info = info;
+ atomic_set(&data.started, 0);
+ data.wait = wait;
+ if (wait)
+ atomic_set(&data.finished, 0);
+
+ spin_lock_bh(&call_lock);
+
+ call_data = &data;
+ mb(); /* ensure store to call_data precedes setting of IPI_CALL_FUNC */
+ send_IPI_single(cpuid, IPI_CALL_FUNC);
+
+ /* Wait for response */
+ while (atomic_read(&data.started) != cpus)
+ cpu_relax();
+
+ if (wait)
+ while (atomic_read(&data.finished) != cpus)
+ cpu_relax();
+ call_data = NULL;
+
+ spin_unlock_bh(&call_lock);
+ put_cpu();
+ return 0;
+}
+EXPORT_SYMBOL(smp_call_function_single);
+
+/*
+ * this function sends a 'generic call function' IPI to all other CPUs
+ * in the system.
+ */
+
+/*
+ * [SUMMARY] Run a function on all other CPUs.
+ * <func> The function to run. This must be fast and non-blocking.
+ * <info> An arbitrary pointer to pass to the function.
+ * <nonatomic> currently unused.
+ * <wait> If true, wait (atomically) until function has completed on other CPUs.
+ * [RETURNS] 0 on success, else a negative status code.
+ *
+ * Does not return until remote CPUs are nearly ready to execute <func> or are or have
+ * executed.
+ *
+ * You must not call this function with disabled interrupts or from a
+ * hardware interrupt handler or from a bottom half handler.
+ */
+int
+smp_call_function (void (*func) (void *info), void *info, int nonatomic, int wait)
+{
+ struct call_data_struct data;
+ int cpus = num_online_cpus()-1;
+
+ if (!cpus)
+ return 0;
+
+ /* Can deadlock when called with interrupts disabled */
+ WARN_ON(irqs_disabled());
+
+ data.func = func;
+ data.info = info;
+ atomic_set(&data.started, 0);
+ data.wait = wait;
+ if (wait)
+ atomic_set(&data.finished, 0);
+
+ spin_lock(&call_lock);
+
+ call_data = &data;
+ mb(); /* ensure store to call_data precedes setting of IPI_CALL_FUNC */
+ send_IPI_allbutself(IPI_CALL_FUNC);
+
+ /* Wait for response */
+ while (atomic_read(&data.started) != cpus)
+ cpu_relax();
+
+ if (wait)
+ while (atomic_read(&data.finished) != cpus)
+ cpu_relax();
+ call_data = NULL;
+
+ spin_unlock(&call_lock);
+ return 0;
+}
+EXPORT_SYMBOL(smp_call_function);
+
+/*
+ * this function calls the 'stop' function on all other CPUs in the system.
+ */
+void
+smp_send_stop (void)
+{
+ send_IPI_allbutself(IPI_CPU_STOP);
+}
+
+int __init
+setup_profiling_timer (unsigned int multiplier)
+{
+ return -EINVAL;
+}
diff --git a/arch/ia64/kernel/smpboot.c b/arch/ia64/kernel/smpboot.c
new file mode 100644
index 0000000..5318f0c
--- /dev/null
+++ b/arch/ia64/kernel/smpboot.c
@@ -0,0 +1,692 @@
+/*
+ * SMP boot-related support
+ *
+ * Copyright (C) 1998-2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
+ * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
+ * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
+ * smp_boot_cpus()/smp_commence() is replaced by
+ * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
+ */
+#include <linux/config.h>
+
+#include <linux/module.h>
+#include <linux/acpi.h>
+#include <linux/bootmem.h>
+#include <linux/cpu.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kernel.h>
+#include <linux/kernel_stat.h>
+#include <linux/mm.h>
+#include <linux/notifier.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/spinlock.h>
+#include <linux/efi.h>
+#include <linux/percpu.h>
+#include <linux/bitops.h>
+
+#include <asm/atomic.h>
+#include <asm/cache.h>
+#include <asm/current.h>
+#include <asm/delay.h>
+#include <asm/ia32.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/machvec.h>
+#include <asm/mca.h>
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace.h>
+#include <asm/sal.h>
+#include <asm/system.h>
+#include <asm/tlbflush.h>
+#include <asm/unistd.h>
+
+#define SMP_DEBUG 0
+
+#if SMP_DEBUG
+#define Dprintk(x...) printk(x)
+#else
+#define Dprintk(x...)
+#endif
+
+
+/*
+ * ITC synchronization related stuff:
+ */
+#define MASTER 0
+#define SLAVE (SMP_CACHE_BYTES/8)
+
+#define NUM_ROUNDS 64 /* magic value */
+#define NUM_ITERS 5 /* likewise */
+
+static DEFINE_SPINLOCK(itc_sync_lock);
+static volatile unsigned long go[SLAVE + 1];
+
+#define DEBUG_ITC_SYNC 0
+
+extern void __devinit calibrate_delay (void);
+extern void start_ap (void);
+extern unsigned long ia64_iobase;
+
+task_t *task_for_booting_cpu;
+
+/*
+ * State for each CPU
+ */
+DEFINE_PER_CPU(int, cpu_state);
+
+/* Bitmasks of currently online, and possible CPUs */
+cpumask_t cpu_online_map;
+EXPORT_SYMBOL(cpu_online_map);
+cpumask_t cpu_possible_map;
+EXPORT_SYMBOL(cpu_possible_map);
+
+/* which logical CPU number maps to which CPU (physical APIC ID) */
+volatile int ia64_cpu_to_sapicid[NR_CPUS];
+EXPORT_SYMBOL(ia64_cpu_to_sapicid);
+
+static volatile cpumask_t cpu_callin_map;
+
+struct smp_boot_data smp_boot_data __initdata;
+
+unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
+
+char __initdata no_int_routing;
+
+unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
+
+static int __init
+nointroute (char *str)
+{
+ no_int_routing = 1;
+ printk ("no_int_routing on\n");
+ return 1;
+}
+
+__setup("nointroute", nointroute);
+
+void
+sync_master (void *arg)
+{
+ unsigned long flags, i;
+
+ go[MASTER] = 0;
+
+ local_irq_save(flags);
+ {
+ for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
+ while (!go[MASTER]);
+ go[MASTER] = 0;
+ go[SLAVE] = ia64_get_itc();
+ }
+ }
+ local_irq_restore(flags);
+}
+
+/*
+ * Return the number of cycles by which our itc differs from the itc on the master
+ * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
+ * negative that it is behind.
+ */
+static inline long
+get_delta (long *rt, long *master)
+{
+ unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
+ unsigned long tcenter, t0, t1, tm;
+ long i;
+
+ for (i = 0; i < NUM_ITERS; ++i) {
+ t0 = ia64_get_itc();
+ go[MASTER] = 1;
+ while (!(tm = go[SLAVE]));
+ go[SLAVE] = 0;
+ t1 = ia64_get_itc();
+
+ if (t1 - t0 < best_t1 - best_t0)
+ best_t0 = t0, best_t1 = t1, best_tm = tm;
+ }
+
+ *rt = best_t1 - best_t0;
+ *master = best_tm - best_t0;
+
+ /* average best_t0 and best_t1 without overflow: */
+ tcenter = (best_t0/2 + best_t1/2);
+ if (best_t0 % 2 + best_t1 % 2 == 2)
+ ++tcenter;
+ return tcenter - best_tm;
+}
+
+/*
+ * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
+ * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
+ * unaccounted-for errors (such as getting a machine check in the middle of a calibration
+ * step). The basic idea is for the slave to ask the master what itc value it has and to
+ * read its own itc before and after the master responds. Each iteration gives us three
+ * timestamps:
+ *
+ * slave master
+ *
+ * t0 ---\
+ * ---\
+ * --->
+ * tm
+ * /---
+ * /---
+ * t1 <---
+ *
+ *
+ * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
+ * and t1. If we achieve this, the clocks are synchronized provided the interconnect
+ * between the slave and the master is symmetric. Even if the interconnect were
+ * asymmetric, we would still know that the synchronization error is smaller than the
+ * roundtrip latency (t0 - t1).
+ *
+ * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
+ * within one or two cycles. However, we can only *guarantee* that the synchronization is
+ * accurate to within a round-trip time, which is typically in the range of several
+ * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
+ * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
+ * than half a micro second or so.
+ */
+void
+ia64_sync_itc (unsigned int master)
+{
+ long i, delta, adj, adjust_latency = 0, done = 0;
+ unsigned long flags, rt, master_time_stamp, bound;
+#if DEBUG_ITC_SYNC
+ struct {
+ long rt; /* roundtrip time */
+ long master; /* master's timestamp */
+ long diff; /* difference between midpoint and master's timestamp */
+ long lat; /* estimate of itc adjustment latency */
+ } t[NUM_ROUNDS];
+#endif
+
+ /*
+ * Make sure local timer ticks are disabled while we sync. If
+ * they were enabled, we'd have to worry about nasty issues
+ * like setting the ITC ahead of (or a long time before) the
+ * next scheduled tick.
+ */
+ BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
+
+ go[MASTER] = 1;
+
+ if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
+ printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
+ return;
+ }
+
+ while (go[MASTER]); /* wait for master to be ready */
+
+ spin_lock_irqsave(&itc_sync_lock, flags);
+ {
+ for (i = 0; i < NUM_ROUNDS; ++i) {
+ delta = get_delta(&rt, &master_time_stamp);
+ if (delta == 0) {
+ done = 1; /* let's lock on to this... */
+ bound = rt;
+ }
+
+ if (!done) {
+ if (i > 0) {
+ adjust_latency += -delta;
+ adj = -delta + adjust_latency/4;
+ } else
+ adj = -delta;
+
+ ia64_set_itc(ia64_get_itc() + adj);
+ }
+#if DEBUG_ITC_SYNC
+ t[i].rt = rt;
+ t[i].master = master_time_stamp;
+ t[i].diff = delta;
+ t[i].lat = adjust_latency/4;
+#endif
+ }
+ }
+ spin_unlock_irqrestore(&itc_sync_lock, flags);
+
+#if DEBUG_ITC_SYNC
+ for (i = 0; i < NUM_ROUNDS; ++i)
+ printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
+ t[i].rt, t[i].master, t[i].diff, t[i].lat);
+#endif
+
+ printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
+ "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
+}
+
+/*
+ * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
+ */
+static inline void __devinit
+smp_setup_percpu_timer (void)
+{
+}
+
+static void __devinit
+smp_callin (void)
+{
+ int cpuid, phys_id;
+ extern void ia64_init_itm(void);
+
+#ifdef CONFIG_PERFMON
+ extern void pfm_init_percpu(void);
+#endif
+
+ cpuid = smp_processor_id();
+ phys_id = hard_smp_processor_id();
+
+ if (cpu_online(cpuid)) {
+ printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
+ phys_id, cpuid);
+ BUG();
+ }
+
+ lock_ipi_calllock();
+ cpu_set(cpuid, cpu_online_map);
+ unlock_ipi_calllock();
+
+ smp_setup_percpu_timer();
+
+ ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
+
+#ifdef CONFIG_PERFMON
+ pfm_init_percpu();
+#endif
+
+ local_irq_enable();
+
+ if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
+ /*
+ * Synchronize the ITC with the BP. Need to do this after irqs are
+ * enabled because ia64_sync_itc() calls smp_call_function_single(), which
+ * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
+ * local_bh_enable(), which bugs out if irqs are not enabled...
+ */
+ Dprintk("Going to syncup ITC with BP.\n");
+ ia64_sync_itc(0);
+ }
+
+ /*
+ * Get our bogomips.
+ */
+ ia64_init_itm();
+ calibrate_delay();
+ local_cpu_data->loops_per_jiffy = loops_per_jiffy;
+
+#ifdef CONFIG_IA32_SUPPORT
+ ia32_gdt_init();
+#endif
+
+ /*
+ * Allow the master to continue.
+ */
+ cpu_set(cpuid, cpu_callin_map);
+ Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
+}
+
+
+/*
+ * Activate a secondary processor. head.S calls this.
+ */
+int __devinit
+start_secondary (void *unused)
+{
+ /* Early console may use I/O ports */
+ ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
+
+ Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
+ efi_map_pal_code();
+ cpu_init();
+ smp_callin();
+
+ cpu_idle();
+ return 0;
+}
+
+struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
+{
+ return NULL;
+}
+
+struct create_idle {
+ struct task_struct *idle;
+ struct completion done;
+ int cpu;
+};
+
+void
+do_fork_idle(void *_c_idle)
+{
+ struct create_idle *c_idle = _c_idle;
+
+ c_idle->idle = fork_idle(c_idle->cpu);
+ complete(&c_idle->done);
+}
+
+static int __devinit
+do_boot_cpu (int sapicid, int cpu)
+{
+ int timeout;
+ struct create_idle c_idle = {
+ .cpu = cpu,
+ .done = COMPLETION_INITIALIZER(c_idle.done),
+ };
+ DECLARE_WORK(work, do_fork_idle, &c_idle);
+ /*
+ * We can't use kernel_thread since we must avoid to reschedule the child.
+ */
+ if (!keventd_up() || current_is_keventd())
+ work.func(work.data);
+ else {
+ schedule_work(&work);
+ wait_for_completion(&c_idle.done);
+ }
+
+ if (IS_ERR(c_idle.idle))
+ panic("failed fork for CPU %d", cpu);
+ task_for_booting_cpu = c_idle.idle;
+
+ Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
+
+ platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
+
+ /*
+ * Wait 10s total for the AP to start
+ */
+ Dprintk("Waiting on callin_map ...");
+ for (timeout = 0; timeout < 100000; timeout++) {
+ if (cpu_isset(cpu, cpu_callin_map))
+ break; /* It has booted */
+ udelay(100);
+ }
+ Dprintk("\n");
+
+ if (!cpu_isset(cpu, cpu_callin_map)) {
+ printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
+ ia64_cpu_to_sapicid[cpu] = -1;
+ cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int __init
+decay (char *str)
+{
+ int ticks;
+ get_option (&str, &ticks);
+ return 1;
+}
+
+__setup("decay=", decay);
+
+/*
+ * Initialize the logical CPU number to SAPICID mapping
+ */
+void __init
+smp_build_cpu_map (void)
+{
+ int sapicid, cpu, i;
+ int boot_cpu_id = hard_smp_processor_id();
+
+ for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ ia64_cpu_to_sapicid[cpu] = -1;
+#ifdef CONFIG_HOTPLUG_CPU
+ cpu_set(cpu, cpu_possible_map);
+#endif
+ }
+
+ ia64_cpu_to_sapicid[0] = boot_cpu_id;
+ cpus_clear(cpu_present_map);
+ cpu_set(0, cpu_present_map);
+ cpu_set(0, cpu_possible_map);
+ for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
+ sapicid = smp_boot_data.cpu_phys_id[i];
+ if (sapicid == boot_cpu_id)
+ continue;
+ cpu_set(cpu, cpu_present_map);
+ cpu_set(cpu, cpu_possible_map);
+ ia64_cpu_to_sapicid[cpu] = sapicid;
+ cpu++;
+ }
+}
+
+#ifdef CONFIG_NUMA
+
+/* on which node is each logical CPU (one cacheline even for 64 CPUs) */
+u8 cpu_to_node_map[NR_CPUS] __cacheline_aligned;
+EXPORT_SYMBOL(cpu_to_node_map);
+/* which logical CPUs are on which nodes */
+cpumask_t node_to_cpu_mask[MAX_NUMNODES] __cacheline_aligned;
+
+/*
+ * Build cpu to node mapping and initialize the per node cpu masks.
+ */
+void __init
+build_cpu_to_node_map (void)
+{
+ int cpu, i, node;
+
+ for(node=0; node<MAX_NUMNODES; node++)
+ cpus_clear(node_to_cpu_mask[node]);
+ for(cpu = 0; cpu < NR_CPUS; ++cpu) {
+ /*
+ * All Itanium NUMA platforms I know use ACPI, so maybe we
+ * can drop this ifdef completely. [EF]
+ */
+#ifdef CONFIG_ACPI_NUMA
+ node = -1;
+ for (i = 0; i < NR_CPUS; ++i)
+ if (cpu_physical_id(cpu) == node_cpuid[i].phys_id) {
+ node = node_cpuid[i].nid;
+ break;
+ }
+#else
+# error Fixme: Dunno how to build CPU-to-node map.
+#endif
+ cpu_to_node_map[cpu] = (node >= 0) ? node : 0;
+ if (node >= 0)
+ cpu_set(cpu, node_to_cpu_mask[node]);
+ }
+}
+
+#endif /* CONFIG_NUMA */
+
+/*
+ * Cycle through the APs sending Wakeup IPIs to boot each.
+ */
+void __init
+smp_prepare_cpus (unsigned int max_cpus)
+{
+ int boot_cpu_id = hard_smp_processor_id();
+
+ /*
+ * Initialize the per-CPU profiling counter/multiplier
+ */
+
+ smp_setup_percpu_timer();
+
+ /*
+ * We have the boot CPU online for sure.
+ */
+ cpu_set(0, cpu_online_map);
+ cpu_set(0, cpu_callin_map);
+
+ local_cpu_data->loops_per_jiffy = loops_per_jiffy;
+ ia64_cpu_to_sapicid[0] = boot_cpu_id;
+
+ printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
+
+ current_thread_info()->cpu = 0;
+
+ /*
+ * If SMP should be disabled, then really disable it!
+ */
+ if (!max_cpus) {
+ printk(KERN_INFO "SMP mode deactivated.\n");
+ cpus_clear(cpu_online_map);
+ cpus_clear(cpu_present_map);
+ cpus_clear(cpu_possible_map);
+ cpu_set(0, cpu_online_map);
+ cpu_set(0, cpu_present_map);
+ cpu_set(0, cpu_possible_map);
+ return;
+ }
+}
+
+void __devinit smp_prepare_boot_cpu(void)
+{
+ cpu_set(smp_processor_id(), cpu_online_map);
+ cpu_set(smp_processor_id(), cpu_callin_map);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+extern void fixup_irqs(void);
+/* must be called with cpucontrol mutex held */
+static int __devinit cpu_enable(unsigned int cpu)
+{
+ per_cpu(cpu_state,cpu) = CPU_UP_PREPARE;
+ wmb();
+
+ while (!cpu_online(cpu))
+ cpu_relax();
+ return 0;
+}
+
+int __cpu_disable(void)
+{
+ int cpu = smp_processor_id();
+
+ /*
+ * dont permit boot processor for now
+ */
+ if (cpu == 0)
+ return -EBUSY;
+
+ fixup_irqs();
+ local_flush_tlb_all();
+ printk ("Disabled cpu %u\n", smp_processor_id());
+ return 0;
+}
+
+void __cpu_die(unsigned int cpu)
+{
+ unsigned int i;
+
+ for (i = 0; i < 100; i++) {
+ /* They ack this in play_dead by setting CPU_DEAD */
+ if (per_cpu(cpu_state, cpu) == CPU_DEAD)
+ {
+ /*
+ * TBD: Enable this when physical removal
+ * or when we put the processor is put in
+ * SAL_BOOT_RENDEZ mode
+ * cpu_clear(cpu, cpu_callin_map);
+ */
+ return;
+ }
+ msleep(100);
+ }
+ printk(KERN_ERR "CPU %u didn't die...\n", cpu);
+}
+#else /* !CONFIG_HOTPLUG_CPU */
+static int __devinit cpu_enable(unsigned int cpu)
+{
+ return 0;
+}
+
+int __cpu_disable(void)
+{
+ return -ENOSYS;
+}
+
+void __cpu_die(unsigned int cpu)
+{
+ /* We said "no" in __cpu_disable */
+ BUG();
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+void
+smp_cpus_done (unsigned int dummy)
+{
+ int cpu;
+ unsigned long bogosum = 0;
+
+ /*
+ * Allow the user to impress friends.
+ */
+
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ if (cpu_online(cpu))
+ bogosum += cpu_data(cpu)->loops_per_jiffy;
+
+ printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
+ (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
+}
+
+int __devinit
+__cpu_up (unsigned int cpu)
+{
+ int ret;
+ int sapicid;
+
+ sapicid = ia64_cpu_to_sapicid[cpu];
+ if (sapicid == -1)
+ return -EINVAL;
+
+ /*
+ * Already booted.. just enable and get outa idle lool
+ */
+ if (cpu_isset(cpu, cpu_callin_map))
+ {
+ cpu_enable(cpu);
+ local_irq_enable();
+ while (!cpu_isset(cpu, cpu_online_map))
+ mb();
+ return 0;
+ }
+ /* Processor goes to start_secondary(), sets online flag */
+ ret = do_boot_cpu(sapicid, cpu);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+/*
+ * Assume that CPU's have been discovered by some platform-dependent interface. For
+ * SoftSDV/Lion, that would be ACPI.
+ *
+ * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
+ */
+void __init
+init_smp_config(void)
+{
+ struct fptr {
+ unsigned long fp;
+ unsigned long gp;
+ } *ap_startup;
+ long sal_ret;
+
+ /* Tell SAL where to drop the AP's. */
+ ap_startup = (struct fptr *) start_ap;
+ sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
+ ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
+ if (sal_ret < 0)
+ printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
+ ia64_sal_strerror(sal_ret));
+}
+
diff --git a/arch/ia64/kernel/sys_ia64.c b/arch/ia64/kernel/sys_ia64.c
new file mode 100644
index 0000000..3ac216e
--- /dev/null
+++ b/arch/ia64/kernel/sys_ia64.c
@@ -0,0 +1,298 @@
+/*
+ * This file contains various system calls that have different calling
+ * conventions on different platforms.
+ *
+ * Copyright (C) 1999-2000, 2002-2003, 2005 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+#include <linux/config.h>
+#include <linux/errno.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/mman.h>
+#include <linux/sched.h>
+#include <linux/shm.h>
+#include <linux/file.h> /* doh, must come after sched.h... */
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/syscalls.h>
+#include <linux/highuid.h>
+#include <linux/hugetlb.h>
+
+#include <asm/shmparam.h>
+#include <asm/uaccess.h>
+
+unsigned long
+arch_get_unmapped_area (struct file *filp, unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags)
+{
+ long map_shared = (flags & MAP_SHARED);
+ unsigned long start_addr, align_mask = PAGE_SIZE - 1;
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma;
+
+ if (len > RGN_MAP_LIMIT)
+ return -ENOMEM;
+
+#ifdef CONFIG_HUGETLB_PAGE
+ if (REGION_NUMBER(addr) == REGION_HPAGE)
+ addr = 0;
+#endif
+ if (!addr)
+ addr = mm->free_area_cache;
+
+ if (map_shared && (TASK_SIZE > 0xfffffffful))
+ /*
+ * For 64-bit tasks, align shared segments to 1MB to avoid potential
+ * performance penalty due to virtual aliasing (see ASDM). For 32-bit
+ * tasks, we prefer to avoid exhausting the address space too quickly by
+ * limiting alignment to a single page.
+ */
+ align_mask = SHMLBA - 1;
+
+ full_search:
+ start_addr = addr = (addr + align_mask) & ~align_mask;
+
+ for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
+ /* At this point: (!vma || addr < vma->vm_end). */
+ if (TASK_SIZE - len < addr || RGN_MAP_LIMIT - len < REGION_OFFSET(addr)) {
+ if (start_addr != TASK_UNMAPPED_BASE) {
+ /* Start a new search --- just in case we missed some holes. */
+ addr = TASK_UNMAPPED_BASE;
+ goto full_search;
+ }
+ return -ENOMEM;
+ }
+ if (!vma || addr + len <= vma->vm_start) {
+ /* Remember the address where we stopped this search: */
+ mm->free_area_cache = addr + len;
+ return addr;
+ }
+ addr = (vma->vm_end + align_mask) & ~align_mask;
+ }
+}
+
+asmlinkage long
+ia64_getpriority (int which, int who)
+{
+ long prio;
+
+ prio = sys_getpriority(which, who);
+ if (prio >= 0) {
+ force_successful_syscall_return();
+ prio = 20 - prio;
+ }
+ return prio;
+}
+
+/* XXX obsolete, but leave it here until the old libc is gone... */
+asmlinkage unsigned long
+sys_getpagesize (void)
+{
+ return PAGE_SIZE;
+}
+
+asmlinkage unsigned long
+ia64_shmat (int shmid, void __user *shmaddr, int shmflg)
+{
+ unsigned long raddr;
+ int retval;
+
+ retval = do_shmat(shmid, shmaddr, shmflg, &raddr);
+ if (retval < 0)
+ return retval;
+
+ force_successful_syscall_return();
+ return raddr;
+}
+
+asmlinkage unsigned long
+ia64_brk (unsigned long brk)
+{
+ unsigned long rlim, retval, newbrk, oldbrk;
+ struct mm_struct *mm = current->mm;
+
+ /*
+ * Most of this replicates the code in sys_brk() except for an additional safety
+ * check and the clearing of r8. However, we can't call sys_brk() because we need
+ * to acquire the mmap_sem before we can do the test...
+ */
+ down_write(&mm->mmap_sem);
+
+ if (brk < mm->end_code)
+ goto out;
+ newbrk = PAGE_ALIGN(brk);
+ oldbrk = PAGE_ALIGN(mm->brk);
+ if (oldbrk == newbrk)
+ goto set_brk;
+
+ /* Always allow shrinking brk. */
+ if (brk <= mm->brk) {
+ if (!do_munmap(mm, newbrk, oldbrk-newbrk))
+ goto set_brk;
+ goto out;
+ }
+
+ /* Check against unimplemented/unmapped addresses: */
+ if ((newbrk - oldbrk) > RGN_MAP_LIMIT || REGION_OFFSET(newbrk) > RGN_MAP_LIMIT)
+ goto out;
+
+ /* Check against rlimit.. */
+ rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
+ if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
+ goto out;
+
+ /* Check against existing mmap mappings. */
+ if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
+ goto out;
+
+ /* Ok, looks good - let it rip. */
+ if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
+ goto out;
+set_brk:
+ mm->brk = brk;
+out:
+ retval = mm->brk;
+ up_write(&mm->mmap_sem);
+ force_successful_syscall_return();
+ return retval;
+}
+
+/*
+ * On IA-64, we return the two file descriptors in ret0 and ret1 (r8
+ * and r9) as this is faster than doing a copy_to_user().
+ */
+asmlinkage long
+sys_pipe (void)
+{
+ struct pt_regs *regs = ia64_task_regs(current);
+ int fd[2];
+ int retval;
+
+ retval = do_pipe(fd);
+ if (retval)
+ goto out;
+ retval = fd[0];
+ regs->r9 = fd[1];
+ out:
+ return retval;
+}
+
+static inline unsigned long
+do_mmap2 (unsigned long addr, unsigned long len, int prot, int flags, int fd, unsigned long pgoff)
+{
+ unsigned long roff;
+ struct file *file = NULL;
+
+ flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
+ if (!(flags & MAP_ANONYMOUS)) {
+ file = fget(fd);
+ if (!file)
+ return -EBADF;
+
+ if (!file->f_op || !file->f_op->mmap) {
+ addr = -ENODEV;
+ goto out;
+ }
+ }
+
+ /*
+ * A zero mmap always succeeds in Linux, independent of whether or not the
+ * remaining arguments are valid.
+ */
+ if (len == 0)
+ goto out;
+
+ /* Careful about overflows.. */
+ len = PAGE_ALIGN(len);
+ if (!len || len > TASK_SIZE) {
+ addr = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * Don't permit mappings into unmapped space, the virtual page table of a region,
+ * or across a region boundary. Note: RGN_MAP_LIMIT is equal to 2^n-PAGE_SIZE
+ * (for some integer n <= 61) and len > 0.
+ */
+ roff = REGION_OFFSET(addr);
+ if ((len > RGN_MAP_LIMIT) || (roff > (RGN_MAP_LIMIT - len))) {
+ addr = -EINVAL;
+ goto out;
+ }
+
+ down_write(&current->mm->mmap_sem);
+ addr = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
+ up_write(&current->mm->mmap_sem);
+
+out: if (file)
+ fput(file);
+ return addr;
+}
+
+/*
+ * mmap2() is like mmap() except that the offset is expressed in units
+ * of PAGE_SIZE (instead of bytes). This allows to mmap2() (pieces
+ * of) files that are larger than the address space of the CPU.
+ */
+asmlinkage unsigned long
+sys_mmap2 (unsigned long addr, unsigned long len, int prot, int flags, int fd, long pgoff)
+{
+ addr = do_mmap2(addr, len, prot, flags, fd, pgoff);
+ if (!IS_ERR((void *) addr))
+ force_successful_syscall_return();
+ return addr;
+}
+
+asmlinkage unsigned long
+sys_mmap (unsigned long addr, unsigned long len, int prot, int flags, int fd, long off)
+{
+ if (offset_in_page(off) != 0)
+ return -EINVAL;
+
+ addr = do_mmap2(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
+ if (!IS_ERR((void *) addr))
+ force_successful_syscall_return();
+ return addr;
+}
+
+asmlinkage unsigned long
+ia64_mremap (unsigned long addr, unsigned long old_len, unsigned long new_len, unsigned long flags,
+ unsigned long new_addr)
+{
+ extern unsigned long do_mremap (unsigned long addr,
+ unsigned long old_len,
+ unsigned long new_len,
+ unsigned long flags,
+ unsigned long new_addr);
+
+ down_write(&current->mm->mmap_sem);
+ {
+ addr = do_mremap(addr, old_len, new_len, flags, new_addr);
+ }
+ up_write(&current->mm->mmap_sem);
+
+ if (IS_ERR((void *) addr))
+ return addr;
+
+ force_successful_syscall_return();
+ return addr;
+}
+
+#ifndef CONFIG_PCI
+
+asmlinkage long
+sys_pciconfig_read (unsigned long bus, unsigned long dfn, unsigned long off, unsigned long len,
+ void *buf)
+{
+ return -ENOSYS;
+}
+
+asmlinkage long
+sys_pciconfig_write (unsigned long bus, unsigned long dfn, unsigned long off, unsigned long len,
+ void *buf)
+{
+ return -ENOSYS;
+}
+
+#endif /* CONFIG_PCI */
diff --git a/arch/ia64/kernel/time.c b/arch/ia64/kernel/time.c
new file mode 100644
index 0000000..8b8a5a4
--- /dev/null
+++ b/arch/ia64/kernel/time.c
@@ -0,0 +1,255 @@
+/*
+ * linux/arch/ia64/kernel/time.c
+ *
+ * Copyright (C) 1998-2003 Hewlett-Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * David Mosberger <davidm@hpl.hp.com>
+ * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
+ * Copyright (C) 1999-2000 VA Linux Systems
+ * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
+ */
+#include <linux/config.h>
+
+#include <linux/cpu.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/profile.h>
+#include <linux/sched.h>
+#include <linux/time.h>
+#include <linux/interrupt.h>
+#include <linux/efi.h>
+#include <linux/profile.h>
+#include <linux/timex.h>
+
+#include <asm/machvec.h>
+#include <asm/delay.h>
+#include <asm/hw_irq.h>
+#include <asm/ptrace.h>
+#include <asm/sal.h>
+#include <asm/sections.h>
+#include <asm/system.h>
+
+extern unsigned long wall_jiffies;
+
+u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
+
+EXPORT_SYMBOL(jiffies_64);
+
+#define TIME_KEEPER_ID 0 /* smp_processor_id() of time-keeper */
+
+#ifdef CONFIG_IA64_DEBUG_IRQ
+
+unsigned long last_cli_ip;
+EXPORT_SYMBOL(last_cli_ip);
+
+#endif
+
+static struct time_interpolator itc_interpolator = {
+ .shift = 16,
+ .mask = 0xffffffffffffffffLL,
+ .source = TIME_SOURCE_CPU
+};
+
+static irqreturn_t
+timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
+{
+ unsigned long new_itm;
+
+ if (unlikely(cpu_is_offline(smp_processor_id()))) {
+ return IRQ_HANDLED;
+ }
+
+ platform_timer_interrupt(irq, dev_id, regs);
+
+ new_itm = local_cpu_data->itm_next;
+
+ if (!time_after(ia64_get_itc(), new_itm))
+ printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
+ ia64_get_itc(), new_itm);
+
+ profile_tick(CPU_PROFILING, regs);
+
+ while (1) {
+ update_process_times(user_mode(regs));
+
+ new_itm += local_cpu_data->itm_delta;
+
+ if (smp_processor_id() == TIME_KEEPER_ID) {
+ /*
+ * Here we are in the timer irq handler. We have irqs locally
+ * disabled, but we don't know if the timer_bh is running on
+ * another CPU. We need to avoid to SMP race by acquiring the
+ * xtime_lock.
+ */
+ write_seqlock(&xtime_lock);
+ do_timer(regs);
+ local_cpu_data->itm_next = new_itm;
+ write_sequnlock(&xtime_lock);
+ } else
+ local_cpu_data->itm_next = new_itm;
+
+ if (time_after(new_itm, ia64_get_itc()))
+ break;
+ }
+
+ do {
+ /*
+ * If we're too close to the next clock tick for
+ * comfort, we increase the safety margin by
+ * intentionally dropping the next tick(s). We do NOT
+ * update itm.next because that would force us to call
+ * do_timer() which in turn would let our clock run
+ * too fast (with the potentially devastating effect
+ * of losing monotony of time).
+ */
+ while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
+ new_itm += local_cpu_data->itm_delta;
+ ia64_set_itm(new_itm);
+ /* double check, in case we got hit by a (slow) PMI: */
+ } while (time_after_eq(ia64_get_itc(), new_itm));
+ return IRQ_HANDLED;
+}
+
+/*
+ * Encapsulate access to the itm structure for SMP.
+ */
+void
+ia64_cpu_local_tick (void)
+{
+ int cpu = smp_processor_id();
+ unsigned long shift = 0, delta;
+
+ /* arrange for the cycle counter to generate a timer interrupt: */
+ ia64_set_itv(IA64_TIMER_VECTOR);
+
+ delta = local_cpu_data->itm_delta;
+ /*
+ * Stagger the timer tick for each CPU so they don't occur all at (almost) the
+ * same time:
+ */
+ if (cpu) {
+ unsigned long hi = 1UL << ia64_fls(cpu);
+ shift = (2*(cpu - hi) + 1) * delta/hi/2;
+ }
+ local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
+ ia64_set_itm(local_cpu_data->itm_next);
+}
+
+static int nojitter;
+
+static int __init nojitter_setup(char *str)
+{
+ nojitter = 1;
+ printk("Jitter checking for ITC timers disabled\n");
+ return 1;
+}
+
+__setup("nojitter", nojitter_setup);
+
+
+void __devinit
+ia64_init_itm (void)
+{
+ unsigned long platform_base_freq, itc_freq;
+ struct pal_freq_ratio itc_ratio, proc_ratio;
+ long status, platform_base_drift, itc_drift;
+
+ /*
+ * According to SAL v2.6, we need to use a SAL call to determine the platform base
+ * frequency and then a PAL call to determine the frequency ratio between the ITC
+ * and the base frequency.
+ */
+ status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
+ &platform_base_freq, &platform_base_drift);
+ if (status != 0) {
+ printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
+ } else {
+ status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
+ if (status != 0)
+ printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
+ }
+ if (status != 0) {
+ /* invent "random" values */
+ printk(KERN_ERR
+ "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
+ platform_base_freq = 100000000;
+ platform_base_drift = -1; /* no drift info */
+ itc_ratio.num = 3;
+ itc_ratio.den = 1;
+ }
+ if (platform_base_freq < 40000000) {
+ printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
+ platform_base_freq);
+ platform_base_freq = 75000000;
+ platform_base_drift = -1;
+ }
+ if (!proc_ratio.den)
+ proc_ratio.den = 1; /* avoid division by zero */
+ if (!itc_ratio.den)
+ itc_ratio.den = 1; /* avoid division by zero */
+
+ itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
+
+ local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
+ printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
+ "ITC freq=%lu.%03luMHz", smp_processor_id(),
+ platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
+ itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
+
+ if (platform_base_drift != -1) {
+ itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
+ printk("+/-%ldppm\n", itc_drift);
+ } else {
+ itc_drift = -1;
+ printk("\n");
+ }
+
+ local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
+ local_cpu_data->itc_freq = itc_freq;
+ local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
+ local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
+ + itc_freq/2)/itc_freq;
+
+ if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
+ itc_interpolator.frequency = local_cpu_data->itc_freq;
+ itc_interpolator.drift = itc_drift;
+#ifdef CONFIG_SMP
+ /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
+ * Jitter compensation requires a cmpxchg which may limit
+ * the scalability of the syscalls for retrieving time.
+ * The ITC synchronization is usually successful to within a few
+ * ITC ticks but this is not a sure thing. If you need to improve
+ * timer performance in SMP situations then boot the kernel with the
+ * "nojitter" option. However, doing so may result in time fluctuating (maybe
+ * even going backward) if the ITC offsets between the individual CPUs
+ * are too large.
+ */
+ if (!nojitter) itc_interpolator.jitter = 1;
+#endif
+ register_time_interpolator(&itc_interpolator);
+ }
+
+ /* Setup the CPU local timer tick */
+ ia64_cpu_local_tick();
+}
+
+static struct irqaction timer_irqaction = {
+ .handler = timer_interrupt,
+ .flags = SA_INTERRUPT,
+ .name = "timer"
+};
+
+void __init
+time_init (void)
+{
+ register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
+ efi_gettimeofday(&xtime);
+ ia64_init_itm();
+
+ /*
+ * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
+ * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
+ */
+ set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
+}
diff --git a/arch/ia64/kernel/topology.c b/arch/ia64/kernel/topology.c
new file mode 100644
index 0000000..f1aafd4
--- /dev/null
+++ b/arch/ia64/kernel/topology.c
@@ -0,0 +1,92 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * This file contains NUMA specific variables and functions which can
+ * be split away from DISCONTIGMEM and are used on NUMA machines with
+ * contiguous memory.
+ * 2002/08/07 Erich Focht <efocht@ess.nec.de>
+ * Populate cpu entries in sysfs for non-numa systems as well
+ * Intel Corporation - Ashok Raj
+ */
+
+#include <linux/config.h>
+#include <linux/cpu.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/node.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/nodemask.h>
+#include <asm/mmzone.h>
+#include <asm/numa.h>
+#include <asm/cpu.h>
+
+#ifdef CONFIG_NUMA
+static struct node *sysfs_nodes;
+#endif
+static struct ia64_cpu *sysfs_cpus;
+
+int arch_register_cpu(int num)
+{
+ struct node *parent = NULL;
+
+#ifdef CONFIG_NUMA
+ parent = &sysfs_nodes[cpu_to_node(num)];
+#endif /* CONFIG_NUMA */
+
+ return register_cpu(&sysfs_cpus[num].cpu, num, parent);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+void arch_unregister_cpu(int num)
+{
+ struct node *parent = NULL;
+
+#ifdef CONFIG_NUMA
+ int node = cpu_to_node(num);
+ parent = &sysfs_nodes[node];
+#endif /* CONFIG_NUMA */
+
+ return unregister_cpu(&sysfs_cpus[num].cpu, parent);
+}
+EXPORT_SYMBOL(arch_register_cpu);
+EXPORT_SYMBOL(arch_unregister_cpu);
+#endif /*CONFIG_HOTPLUG_CPU*/
+
+
+static int __init topology_init(void)
+{
+ int i, err = 0;
+
+#ifdef CONFIG_NUMA
+ sysfs_nodes = kmalloc(sizeof(struct node) * MAX_NUMNODES, GFP_KERNEL);
+ if (!sysfs_nodes) {
+ err = -ENOMEM;
+ goto out;
+ }
+ memset(sysfs_nodes, 0, sizeof(struct node) * MAX_NUMNODES);
+
+ /* MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? */
+ for_each_online_node(i)
+ if ((err = register_node(&sysfs_nodes[i], i, 0)))
+ goto out;
+#endif
+
+ sysfs_cpus = kmalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
+ if (!sysfs_cpus) {
+ err = -ENOMEM;
+ goto out;
+ }
+ memset(sysfs_cpus, 0, sizeof(struct ia64_cpu) * NR_CPUS);
+
+ for_each_present_cpu(i)
+ if((err = arch_register_cpu(i)))
+ goto out;
+out:
+ return err;
+}
+
+__initcall(topology_init);
diff --git a/arch/ia64/kernel/traps.c b/arch/ia64/kernel/traps.c
new file mode 100644
index 0000000..e82ad78
--- /dev/null
+++ b/arch/ia64/kernel/traps.c
@@ -0,0 +1,609 @@
+/*
+ * Architecture-specific trap handling.
+ *
+ * Copyright (C) 1998-2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 05/12/00 grao <goutham.rao@intel.com> : added isr in siginfo for SIGFPE
+ */
+
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/tty.h>
+#include <linux/vt_kern.h> /* For unblank_screen() */
+#include <linux/module.h> /* for EXPORT_SYMBOL */
+#include <linux/hardirq.h>
+
+#include <asm/fpswa.h>
+#include <asm/ia32.h>
+#include <asm/intrinsics.h>
+#include <asm/processor.h>
+#include <asm/uaccess.h>
+
+extern spinlock_t timerlist_lock;
+
+fpswa_interface_t *fpswa_interface;
+EXPORT_SYMBOL(fpswa_interface);
+
+void __init
+trap_init (void)
+{
+ if (ia64_boot_param->fpswa)
+ /* FPSWA fixup: make the interface pointer a kernel virtual address: */
+ fpswa_interface = __va(ia64_boot_param->fpswa);
+}
+
+/*
+ * Unlock any spinlocks which will prevent us from getting the message out (timerlist_lock
+ * is acquired through the console unblank code)
+ */
+void
+bust_spinlocks (int yes)
+{
+ int loglevel_save = console_loglevel;
+
+ if (yes) {
+ oops_in_progress = 1;
+ return;
+ }
+
+#ifdef CONFIG_VT
+ unblank_screen();
+#endif
+ oops_in_progress = 0;
+ /*
+ * OK, the message is on the console. Now we call printk() without
+ * oops_in_progress set so that printk will give klogd a poke. Hold onto
+ * your hats...
+ */
+ console_loglevel = 15; /* NMI oopser may have shut the console up */
+ printk(" ");
+ console_loglevel = loglevel_save;
+}
+
+void
+die (const char *str, struct pt_regs *regs, long err)
+{
+ static struct {
+ spinlock_t lock;
+ u32 lock_owner;
+ int lock_owner_depth;
+ } die = {
+ .lock = SPIN_LOCK_UNLOCKED,
+ .lock_owner = -1,
+ .lock_owner_depth = 0
+ };
+ static int die_counter;
+
+ if (die.lock_owner != smp_processor_id()) {
+ console_verbose();
+ spin_lock_irq(&die.lock);
+ die.lock_owner = smp_processor_id();
+ die.lock_owner_depth = 0;
+ bust_spinlocks(1);
+ }
+
+ if (++die.lock_owner_depth < 3) {
+ printk("%s[%d]: %s %ld [%d]\n",
+ current->comm, current->pid, str, err, ++die_counter);
+ show_regs(regs);
+ } else
+ printk(KERN_ERR "Recursive die() failure, output suppressed\n");
+
+ bust_spinlocks(0);
+ die.lock_owner = -1;
+ spin_unlock_irq(&die.lock);
+ do_exit(SIGSEGV);
+}
+
+void
+die_if_kernel (char *str, struct pt_regs *regs, long err)
+{
+ if (!user_mode(regs))
+ die(str, regs, err);
+}
+
+void
+ia64_bad_break (unsigned long break_num, struct pt_regs *regs)
+{
+ siginfo_t siginfo;
+ int sig, code;
+
+ /* SIGILL, SIGFPE, SIGSEGV, and SIGBUS want these field initialized: */
+ siginfo.si_addr = (void __user *) (regs->cr_iip + ia64_psr(regs)->ri);
+ siginfo.si_imm = break_num;
+ siginfo.si_flags = 0; /* clear __ISR_VALID */
+ siginfo.si_isr = 0;
+
+ switch (break_num) {
+ case 0: /* unknown error (used by GCC for __builtin_abort()) */
+ die_if_kernel("bugcheck!", regs, break_num);
+ sig = SIGILL; code = ILL_ILLOPC;
+ break;
+
+ case 1: /* integer divide by zero */
+ sig = SIGFPE; code = FPE_INTDIV;
+ break;
+
+ case 2: /* integer overflow */
+ sig = SIGFPE; code = FPE_INTOVF;
+ break;
+
+ case 3: /* range check/bounds check */
+ sig = SIGFPE; code = FPE_FLTSUB;
+ break;
+
+ case 4: /* null pointer dereference */
+ sig = SIGSEGV; code = SEGV_MAPERR;
+ break;
+
+ case 5: /* misaligned data */
+ sig = SIGSEGV; code = BUS_ADRALN;
+ break;
+
+ case 6: /* decimal overflow */
+ sig = SIGFPE; code = __FPE_DECOVF;
+ break;
+
+ case 7: /* decimal divide by zero */
+ sig = SIGFPE; code = __FPE_DECDIV;
+ break;
+
+ case 8: /* packed decimal error */
+ sig = SIGFPE; code = __FPE_DECERR;
+ break;
+
+ case 9: /* invalid ASCII digit */
+ sig = SIGFPE; code = __FPE_INVASC;
+ break;
+
+ case 10: /* invalid decimal digit */
+ sig = SIGFPE; code = __FPE_INVDEC;
+ break;
+
+ case 11: /* paragraph stack overflow */
+ sig = SIGSEGV; code = __SEGV_PSTKOVF;
+ break;
+
+ case 0x3f000 ... 0x3ffff: /* bundle-update in progress */
+ sig = SIGILL; code = __ILL_BNDMOD;
+ break;
+
+ default:
+ if (break_num < 0x40000 || break_num > 0x100000)
+ die_if_kernel("Bad break", regs, break_num);
+
+ if (break_num < 0x80000) {
+ sig = SIGILL; code = __ILL_BREAK;
+ } else {
+ sig = SIGTRAP; code = TRAP_BRKPT;
+ }
+ }
+ siginfo.si_signo = sig;
+ siginfo.si_errno = 0;
+ siginfo.si_code = code;
+ force_sig_info(sig, &siginfo, current);
+}
+
+/*
+ * disabled_fph_fault() is called when a user-level process attempts to access f32..f127
+ * and it doesn't own the fp-high register partition. When this happens, we save the
+ * current fph partition in the task_struct of the fpu-owner (if necessary) and then load
+ * the fp-high partition of the current task (if necessary). Note that the kernel has
+ * access to fph by the time we get here, as the IVT's "Disabled FP-Register" handler takes
+ * care of clearing psr.dfh.
+ */
+static inline void
+disabled_fph_fault (struct pt_regs *regs)
+{
+ struct ia64_psr *psr = ia64_psr(regs);
+
+ /* first, grant user-level access to fph partition: */
+ psr->dfh = 0;
+#ifndef CONFIG_SMP
+ {
+ struct task_struct *fpu_owner
+ = (struct task_struct *)ia64_get_kr(IA64_KR_FPU_OWNER);
+
+ if (ia64_is_local_fpu_owner(current))
+ return;
+
+ if (fpu_owner)
+ ia64_flush_fph(fpu_owner);
+ }
+#endif /* !CONFIG_SMP */
+ ia64_set_local_fpu_owner(current);
+ if ((current->thread.flags & IA64_THREAD_FPH_VALID) != 0) {
+ __ia64_load_fpu(current->thread.fph);
+ psr->mfh = 0;
+ } else {
+ __ia64_init_fpu();
+ /*
+ * Set mfh because the state in thread.fph does not match the state in
+ * the fph partition.
+ */
+ psr->mfh = 1;
+ }
+}
+
+static inline int
+fp_emulate (int fp_fault, void *bundle, long *ipsr, long *fpsr, long *isr, long *pr, long *ifs,
+ struct pt_regs *regs)
+{
+ fp_state_t fp_state;
+ fpswa_ret_t ret;
+
+ if (!fpswa_interface)
+ return -1;
+
+ memset(&fp_state, 0, sizeof(fp_state_t));
+
+ /*
+ * compute fp_state. only FP registers f6 - f11 are used by the
+ * kernel, so set those bits in the mask and set the low volatile
+ * pointer to point to these registers.
+ */
+ fp_state.bitmask_low64 = 0xfc0; /* bit6..bit11 */
+
+ fp_state.fp_state_low_volatile = (fp_state_low_volatile_t *) &regs->f6;
+ /*
+ * unsigned long (*EFI_FPSWA) (
+ * unsigned long trap_type,
+ * void *Bundle,
+ * unsigned long *pipsr,
+ * unsigned long *pfsr,
+ * unsigned long *pisr,
+ * unsigned long *ppreds,
+ * unsigned long *pifs,
+ * void *fp_state);
+ */
+ ret = (*fpswa_interface->fpswa)((unsigned long) fp_fault, bundle,
+ (unsigned long *) ipsr, (unsigned long *) fpsr,
+ (unsigned long *) isr, (unsigned long *) pr,
+ (unsigned long *) ifs, &fp_state);
+
+ return ret.status;
+}
+
+/*
+ * Handle floating-point assist faults and traps.
+ */
+static int
+handle_fpu_swa (int fp_fault, struct pt_regs *regs, unsigned long isr)
+{
+ long exception, bundle[2];
+ unsigned long fault_ip;
+ struct siginfo siginfo;
+ static int fpu_swa_count = 0;
+ static unsigned long last_time;
+
+ fault_ip = regs->cr_iip;
+ if (!fp_fault && (ia64_psr(regs)->ri == 0))
+ fault_ip -= 16;
+ if (copy_from_user(bundle, (void __user *) fault_ip, sizeof(bundle)))
+ return -1;
+
+ if (jiffies - last_time > 5*HZ)
+ fpu_swa_count = 0;
+ if ((fpu_swa_count < 4) && !(current->thread.flags & IA64_THREAD_FPEMU_NOPRINT)) {
+ last_time = jiffies;
+ ++fpu_swa_count;
+ printk(KERN_WARNING
+ "%s(%d): floating-point assist fault at ip %016lx, isr %016lx\n",
+ current->comm, current->pid, regs->cr_iip + ia64_psr(regs)->ri, isr);
+ }
+
+ exception = fp_emulate(fp_fault, bundle, &regs->cr_ipsr, &regs->ar_fpsr, &isr, &regs->pr,
+ &regs->cr_ifs, regs);
+ if (fp_fault) {
+ if (exception == 0) {
+ /* emulation was successful */
+ ia64_increment_ip(regs);
+ } else if (exception == -1) {
+ printk(KERN_ERR "handle_fpu_swa: fp_emulate() returned -1\n");
+ return -1;
+ } else {
+ /* is next instruction a trap? */
+ if (exception & 2) {
+ ia64_increment_ip(regs);
+ }
+ siginfo.si_signo = SIGFPE;
+ siginfo.si_errno = 0;
+ siginfo.si_code = __SI_FAULT; /* default code */
+ siginfo.si_addr = (void __user *) (regs->cr_iip + ia64_psr(regs)->ri);
+ if (isr & 0x11) {
+ siginfo.si_code = FPE_FLTINV;
+ } else if (isr & 0x22) {
+ /* denormal operand gets the same si_code as underflow
+ * see arch/i386/kernel/traps.c:math_error() */
+ siginfo.si_code = FPE_FLTUND;
+ } else if (isr & 0x44) {
+ siginfo.si_code = FPE_FLTDIV;
+ }
+ siginfo.si_isr = isr;
+ siginfo.si_flags = __ISR_VALID;
+ siginfo.si_imm = 0;
+ force_sig_info(SIGFPE, &siginfo, current);
+ }
+ } else {
+ if (exception == -1) {
+ printk(KERN_ERR "handle_fpu_swa: fp_emulate() returned -1\n");
+ return -1;
+ } else if (exception != 0) {
+ /* raise exception */
+ siginfo.si_signo = SIGFPE;
+ siginfo.si_errno = 0;
+ siginfo.si_code = __SI_FAULT; /* default code */
+ siginfo.si_addr = (void __user *) (regs->cr_iip + ia64_psr(regs)->ri);
+ if (isr & 0x880) {
+ siginfo.si_code = FPE_FLTOVF;
+ } else if (isr & 0x1100) {
+ siginfo.si_code = FPE_FLTUND;
+ } else if (isr & 0x2200) {
+ siginfo.si_code = FPE_FLTRES;
+ }
+ siginfo.si_isr = isr;
+ siginfo.si_flags = __ISR_VALID;
+ siginfo.si_imm = 0;
+ force_sig_info(SIGFPE, &siginfo, current);
+ }
+ }
+ return 0;
+}
+
+struct illegal_op_return {
+ unsigned long fkt, arg1, arg2, arg3;
+};
+
+struct illegal_op_return
+ia64_illegal_op_fault (unsigned long ec, long arg1, long arg2, long arg3,
+ long arg4, long arg5, long arg6, long arg7,
+ struct pt_regs regs)
+{
+ struct illegal_op_return rv;
+ struct siginfo si;
+ char buf[128];
+
+#ifdef CONFIG_IA64_BRL_EMU
+ {
+ extern struct illegal_op_return ia64_emulate_brl (struct pt_regs *, unsigned long);
+
+ rv = ia64_emulate_brl(&regs, ec);
+ if (rv.fkt != (unsigned long) -1)
+ return rv;
+ }
+#endif
+
+ sprintf(buf, "IA-64 Illegal operation fault");
+ die_if_kernel(buf, &regs, 0);
+
+ memset(&si, 0, sizeof(si));
+ si.si_signo = SIGILL;
+ si.si_code = ILL_ILLOPC;
+ si.si_addr = (void __user *) (regs.cr_iip + ia64_psr(&regs)->ri);
+ force_sig_info(SIGILL, &si, current);
+ rv.fkt = 0;
+ return rv;
+}
+
+void
+ia64_fault (unsigned long vector, unsigned long isr, unsigned long ifa,
+ unsigned long iim, unsigned long itir, long arg5, long arg6,
+ long arg7, struct pt_regs regs)
+{
+ unsigned long code, error = isr, iip;
+ struct siginfo siginfo;
+ char buf[128];
+ int result, sig;
+ static const char *reason[] = {
+ "IA-64 Illegal Operation fault",
+ "IA-64 Privileged Operation fault",
+ "IA-64 Privileged Register fault",
+ "IA-64 Reserved Register/Field fault",
+ "Disabled Instruction Set Transition fault",
+ "Unknown fault 5", "Unknown fault 6", "Unknown fault 7", "Illegal Hazard fault",
+ "Unknown fault 9", "Unknown fault 10", "Unknown fault 11", "Unknown fault 12",
+ "Unknown fault 13", "Unknown fault 14", "Unknown fault 15"
+ };
+
+ if ((isr & IA64_ISR_NA) && ((isr & IA64_ISR_CODE_MASK) == IA64_ISR_CODE_LFETCH)) {
+ /*
+ * This fault was due to lfetch.fault, set "ed" bit in the psr to cancel
+ * the lfetch.
+ */
+ ia64_psr(&regs)->ed = 1;
+ return;
+ }
+
+ iip = regs.cr_iip + ia64_psr(&regs)->ri;
+
+ switch (vector) {
+ case 24: /* General Exception */
+ code = (isr >> 4) & 0xf;
+ sprintf(buf, "General Exception: %s%s", reason[code],
+ (code == 3) ? ((isr & (1UL << 37))
+ ? " (RSE access)" : " (data access)") : "");
+ if (code == 8) {
+# ifdef CONFIG_IA64_PRINT_HAZARDS
+ printk("%s[%d]: possible hazard @ ip=%016lx (pr = %016lx)\n",
+ current->comm, current->pid,
+ regs.cr_iip + ia64_psr(&regs)->ri, regs.pr);
+# endif
+ return;
+ }
+ break;
+
+ case 25: /* Disabled FP-Register */
+ if (isr & 2) {
+ disabled_fph_fault(&regs);
+ return;
+ }
+ sprintf(buf, "Disabled FPL fault---not supposed to happen!");
+ break;
+
+ case 26: /* NaT Consumption */
+ if (user_mode(&regs)) {
+ void __user *addr;
+
+ if (((isr >> 4) & 0xf) == 2) {
+ /* NaT page consumption */
+ sig = SIGSEGV;
+ code = SEGV_ACCERR;
+ addr = (void __user *) ifa;
+ } else {
+ /* register NaT consumption */
+ sig = SIGILL;
+ code = ILL_ILLOPN;
+ addr = (void __user *) (regs.cr_iip
+ + ia64_psr(&regs)->ri);
+ }
+ siginfo.si_signo = sig;
+ siginfo.si_code = code;
+ siginfo.si_errno = 0;
+ siginfo.si_addr = addr;
+ siginfo.si_imm = vector;
+ siginfo.si_flags = __ISR_VALID;
+ siginfo.si_isr = isr;
+ force_sig_info(sig, &siginfo, current);
+ return;
+ } else if (ia64_done_with_exception(&regs))
+ return;
+ sprintf(buf, "NaT consumption");
+ break;
+
+ case 31: /* Unsupported Data Reference */
+ if (user_mode(&regs)) {
+ siginfo.si_signo = SIGILL;
+ siginfo.si_code = ILL_ILLOPN;
+ siginfo.si_errno = 0;
+ siginfo.si_addr = (void __user *) iip;
+ siginfo.si_imm = vector;
+ siginfo.si_flags = __ISR_VALID;
+ siginfo.si_isr = isr;
+ force_sig_info(SIGILL, &siginfo, current);
+ return;
+ }
+ sprintf(buf, "Unsupported data reference");
+ break;
+
+ case 29: /* Debug */
+ case 35: /* Taken Branch Trap */
+ case 36: /* Single Step Trap */
+ if (fsys_mode(current, &regs)) {
+ extern char __kernel_syscall_via_break[];
+ /*
+ * Got a trap in fsys-mode: Taken Branch Trap and Single Step trap
+ * need special handling; Debug trap is not supposed to happen.
+ */
+ if (unlikely(vector == 29)) {
+ die("Got debug trap in fsys-mode---not supposed to happen!",
+ &regs, 0);
+ return;
+ }
+ /* re-do the system call via break 0x100000: */
+ regs.cr_iip = (unsigned long) __kernel_syscall_via_break;
+ ia64_psr(&regs)->ri = 0;
+ ia64_psr(&regs)->cpl = 3;
+ return;
+ }
+ switch (vector) {
+ case 29:
+ siginfo.si_code = TRAP_HWBKPT;
+#ifdef CONFIG_ITANIUM
+ /*
+ * Erratum 10 (IFA may contain incorrect address) now has
+ * "NoFix" status. There are no plans for fixing this.
+ */
+ if (ia64_psr(&regs)->is == 0)
+ ifa = regs.cr_iip;
+#endif
+ break;
+ case 35: siginfo.si_code = TRAP_BRANCH; ifa = 0; break;
+ case 36: siginfo.si_code = TRAP_TRACE; ifa = 0; break;
+ }
+ siginfo.si_signo = SIGTRAP;
+ siginfo.si_errno = 0;
+ siginfo.si_addr = (void __user *) ifa;
+ siginfo.si_imm = 0;
+ siginfo.si_flags = __ISR_VALID;
+ siginfo.si_isr = isr;
+ force_sig_info(SIGTRAP, &siginfo, current);
+ return;
+
+ case 32: /* fp fault */
+ case 33: /* fp trap */
+ result = handle_fpu_swa((vector == 32) ? 1 : 0, &regs, isr);
+ if ((result < 0) || (current->thread.flags & IA64_THREAD_FPEMU_SIGFPE)) {
+ siginfo.si_signo = SIGFPE;
+ siginfo.si_errno = 0;
+ siginfo.si_code = FPE_FLTINV;
+ siginfo.si_addr = (void __user *) iip;
+ siginfo.si_flags = __ISR_VALID;
+ siginfo.si_isr = isr;
+ siginfo.si_imm = 0;
+ force_sig_info(SIGFPE, &siginfo, current);
+ }
+ return;
+
+ case 34:
+ if (isr & 0x2) {
+ /* Lower-Privilege Transfer Trap */
+ /*
+ * Just clear PSR.lp and then return immediately: all the
+ * interesting work (e.g., signal delivery is done in the kernel
+ * exit path).
+ */
+ ia64_psr(&regs)->lp = 0;
+ return;
+ } else {
+ /* Unimplemented Instr. Address Trap */
+ if (user_mode(&regs)) {
+ siginfo.si_signo = SIGILL;
+ siginfo.si_code = ILL_BADIADDR;
+ siginfo.si_errno = 0;
+ siginfo.si_flags = 0;
+ siginfo.si_isr = 0;
+ siginfo.si_imm = 0;
+ siginfo.si_addr = (void __user *) iip;
+ force_sig_info(SIGILL, &siginfo, current);
+ return;
+ }
+ sprintf(buf, "Unimplemented Instruction Address fault");
+ }
+ break;
+
+ case 45:
+#ifdef CONFIG_IA32_SUPPORT
+ if (ia32_exception(&regs, isr) == 0)
+ return;
+#endif
+ printk(KERN_ERR "Unexpected IA-32 exception (Trap 45)\n");
+ printk(KERN_ERR " iip - 0x%lx, ifa - 0x%lx, isr - 0x%lx\n",
+ iip, ifa, isr);
+ force_sig(SIGSEGV, current);
+ break;
+
+ case 46:
+#ifdef CONFIG_IA32_SUPPORT
+ if (ia32_intercept(&regs, isr) == 0)
+ return;
+#endif
+ printk(KERN_ERR "Unexpected IA-32 intercept trap (Trap 46)\n");
+ printk(KERN_ERR " iip - 0x%lx, ifa - 0x%lx, isr - 0x%lx, iim - 0x%lx\n",
+ iip, ifa, isr, iim);
+ force_sig(SIGSEGV, current);
+ return;
+
+ case 47:
+ sprintf(buf, "IA-32 Interruption Fault (int 0x%lx)", isr >> 16);
+ break;
+
+ default:
+ sprintf(buf, "Fault %lu", vector);
+ break;
+ }
+ die_if_kernel(buf, &regs, error);
+ force_sig(SIGILL, current);
+}
diff --git a/arch/ia64/kernel/unaligned.c b/arch/ia64/kernel/unaligned.c
new file mode 100644
index 0000000..43b45b6
--- /dev/null
+++ b/arch/ia64/kernel/unaligned.c
@@ -0,0 +1,1521 @@
+/*
+ * Architecture-specific unaligned trap handling.
+ *
+ * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
+ * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
+ * stacked register returns an undefined value; it does NOT trigger a
+ * "rsvd register fault").
+ * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
+ * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
+ * 2001/01/17 Add support emulation of unaligned kernel accesses.
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/smp_lock.h>
+#include <linux/tty.h>
+
+#include <asm/intrinsics.h>
+#include <asm/processor.h>
+#include <asm/rse.h>
+#include <asm/uaccess.h>
+#include <asm/unaligned.h>
+
+extern void die_if_kernel(char *str, struct pt_regs *regs, long err) __attribute__ ((noreturn));
+
+#undef DEBUG_UNALIGNED_TRAP
+
+#ifdef DEBUG_UNALIGNED_TRAP
+# define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0)
+# define DDUMP(str,vp,len) dump(str, vp, len)
+
+static void
+dump (const char *str, void *vp, size_t len)
+{
+ unsigned char *cp = vp;
+ int i;
+
+ printk("%s", str);
+ for (i = 0; i < len; ++i)
+ printk (" %02x", *cp++);
+ printk("\n");
+}
+#else
+# define DPRINT(a...)
+# define DDUMP(str,vp,len)
+#endif
+
+#define IA64_FIRST_STACKED_GR 32
+#define IA64_FIRST_ROTATING_FR 32
+#define SIGN_EXT9 0xffffffffffffff00ul
+
+/*
+ * For M-unit:
+ *
+ * opcode | m | x6 |
+ * --------|------|---------|
+ * [40-37] | [36] | [35:30] |
+ * --------|------|---------|
+ * 4 | 1 | 6 | = 11 bits
+ * --------------------------
+ * However bits [31:30] are not directly useful to distinguish between
+ * load/store so we can use [35:32] instead, which gives the following
+ * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
+ * checking the m-bit until later in the load/store emulation.
+ */
+#define IA64_OPCODE_MASK 0x1ef
+#define IA64_OPCODE_SHIFT 32
+
+/*
+ * Table C-28 Integer Load/Store
+ *
+ * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
+ *
+ * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
+ * the address (bits [8:3]), so we must failed.
+ */
+#define LD_OP 0x080
+#define LDS_OP 0x081
+#define LDA_OP 0x082
+#define LDSA_OP 0x083
+#define LDBIAS_OP 0x084
+#define LDACQ_OP 0x085
+/* 0x086, 0x087 are not relevant */
+#define LDCCLR_OP 0x088
+#define LDCNC_OP 0x089
+#define LDCCLRACQ_OP 0x08a
+#define ST_OP 0x08c
+#define STREL_OP 0x08d
+/* 0x08e,0x8f are not relevant */
+
+/*
+ * Table C-29 Integer Load +Reg
+ *
+ * we use the ld->m (bit [36:36]) field to determine whether or not we have
+ * a load/store of this form.
+ */
+
+/*
+ * Table C-30 Integer Load/Store +Imm
+ *
+ * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
+ *
+ * ld8.fill, st8.fill must be aligned because the Nat register are based on
+ * the address, so we must fail and the program must be fixed.
+ */
+#define LD_IMM_OP 0x0a0
+#define LDS_IMM_OP 0x0a1
+#define LDA_IMM_OP 0x0a2
+#define LDSA_IMM_OP 0x0a3
+#define LDBIAS_IMM_OP 0x0a4
+#define LDACQ_IMM_OP 0x0a5
+/* 0x0a6, 0xa7 are not relevant */
+#define LDCCLR_IMM_OP 0x0a8
+#define LDCNC_IMM_OP 0x0a9
+#define LDCCLRACQ_IMM_OP 0x0aa
+#define ST_IMM_OP 0x0ac
+#define STREL_IMM_OP 0x0ad
+/* 0x0ae,0xaf are not relevant */
+
+/*
+ * Table C-32 Floating-point Load/Store
+ */
+#define LDF_OP 0x0c0
+#define LDFS_OP 0x0c1
+#define LDFA_OP 0x0c2
+#define LDFSA_OP 0x0c3
+/* 0x0c6 is irrelevant */
+#define LDFCCLR_OP 0x0c8
+#define LDFCNC_OP 0x0c9
+/* 0x0cb is irrelevant */
+#define STF_OP 0x0cc
+
+/*
+ * Table C-33 Floating-point Load +Reg
+ *
+ * we use the ld->m (bit [36:36]) field to determine whether or not we have
+ * a load/store of this form.
+ */
+
+/*
+ * Table C-34 Floating-point Load/Store +Imm
+ */
+#define LDF_IMM_OP 0x0e0
+#define LDFS_IMM_OP 0x0e1
+#define LDFA_IMM_OP 0x0e2
+#define LDFSA_IMM_OP 0x0e3
+/* 0x0e6 is irrelevant */
+#define LDFCCLR_IMM_OP 0x0e8
+#define LDFCNC_IMM_OP 0x0e9
+#define STF_IMM_OP 0x0ec
+
+typedef struct {
+ unsigned long qp:6; /* [0:5] */
+ unsigned long r1:7; /* [6:12] */
+ unsigned long imm:7; /* [13:19] */
+ unsigned long r3:7; /* [20:26] */
+ unsigned long x:1; /* [27:27] */
+ unsigned long hint:2; /* [28:29] */
+ unsigned long x6_sz:2; /* [30:31] */
+ unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
+ unsigned long m:1; /* [36:36] */
+ unsigned long op:4; /* [37:40] */
+ unsigned long pad:23; /* [41:63] */
+} load_store_t;
+
+
+typedef enum {
+ UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
+ UPD_REG /* ldXZ r1=[r3],r2 */
+} update_t;
+
+/*
+ * We use tables to keep track of the offsets of registers in the saved state.
+ * This way we save having big switch/case statements.
+ *
+ * We use bit 0 to indicate switch_stack or pt_regs.
+ * The offset is simply shifted by 1 bit.
+ * A 2-byte value should be enough to hold any kind of offset
+ *
+ * In case the calling convention changes (and thus pt_regs/switch_stack)
+ * simply use RSW instead of RPT or vice-versa.
+ */
+
+#define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
+#define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
+
+#define RPT(x) (RPO(x) << 1)
+#define RSW(x) (1| RSO(x)<<1)
+
+#define GR_OFFS(x) (gr_info[x]>>1)
+#define GR_IN_SW(x) (gr_info[x] & 0x1)
+
+#define FR_OFFS(x) (fr_info[x]>>1)
+#define FR_IN_SW(x) (fr_info[x] & 0x1)
+
+static u16 gr_info[32]={
+ 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
+
+ RPT(r1), RPT(r2), RPT(r3),
+
+ RSW(r4), RSW(r5), RSW(r6), RSW(r7),
+
+ RPT(r8), RPT(r9), RPT(r10), RPT(r11),
+ RPT(r12), RPT(r13), RPT(r14), RPT(r15),
+
+ RPT(r16), RPT(r17), RPT(r18), RPT(r19),
+ RPT(r20), RPT(r21), RPT(r22), RPT(r23),
+ RPT(r24), RPT(r25), RPT(r26), RPT(r27),
+ RPT(r28), RPT(r29), RPT(r30), RPT(r31)
+};
+
+static u16 fr_info[32]={
+ 0, /* constant : WE SHOULD NEVER GET THIS */
+ 0, /* constant : WE SHOULD NEVER GET THIS */
+
+ RSW(f2), RSW(f3), RSW(f4), RSW(f5),
+
+ RPT(f6), RPT(f7), RPT(f8), RPT(f9),
+ RPT(f10), RPT(f11),
+
+ RSW(f12), RSW(f13), RSW(f14),
+ RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
+ RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
+ RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
+ RSW(f30), RSW(f31)
+};
+
+/* Invalidate ALAT entry for integer register REGNO. */
+static void
+invala_gr (int regno)
+{
+# define F(reg) case reg: ia64_invala_gr(reg); break
+
+ switch (regno) {
+ F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
+ F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
+ F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
+ F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
+ F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
+ F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
+ F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
+ F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
+ F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
+ F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
+ F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
+ F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
+ F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
+ F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
+ F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
+ F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
+ }
+# undef F
+}
+
+/* Invalidate ALAT entry for floating-point register REGNO. */
+static void
+invala_fr (int regno)
+{
+# define F(reg) case reg: ia64_invala_fr(reg); break
+
+ switch (regno) {
+ F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
+ F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
+ F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
+ F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
+ F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
+ F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
+ F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
+ F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
+ F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
+ F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
+ F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
+ F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
+ F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
+ F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
+ F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
+ F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
+ }
+# undef F
+}
+
+static inline unsigned long
+rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
+{
+ reg += rrb;
+ if (reg >= sor)
+ reg -= sor;
+ return reg;
+}
+
+static void
+set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
+{
+ struct switch_stack *sw = (struct switch_stack *) regs - 1;
+ unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
+ unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
+ unsigned long rnats, nat_mask;
+ unsigned long on_kbs;
+ long sof = (regs->cr_ifs) & 0x7f;
+ long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
+ long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
+ long ridx = r1 - 32;
+
+ if (ridx >= sof) {
+ /* this should never happen, as the "rsvd register fault" has higher priority */
+ DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
+ return;
+ }
+
+ if (ridx < sor)
+ ridx = rotate_reg(sor, rrb_gr, ridx);
+
+ DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
+ r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
+
+ on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
+ addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
+ if (addr >= kbs) {
+ /* the register is on the kernel backing store: easy... */
+ rnat_addr = ia64_rse_rnat_addr(addr);
+ if ((unsigned long) rnat_addr >= sw->ar_bspstore)
+ rnat_addr = &sw->ar_rnat;
+ nat_mask = 1UL << ia64_rse_slot_num(addr);
+
+ *addr = val;
+ if (nat)
+ *rnat_addr |= nat_mask;
+ else
+ *rnat_addr &= ~nat_mask;
+ return;
+ }
+
+ if (!user_stack(current, regs)) {
+ DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
+ return;
+ }
+
+ bspstore = (unsigned long *)regs->ar_bspstore;
+ ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
+ bsp = ia64_rse_skip_regs(ubs_end, -sof);
+ addr = ia64_rse_skip_regs(bsp, ridx);
+
+ DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
+
+ ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
+
+ rnat_addr = ia64_rse_rnat_addr(addr);
+
+ ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
+ DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
+ (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
+
+ nat_mask = 1UL << ia64_rse_slot_num(addr);
+ if (nat)
+ rnats |= nat_mask;
+ else
+ rnats &= ~nat_mask;
+ ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
+
+ DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
+}
+
+
+static void
+get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
+{
+ struct switch_stack *sw = (struct switch_stack *) regs - 1;
+ unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
+ unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
+ unsigned long rnats, nat_mask;
+ unsigned long on_kbs;
+ long sof = (regs->cr_ifs) & 0x7f;
+ long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
+ long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
+ long ridx = r1 - 32;
+
+ if (ridx >= sof) {
+ /* read of out-of-frame register returns an undefined value; 0 in our case. */
+ DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
+ goto fail;
+ }
+
+ if (ridx < sor)
+ ridx = rotate_reg(sor, rrb_gr, ridx);
+
+ DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
+ r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
+
+ on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
+ addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
+ if (addr >= kbs) {
+ /* the register is on the kernel backing store: easy... */
+ *val = *addr;
+ if (nat) {
+ rnat_addr = ia64_rse_rnat_addr(addr);
+ if ((unsigned long) rnat_addr >= sw->ar_bspstore)
+ rnat_addr = &sw->ar_rnat;
+ nat_mask = 1UL << ia64_rse_slot_num(addr);
+ *nat = (*rnat_addr & nat_mask) != 0;
+ }
+ return;
+ }
+
+ if (!user_stack(current, regs)) {
+ DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
+ goto fail;
+ }
+
+ bspstore = (unsigned long *)regs->ar_bspstore;
+ ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
+ bsp = ia64_rse_skip_regs(ubs_end, -sof);
+ addr = ia64_rse_skip_regs(bsp, ridx);
+
+ DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
+
+ ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
+
+ if (nat) {
+ rnat_addr = ia64_rse_rnat_addr(addr);
+ nat_mask = 1UL << ia64_rse_slot_num(addr);
+
+ DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
+
+ ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
+ *nat = (rnats & nat_mask) != 0;
+ }
+ return;
+
+ fail:
+ *val = 0;
+ if (nat)
+ *nat = 0;
+ return;
+}
+
+
+static void
+setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
+{
+ struct switch_stack *sw = (struct switch_stack *) regs - 1;
+ unsigned long addr;
+ unsigned long bitmask;
+ unsigned long *unat;
+
+ /*
+ * First takes care of stacked registers
+ */
+ if (regnum >= IA64_FIRST_STACKED_GR) {
+ set_rse_reg(regs, regnum, val, nat);
+ return;
+ }
+
+ /*
+ * Using r0 as a target raises a General Exception fault which has higher priority
+ * than the Unaligned Reference fault.
+ */
+
+ /*
+ * Now look at registers in [0-31] range and init correct UNAT
+ */
+ if (GR_IN_SW(regnum)) {
+ addr = (unsigned long)sw;
+ unat = &sw->ar_unat;
+ } else {
+ addr = (unsigned long)regs;
+ unat = &sw->caller_unat;
+ }
+ DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
+ addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
+ /*
+ * add offset from base of struct
+ * and do it !
+ */
+ addr += GR_OFFS(regnum);
+
+ *(unsigned long *)addr = val;
+
+ /*
+ * We need to clear the corresponding UNAT bit to fully emulate the load
+ * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
+ */
+ bitmask = 1UL << (addr >> 3 & 0x3f);
+ DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
+ if (nat) {
+ *unat |= bitmask;
+ } else {
+ *unat &= ~bitmask;
+ }
+ DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
+}
+
+/*
+ * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
+ * range from 32-127, result is in the range from 0-95.
+ */
+static inline unsigned long
+fph_index (struct pt_regs *regs, long regnum)
+{
+ unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
+ return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
+}
+
+static void
+setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
+{
+ struct switch_stack *sw = (struct switch_stack *)regs - 1;
+ unsigned long addr;
+
+ /*
+ * From EAS-2.5: FPDisableFault has higher priority than Unaligned
+ * Fault. Thus, when we get here, we know the partition is enabled.
+ * To update f32-f127, there are three choices:
+ *
+ * (1) save f32-f127 to thread.fph and update the values there
+ * (2) use a gigantic switch statement to directly access the registers
+ * (3) generate code on the fly to update the desired register
+ *
+ * For now, we are using approach (1).
+ */
+ if (regnum >= IA64_FIRST_ROTATING_FR) {
+ ia64_sync_fph(current);
+ current->thread.fph[fph_index(regs, regnum)] = *fpval;
+ } else {
+ /*
+ * pt_regs or switch_stack ?
+ */
+ if (FR_IN_SW(regnum)) {
+ addr = (unsigned long)sw;
+ } else {
+ addr = (unsigned long)regs;
+ }
+
+ DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
+
+ addr += FR_OFFS(regnum);
+ *(struct ia64_fpreg *)addr = *fpval;
+
+ /*
+ * mark the low partition as being used now
+ *
+ * It is highly unlikely that this bit is not already set, but
+ * let's do it for safety.
+ */
+ regs->cr_ipsr |= IA64_PSR_MFL;
+ }
+}
+
+/*
+ * Those 2 inline functions generate the spilled versions of the constant floating point
+ * registers which can be used with stfX
+ */
+static inline void
+float_spill_f0 (struct ia64_fpreg *final)
+{
+ ia64_stf_spill(final, 0);
+}
+
+static inline void
+float_spill_f1 (struct ia64_fpreg *final)
+{
+ ia64_stf_spill(final, 1);
+}
+
+static void
+getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
+{
+ struct switch_stack *sw = (struct switch_stack *) regs - 1;
+ unsigned long addr;
+
+ /*
+ * From EAS-2.5: FPDisableFault has higher priority than
+ * Unaligned Fault. Thus, when we get here, we know the partition is
+ * enabled.
+ *
+ * When regnum > 31, the register is still live and we need to force a save
+ * to current->thread.fph to get access to it. See discussion in setfpreg()
+ * for reasons and other ways of doing this.
+ */
+ if (regnum >= IA64_FIRST_ROTATING_FR) {
+ ia64_flush_fph(current);
+ *fpval = current->thread.fph[fph_index(regs, regnum)];
+ } else {
+ /*
+ * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
+ * not saved, we must generate their spilled form on the fly
+ */
+ switch(regnum) {
+ case 0:
+ float_spill_f0(fpval);
+ break;
+ case 1:
+ float_spill_f1(fpval);
+ break;
+ default:
+ /*
+ * pt_regs or switch_stack ?
+ */
+ addr = FR_IN_SW(regnum) ? (unsigned long)sw
+ : (unsigned long)regs;
+
+ DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
+ FR_IN_SW(regnum), addr, FR_OFFS(regnum));
+
+ addr += FR_OFFS(regnum);
+ *fpval = *(struct ia64_fpreg *)addr;
+ }
+ }
+}
+
+
+static void
+getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
+{
+ struct switch_stack *sw = (struct switch_stack *) regs - 1;
+ unsigned long addr, *unat;
+
+ if (regnum >= IA64_FIRST_STACKED_GR) {
+ get_rse_reg(regs, regnum, val, nat);
+ return;
+ }
+
+ /*
+ * take care of r0 (read-only always evaluate to 0)
+ */
+ if (regnum == 0) {
+ *val = 0;
+ if (nat)
+ *nat = 0;
+ return;
+ }
+
+ /*
+ * Now look at registers in [0-31] range and init correct UNAT
+ */
+ if (GR_IN_SW(regnum)) {
+ addr = (unsigned long)sw;
+ unat = &sw->ar_unat;
+ } else {
+ addr = (unsigned long)regs;
+ unat = &sw->caller_unat;
+ }
+
+ DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
+
+ addr += GR_OFFS(regnum);
+
+ *val = *(unsigned long *)addr;
+
+ /*
+ * do it only when requested
+ */
+ if (nat)
+ *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
+}
+
+static void
+emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
+{
+ /*
+ * IMPORTANT:
+ * Given the way we handle unaligned speculative loads, we should
+ * not get to this point in the code but we keep this sanity check,
+ * just in case.
+ */
+ if (ld.x6_op == 1 || ld.x6_op == 3) {
+ printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__);
+ die_if_kernel("unaligned reference on speculative load with register update\n",
+ regs, 30);
+ }
+
+
+ /*
+ * at this point, we know that the base register to update is valid i.e.,
+ * it's not r0
+ */
+ if (type == UPD_IMMEDIATE) {
+ unsigned long imm;
+
+ /*
+ * Load +Imm: ldXZ r1=[r3],imm(9)
+ *
+ *
+ * form imm9: [13:19] contain the first 7 bits
+ */
+ imm = ld.x << 7 | ld.imm;
+
+ /*
+ * sign extend (1+8bits) if m set
+ */
+ if (ld.m) imm |= SIGN_EXT9;
+
+ /*
+ * ifa == r3 and we know that the NaT bit on r3 was clear so
+ * we can directly use ifa.
+ */
+ ifa += imm;
+
+ setreg(ld.r3, ifa, 0, regs);
+
+ DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
+
+ } else if (ld.m) {
+ unsigned long r2;
+ int nat_r2;
+
+ /*
+ * Load +Reg Opcode: ldXZ r1=[r3],r2
+ *
+ * Note: that we update r3 even in the case of ldfX.a
+ * (where the load does not happen)
+ *
+ * The way the load algorithm works, we know that r3 does not
+ * have its NaT bit set (would have gotten NaT consumption
+ * before getting the unaligned fault). So we can use ifa
+ * which equals r3 at this point.
+ *
+ * IMPORTANT:
+ * The above statement holds ONLY because we know that we
+ * never reach this code when trying to do a ldX.s.
+ * If we ever make it to here on an ldfX.s then
+ */
+ getreg(ld.imm, &r2, &nat_r2, regs);
+
+ ifa += r2;
+
+ /*
+ * propagate Nat r2 -> r3
+ */
+ setreg(ld.r3, ifa, nat_r2, regs);
+
+ DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
+ }
+}
+
+
+static int
+emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+ unsigned int len = 1 << ld.x6_sz;
+ unsigned long val = 0;
+
+ /*
+ * r0, as target, doesn't need to be checked because Illegal Instruction
+ * faults have higher priority than unaligned faults.
+ *
+ * r0 cannot be found as the base as it would never generate an
+ * unaligned reference.
+ */
+
+ /*
+ * ldX.a we will emulate load and also invalidate the ALAT entry.
+ * See comment below for explanation on how we handle ldX.a
+ */
+
+ if (len != 2 && len != 4 && len != 8) {
+ DPRINT("unknown size: x6=%d\n", ld.x6_sz);
+ return -1;
+ }
+ /* this assumes little-endian byte-order: */
+ if (copy_from_user(&val, (void __user *) ifa, len))
+ return -1;
+ setreg(ld.r1, val, 0, regs);
+
+ /*
+ * check for updates on any kind of loads
+ */
+ if (ld.op == 0x5 || ld.m)
+ emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
+
+ /*
+ * handling of various loads (based on EAS2.4):
+ *
+ * ldX.acq (ordered load):
+ * - acquire semantics would have been used, so force fence instead.
+ *
+ * ldX.c.clr (check load and clear):
+ * - if we get to this handler, it's because the entry was not in the ALAT.
+ * Therefore the operation reverts to a normal load
+ *
+ * ldX.c.nc (check load no clear):
+ * - same as previous one
+ *
+ * ldX.c.clr.acq (ordered check load and clear):
+ * - same as above for c.clr part. The load needs to have acquire semantics. So
+ * we use the fence semantics which is stronger and thus ensures correctness.
+ *
+ * ldX.a (advanced load):
+ * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
+ * address doesn't match requested size alignment. This means that we would
+ * possibly need more than one load to get the result.
+ *
+ * The load part can be handled just like a normal load, however the difficult
+ * part is to get the right thing into the ALAT. The critical piece of information
+ * in the base address of the load & size. To do that, a ld.a must be executed,
+ * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
+ * if we use the same target register, we will be okay for the check.a instruction.
+ * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
+ * which would overlap within [r3,r3+X] (the size of the load was store in the
+ * ALAT). If such an entry is found the entry is invalidated. But this is not good
+ * enough, take the following example:
+ * r3=3
+ * ld4.a r1=[r3]
+ *
+ * Could be emulated by doing:
+ * ld1.a r1=[r3],1
+ * store to temporary;
+ * ld1.a r1=[r3],1
+ * store & shift to temporary;
+ * ld1.a r1=[r3],1
+ * store & shift to temporary;
+ * ld1.a r1=[r3]
+ * store & shift to temporary;
+ * r1=temporary
+ *
+ * So in this case, you would get the right value is r1 but the wrong info in
+ * the ALAT. Notice that you could do it in reverse to finish with address 3
+ * but you would still get the size wrong. To get the size right, one needs to
+ * execute exactly the same kind of load. You could do it from a aligned
+ * temporary location, but you would get the address wrong.
+ *
+ * So no matter what, it is not possible to emulate an advanced load
+ * correctly. But is that really critical ?
+ *
+ * We will always convert ld.a into a normal load with ALAT invalidated. This
+ * will enable compiler to do optimization where certain code path after ld.a
+ * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
+ *
+ * If there is a store after the advanced load, one must either do a ld.c.* or
+ * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
+ * entry found in ALAT), and that's perfectly ok because:
+ *
+ * - ld.c.*, if the entry is not present a normal load is executed
+ * - chk.a.*, if the entry is not present, execution jumps to recovery code
+ *
+ * In either case, the load can be potentially retried in another form.
+ *
+ * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
+ * up a stale entry later). The register base update MUST also be performed.
+ */
+
+ /*
+ * when the load has the .acq completer then
+ * use ordering fence.
+ */
+ if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
+ mb();
+
+ /*
+ * invalidate ALAT entry in case of advanced load
+ */
+ if (ld.x6_op == 0x2)
+ invala_gr(ld.r1);
+
+ return 0;
+}
+
+static int
+emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+ unsigned long r2;
+ unsigned int len = 1 << ld.x6_sz;
+
+ /*
+ * if we get to this handler, Nat bits on both r3 and r2 have already
+ * been checked. so we don't need to do it
+ *
+ * extract the value to be stored
+ */
+ getreg(ld.imm, &r2, NULL, regs);
+
+ /*
+ * we rely on the macros in unaligned.h for now i.e.,
+ * we let the compiler figure out how to read memory gracefully.
+ *
+ * We need this switch/case because the way the inline function
+ * works. The code is optimized by the compiler and looks like
+ * a single switch/case.
+ */
+ DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
+
+ if (len != 2 && len != 4 && len != 8) {
+ DPRINT("unknown size: x6=%d\n", ld.x6_sz);
+ return -1;
+ }
+
+ /* this assumes little-endian byte-order: */
+ if (copy_to_user((void __user *) ifa, &r2, len))
+ return -1;
+
+ /*
+ * stX [r3]=r2,imm(9)
+ *
+ * NOTE:
+ * ld.r3 can never be r0, because r0 would not generate an
+ * unaligned access.
+ */
+ if (ld.op == 0x5) {
+ unsigned long imm;
+
+ /*
+ * form imm9: [12:6] contain first 7bits
+ */
+ imm = ld.x << 7 | ld.r1;
+ /*
+ * sign extend (8bits) if m set
+ */
+ if (ld.m) imm |= SIGN_EXT9;
+ /*
+ * ifa == r3 (NaT is necessarily cleared)
+ */
+ ifa += imm;
+
+ DPRINT("imm=%lx r3=%lx\n", imm, ifa);
+
+ setreg(ld.r3, ifa, 0, regs);
+ }
+ /*
+ * we don't have alat_invalidate_multiple() so we need
+ * to do the complete flush :-<<
+ */
+ ia64_invala();
+
+ /*
+ * stX.rel: use fence instead of release
+ */
+ if (ld.x6_op == 0xd)
+ mb();
+
+ return 0;
+}
+
+/*
+ * floating point operations sizes in bytes
+ */
+static const unsigned char float_fsz[4]={
+ 10, /* extended precision (e) */
+ 8, /* integer (8) */
+ 4, /* single precision (s) */
+ 8 /* double precision (d) */
+};
+
+static inline void
+mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldfe(6, init);
+ ia64_stop();
+ ia64_stf_spill(final, 6);
+}
+
+static inline void
+mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldf8(6, init);
+ ia64_stop();
+ ia64_stf_spill(final, 6);
+}
+
+static inline void
+mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldfs(6, init);
+ ia64_stop();
+ ia64_stf_spill(final, 6);
+}
+
+static inline void
+mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldfd(6, init);
+ ia64_stop();
+ ia64_stf_spill(final, 6);
+}
+
+static inline void
+float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldf_fill(6, init);
+ ia64_stop();
+ ia64_stfe(final, 6);
+}
+
+static inline void
+float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldf_fill(6, init);
+ ia64_stop();
+ ia64_stf8(final, 6);
+}
+
+static inline void
+float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldf_fill(6, init);
+ ia64_stop();
+ ia64_stfs(final, 6);
+}
+
+static inline void
+float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+ ia64_ldf_fill(6, init);
+ ia64_stop();
+ ia64_stfd(final, 6);
+}
+
+static int
+emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+ struct ia64_fpreg fpr_init[2];
+ struct ia64_fpreg fpr_final[2];
+ unsigned long len = float_fsz[ld.x6_sz];
+
+ /*
+ * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
+ * higher priority than unaligned faults.
+ *
+ * r0 cannot be found as the base as it would never generate an unaligned
+ * reference.
+ */
+
+ /*
+ * make sure we get clean buffers
+ */
+ memset(&fpr_init, 0, sizeof(fpr_init));
+ memset(&fpr_final, 0, sizeof(fpr_final));
+
+ /*
+ * ldfpX.a: we don't try to emulate anything but we must
+ * invalidate the ALAT entry and execute updates, if any.
+ */
+ if (ld.x6_op != 0x2) {
+ /*
+ * This assumes little-endian byte-order. Note that there is no "ldfpe"
+ * instruction:
+ */
+ if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
+ || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
+ return -1;
+
+ DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
+ DDUMP("frp_init =", &fpr_init, 2*len);
+ /*
+ * XXX fixme
+ * Could optimize inlines by using ldfpX & 2 spills
+ */
+ switch( ld.x6_sz ) {
+ case 0:
+ mem2float_extended(&fpr_init[0], &fpr_final[0]);
+ mem2float_extended(&fpr_init[1], &fpr_final[1]);
+ break;
+ case 1:
+ mem2float_integer(&fpr_init[0], &fpr_final[0]);
+ mem2float_integer(&fpr_init[1], &fpr_final[1]);
+ break;
+ case 2:
+ mem2float_single(&fpr_init[0], &fpr_final[0]);
+ mem2float_single(&fpr_init[1], &fpr_final[1]);
+ break;
+ case 3:
+ mem2float_double(&fpr_init[0], &fpr_final[0]);
+ mem2float_double(&fpr_init[1], &fpr_final[1]);
+ break;
+ }
+ DDUMP("fpr_final =", &fpr_final, 2*len);
+ /*
+ * XXX fixme
+ *
+ * A possible optimization would be to drop fpr_final and directly
+ * use the storage from the saved context i.e., the actual final
+ * destination (pt_regs, switch_stack or thread structure).
+ */
+ setfpreg(ld.r1, &fpr_final[0], regs);
+ setfpreg(ld.imm, &fpr_final[1], regs);
+ }
+
+ /*
+ * Check for updates: only immediate updates are available for this
+ * instruction.
+ */
+ if (ld.m) {
+ /*
+ * the immediate is implicit given the ldsz of the operation:
+ * single: 8 (2x4) and for all others it's 16 (2x8)
+ */
+ ifa += len<<1;
+
+ /*
+ * IMPORTANT:
+ * the fact that we force the NaT of r3 to zero is ONLY valid
+ * as long as we don't come here with a ldfpX.s.
+ * For this reason we keep this sanity check
+ */
+ if (ld.x6_op == 1 || ld.x6_op == 3)
+ printk(KERN_ERR "%s: register update on speculative load pair, error\n",
+ __FUNCTION__);
+
+ setreg(ld.r3, ifa, 0, regs);
+ }
+
+ /*
+ * Invalidate ALAT entries, if any, for both registers.
+ */
+ if (ld.x6_op == 0x2) {
+ invala_fr(ld.r1);
+ invala_fr(ld.imm);
+ }
+ return 0;
+}
+
+
+static int
+emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+ struct ia64_fpreg fpr_init;
+ struct ia64_fpreg fpr_final;
+ unsigned long len = float_fsz[ld.x6_sz];
+
+ /*
+ * fr0 & fr1 don't need to be checked because Illegal Instruction
+ * faults have higher priority than unaligned faults.
+ *
+ * r0 cannot be found as the base as it would never generate an
+ * unaligned reference.
+ */
+
+ /*
+ * make sure we get clean buffers
+ */
+ memset(&fpr_init,0, sizeof(fpr_init));
+ memset(&fpr_final,0, sizeof(fpr_final));
+
+ /*
+ * ldfX.a we don't try to emulate anything but we must
+ * invalidate the ALAT entry.
+ * See comments in ldX for descriptions on how the various loads are handled.
+ */
+ if (ld.x6_op != 0x2) {
+ if (copy_from_user(&fpr_init, (void __user *) ifa, len))
+ return -1;
+
+ DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
+ DDUMP("fpr_init =", &fpr_init, len);
+ /*
+ * we only do something for x6_op={0,8,9}
+ */
+ switch( ld.x6_sz ) {
+ case 0:
+ mem2float_extended(&fpr_init, &fpr_final);
+ break;
+ case 1:
+ mem2float_integer(&fpr_init, &fpr_final);
+ break;
+ case 2:
+ mem2float_single(&fpr_init, &fpr_final);
+ break;
+ case 3:
+ mem2float_double(&fpr_init, &fpr_final);
+ break;
+ }
+ DDUMP("fpr_final =", &fpr_final, len);
+ /*
+ * XXX fixme
+ *
+ * A possible optimization would be to drop fpr_final and directly
+ * use the storage from the saved context i.e., the actual final
+ * destination (pt_regs, switch_stack or thread structure).
+ */
+ setfpreg(ld.r1, &fpr_final, regs);
+ }
+
+ /*
+ * check for updates on any loads
+ */
+ if (ld.op == 0x7 || ld.m)
+ emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
+
+ /*
+ * invalidate ALAT entry in case of advanced floating point loads
+ */
+ if (ld.x6_op == 0x2)
+ invala_fr(ld.r1);
+
+ return 0;
+}
+
+
+static int
+emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+ struct ia64_fpreg fpr_init;
+ struct ia64_fpreg fpr_final;
+ unsigned long len = float_fsz[ld.x6_sz];
+
+ /*
+ * make sure we get clean buffers
+ */
+ memset(&fpr_init,0, sizeof(fpr_init));
+ memset(&fpr_final,0, sizeof(fpr_final));
+
+ /*
+ * if we get to this handler, Nat bits on both r3 and r2 have already
+ * been checked. so we don't need to do it
+ *
+ * extract the value to be stored
+ */
+ getfpreg(ld.imm, &fpr_init, regs);
+ /*
+ * during this step, we extract the spilled registers from the saved
+ * context i.e., we refill. Then we store (no spill) to temporary
+ * aligned location
+ */
+ switch( ld.x6_sz ) {
+ case 0:
+ float2mem_extended(&fpr_init, &fpr_final);
+ break;
+ case 1:
+ float2mem_integer(&fpr_init, &fpr_final);
+ break;
+ case 2:
+ float2mem_single(&fpr_init, &fpr_final);
+ break;
+ case 3:
+ float2mem_double(&fpr_init, &fpr_final);
+ break;
+ }
+ DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
+ DDUMP("fpr_init =", &fpr_init, len);
+ DDUMP("fpr_final =", &fpr_final, len);
+
+ if (copy_to_user((void __user *) ifa, &fpr_final, len))
+ return -1;
+
+ /*
+ * stfX [r3]=r2,imm(9)
+ *
+ * NOTE:
+ * ld.r3 can never be r0, because r0 would not generate an
+ * unaligned access.
+ */
+ if (ld.op == 0x7) {
+ unsigned long imm;
+
+ /*
+ * form imm9: [12:6] contain first 7bits
+ */
+ imm = ld.x << 7 | ld.r1;
+ /*
+ * sign extend (8bits) if m set
+ */
+ if (ld.m)
+ imm |= SIGN_EXT9;
+ /*
+ * ifa == r3 (NaT is necessarily cleared)
+ */
+ ifa += imm;
+
+ DPRINT("imm=%lx r3=%lx\n", imm, ifa);
+
+ setreg(ld.r3, ifa, 0, regs);
+ }
+ /*
+ * we don't have alat_invalidate_multiple() so we need
+ * to do the complete flush :-<<
+ */
+ ia64_invala();
+
+ return 0;
+}
+
+/*
+ * Make sure we log the unaligned access, so that user/sysadmin can notice it and
+ * eventually fix the program. However, we don't want to do that for every access so we
+ * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
+ * either...
+ */
+static int
+within_logging_rate_limit (void)
+{
+ static unsigned long count, last_time;
+
+ if (jiffies - last_time > 5*HZ)
+ count = 0;
+ if (++count < 5) {
+ last_time = jiffies;
+ return 1;
+ }
+ return 0;
+
+}
+
+void
+ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
+{
+ struct ia64_psr *ipsr = ia64_psr(regs);
+ mm_segment_t old_fs = get_fs();
+ unsigned long bundle[2];
+ unsigned long opcode;
+ struct siginfo si;
+ const struct exception_table_entry *eh = NULL;
+ union {
+ unsigned long l;
+ load_store_t insn;
+ } u;
+ int ret = -1;
+
+ if (ia64_psr(regs)->be) {
+ /* we don't support big-endian accesses */
+ die_if_kernel("big-endian unaligned accesses are not supported", regs, 0);
+ goto force_sigbus;
+ }
+
+ /*
+ * Treat kernel accesses for which there is an exception handler entry the same as
+ * user-level unaligned accesses. Otherwise, a clever program could trick this
+ * handler into reading an arbitrary kernel addresses...
+ */
+ if (!user_mode(regs))
+ eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
+ if (user_mode(regs) || eh) {
+ if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
+ goto force_sigbus;
+
+ if (!(current->thread.flags & IA64_THREAD_UAC_NOPRINT)
+ && within_logging_rate_limit())
+ {
+ char buf[200]; /* comm[] is at most 16 bytes... */
+ size_t len;
+
+ len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
+ "ip=0x%016lx\n\r", current->comm, current->pid,
+ ifa, regs->cr_iip + ipsr->ri);
+ /*
+ * Don't call tty_write_message() if we're in the kernel; we might
+ * be holding locks...
+ */
+ if (user_mode(regs))
+ tty_write_message(current->signal->tty, buf);
+ buf[len-1] = '\0'; /* drop '\r' */
+ printk(KERN_WARNING "%s", buf); /* watch for command names containing %s */
+ }
+ } else {
+ if (within_logging_rate_limit())
+ printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
+ ifa, regs->cr_iip + ipsr->ri);
+ set_fs(KERNEL_DS);
+ }
+
+ DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
+ regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
+
+ if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
+ goto failure;
+
+ /*
+ * extract the instruction from the bundle given the slot number
+ */
+ switch (ipsr->ri) {
+ case 0: u.l = (bundle[0] >> 5); break;
+ case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
+ case 2: u.l = (bundle[1] >> 23); break;
+ }
+ opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
+
+ DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
+ "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
+ u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
+
+ /*
+ * IMPORTANT:
+ * Notice that the switch statement DOES not cover all possible instructions
+ * that DO generate unaligned references. This is made on purpose because for some
+ * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
+ * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
+ * the program will get a signal and die:
+ *
+ * load/store:
+ * - ldX.spill
+ * - stX.spill
+ * Reason: RNATs are based on addresses
+ * - ld16
+ * - st16
+ * Reason: ld16 and st16 are supposed to occur in a single
+ * memory op
+ *
+ * synchronization:
+ * - cmpxchg
+ * - fetchadd
+ * - xchg
+ * Reason: ATOMIC operations cannot be emulated properly using multiple
+ * instructions.
+ *
+ * speculative loads:
+ * - ldX.sZ
+ * Reason: side effects, code must be ready to deal with failure so simpler
+ * to let the load fail.
+ * ---------------------------------------------------------------------------------
+ * XXX fixme
+ *
+ * I would like to get rid of this switch case and do something
+ * more elegant.
+ */
+ switch (opcode) {
+ case LDS_OP:
+ case LDSA_OP:
+ if (u.insn.x)
+ /* oops, really a semaphore op (cmpxchg, etc) */
+ goto failure;
+ /* no break */
+ case LDS_IMM_OP:
+ case LDSA_IMM_OP:
+ case LDFS_OP:
+ case LDFSA_OP:
+ case LDFS_IMM_OP:
+ /*
+ * The instruction will be retried with deferred exceptions turned on, and
+ * we should get Nat bit installed
+ *
+ * IMPORTANT: When PSR_ED is set, the register & immediate update forms
+ * are actually executed even though the operation failed. So we don't
+ * need to take care of this.
+ */
+ DPRINT("forcing PSR_ED\n");
+ regs->cr_ipsr |= IA64_PSR_ED;
+ goto done;
+
+ case LD_OP:
+ case LDA_OP:
+ case LDBIAS_OP:
+ case LDACQ_OP:
+ case LDCCLR_OP:
+ case LDCNC_OP:
+ case LDCCLRACQ_OP:
+ if (u.insn.x)
+ /* oops, really a semaphore op (cmpxchg, etc) */
+ goto failure;
+ /* no break */
+ case LD_IMM_OP:
+ case LDA_IMM_OP:
+ case LDBIAS_IMM_OP:
+ case LDACQ_IMM_OP:
+ case LDCCLR_IMM_OP:
+ case LDCNC_IMM_OP:
+ case LDCCLRACQ_IMM_OP:
+ ret = emulate_load_int(ifa, u.insn, regs);
+ break;
+
+ case ST_OP:
+ case STREL_OP:
+ if (u.insn.x)
+ /* oops, really a semaphore op (cmpxchg, etc) */
+ goto failure;
+ /* no break */
+ case ST_IMM_OP:
+ case STREL_IMM_OP:
+ ret = emulate_store_int(ifa, u.insn, regs);
+ break;
+
+ case LDF_OP:
+ case LDFA_OP:
+ case LDFCCLR_OP:
+ case LDFCNC_OP:
+ case LDF_IMM_OP:
+ case LDFA_IMM_OP:
+ case LDFCCLR_IMM_OP:
+ case LDFCNC_IMM_OP:
+ if (u.insn.x)
+ ret = emulate_load_floatpair(ifa, u.insn, regs);
+ else
+ ret = emulate_load_float(ifa, u.insn, regs);
+ break;
+
+ case STF_OP:
+ case STF_IMM_OP:
+ ret = emulate_store_float(ifa, u.insn, regs);
+ break;
+
+ default:
+ goto failure;
+ }
+ DPRINT("ret=%d\n", ret);
+ if (ret)
+ goto failure;
+
+ if (ipsr->ri == 2)
+ /*
+ * given today's architecture this case is not likely to happen because a
+ * memory access instruction (M) can never be in the last slot of a
+ * bundle. But let's keep it for now.
+ */
+ regs->cr_iip += 16;
+ ipsr->ri = (ipsr->ri + 1) & 0x3;
+
+ DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
+ done:
+ set_fs(old_fs); /* restore original address limit */
+ return;
+
+ failure:
+ /* something went wrong... */
+ if (!user_mode(regs)) {
+ if (eh) {
+ ia64_handle_exception(regs, eh);
+ goto done;
+ }
+ die_if_kernel("error during unaligned kernel access\n", regs, ret);
+ /* NOT_REACHED */
+ }
+ force_sigbus:
+ si.si_signo = SIGBUS;
+ si.si_errno = 0;
+ si.si_code = BUS_ADRALN;
+ si.si_addr = (void __user *) ifa;
+ si.si_flags = 0;
+ si.si_isr = 0;
+ si.si_imm = 0;
+ force_sig_info(SIGBUS, &si, current);
+ goto done;
+}
diff --git a/arch/ia64/kernel/unwind.c b/arch/ia64/kernel/unwind.c
new file mode 100644
index 0000000..d494ff6
--- /dev/null
+++ b/arch/ia64/kernel/unwind.c
@@ -0,0 +1,2306 @@
+/*
+ * Copyright (C) 1999-2004 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Copyright (C) 2003 Fenghua Yu <fenghua.yu@intel.com>
+ * - Change pt_regs_off() to make it less dependant on pt_regs structure.
+ */
+/*
+ * This file implements call frame unwind support for the Linux
+ * kernel. Parsing and processing the unwind information is
+ * time-consuming, so this implementation translates the unwind
+ * descriptors into unwind scripts. These scripts are very simple
+ * (basically a sequence of assignments) and efficient to execute.
+ * They are cached for later re-use. Each script is specific for a
+ * given instruction pointer address and the set of predicate values
+ * that the script depends on (most unwind descriptors are
+ * unconditional and scripts often do not depend on predicates at
+ * all). This code is based on the unwind conventions described in
+ * the "IA-64 Software Conventions and Runtime Architecture" manual.
+ *
+ * SMP conventions:
+ * o updates to the global unwind data (in structure "unw") are serialized
+ * by the unw.lock spinlock
+ * o each unwind script has its own read-write lock; a thread must acquire
+ * a read lock before executing a script and must acquire a write lock
+ * before modifying a script
+ * o if both the unw.lock spinlock and a script's read-write lock must be
+ * acquired, then the read-write lock must be acquired first.
+ */
+#include <linux/module.h>
+#include <linux/bootmem.h>
+#include <linux/elf.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+#include <asm/unwind.h>
+
+#include <asm/delay.h>
+#include <asm/page.h>
+#include <asm/ptrace.h>
+#include <asm/ptrace_offsets.h>
+#include <asm/rse.h>
+#include <asm/sections.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+
+#include "entry.h"
+#include "unwind_i.h"
+
+#define UNW_LOG_CACHE_SIZE 7 /* each unw_script is ~256 bytes in size */
+#define UNW_CACHE_SIZE (1 << UNW_LOG_CACHE_SIZE)
+
+#define UNW_LOG_HASH_SIZE (UNW_LOG_CACHE_SIZE + 1)
+#define UNW_HASH_SIZE (1 << UNW_LOG_HASH_SIZE)
+
+#define UNW_STATS 0 /* WARNING: this disabled interrupts for long time-spans!! */
+
+#ifdef UNW_DEBUG
+ static unsigned int unw_debug_level = UNW_DEBUG;
+# define UNW_DEBUG_ON(n) unw_debug_level >= n
+ /* Do not code a printk level, not all debug lines end in newline */
+# define UNW_DPRINT(n, ...) if (UNW_DEBUG_ON(n)) printk(__VA_ARGS__)
+# define inline
+#else /* !UNW_DEBUG */
+# define UNW_DEBUG_ON(n) 0
+# define UNW_DPRINT(n, ...)
+#endif /* UNW_DEBUG */
+
+#if UNW_STATS
+# define STAT(x...) x
+#else
+# define STAT(x...)
+#endif
+
+#define alloc_reg_state() kmalloc(sizeof(struct unw_reg_state), GFP_ATOMIC)
+#define free_reg_state(usr) kfree(usr)
+#define alloc_labeled_state() kmalloc(sizeof(struct unw_labeled_state), GFP_ATOMIC)
+#define free_labeled_state(usr) kfree(usr)
+
+typedef unsigned long unw_word;
+typedef unsigned char unw_hash_index_t;
+
+static struct {
+ spinlock_t lock; /* spinlock for unwind data */
+
+ /* list of unwind tables (one per load-module) */
+ struct unw_table *tables;
+
+ unsigned long r0; /* constant 0 for r0 */
+
+ /* table of registers that prologues can save (and order in which they're saved): */
+ const unsigned char save_order[8];
+
+ /* maps a preserved register index (preg_index) to corresponding switch_stack offset: */
+ unsigned short sw_off[sizeof(struct unw_frame_info) / 8];
+
+ unsigned short lru_head; /* index of lead-recently used script */
+ unsigned short lru_tail; /* index of most-recently used script */
+
+ /* index into unw_frame_info for preserved register i */
+ unsigned short preg_index[UNW_NUM_REGS];
+
+ short pt_regs_offsets[32];
+
+ /* unwind table for the kernel: */
+ struct unw_table kernel_table;
+
+ /* unwind table describing the gate page (kernel code that is mapped into user space): */
+ size_t gate_table_size;
+ unsigned long *gate_table;
+
+ /* hash table that maps instruction pointer to script index: */
+ unsigned short hash[UNW_HASH_SIZE];
+
+ /* script cache: */
+ struct unw_script cache[UNW_CACHE_SIZE];
+
+# ifdef UNW_DEBUG
+ const char *preg_name[UNW_NUM_REGS];
+# endif
+# if UNW_STATS
+ struct {
+ struct {
+ int lookups;
+ int hinted_hits;
+ int normal_hits;
+ int collision_chain_traversals;
+ } cache;
+ struct {
+ unsigned long build_time;
+ unsigned long run_time;
+ unsigned long parse_time;
+ int builds;
+ int news;
+ int collisions;
+ int runs;
+ } script;
+ struct {
+ unsigned long init_time;
+ unsigned long unwind_time;
+ int inits;
+ int unwinds;
+ } api;
+ } stat;
+# endif
+} unw = {
+ .tables = &unw.kernel_table,
+ .lock = SPIN_LOCK_UNLOCKED,
+ .save_order = {
+ UNW_REG_RP, UNW_REG_PFS, UNW_REG_PSP, UNW_REG_PR,
+ UNW_REG_UNAT, UNW_REG_LC, UNW_REG_FPSR, UNW_REG_PRI_UNAT_GR
+ },
+ .preg_index = {
+ offsetof(struct unw_frame_info, pri_unat_loc)/8, /* PRI_UNAT_GR */
+ offsetof(struct unw_frame_info, pri_unat_loc)/8, /* PRI_UNAT_MEM */
+ offsetof(struct unw_frame_info, bsp_loc)/8,
+ offsetof(struct unw_frame_info, bspstore_loc)/8,
+ offsetof(struct unw_frame_info, pfs_loc)/8,
+ offsetof(struct unw_frame_info, rnat_loc)/8,
+ offsetof(struct unw_frame_info, psp)/8,
+ offsetof(struct unw_frame_info, rp_loc)/8,
+ offsetof(struct unw_frame_info, r4)/8,
+ offsetof(struct unw_frame_info, r5)/8,
+ offsetof(struct unw_frame_info, r6)/8,
+ offsetof(struct unw_frame_info, r7)/8,
+ offsetof(struct unw_frame_info, unat_loc)/8,
+ offsetof(struct unw_frame_info, pr_loc)/8,
+ offsetof(struct unw_frame_info, lc_loc)/8,
+ offsetof(struct unw_frame_info, fpsr_loc)/8,
+ offsetof(struct unw_frame_info, b1_loc)/8,
+ offsetof(struct unw_frame_info, b2_loc)/8,
+ offsetof(struct unw_frame_info, b3_loc)/8,
+ offsetof(struct unw_frame_info, b4_loc)/8,
+ offsetof(struct unw_frame_info, b5_loc)/8,
+ offsetof(struct unw_frame_info, f2_loc)/8,
+ offsetof(struct unw_frame_info, f3_loc)/8,
+ offsetof(struct unw_frame_info, f4_loc)/8,
+ offsetof(struct unw_frame_info, f5_loc)/8,
+ offsetof(struct unw_frame_info, fr_loc[16 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[17 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[18 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[19 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[20 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[21 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[22 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[23 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[24 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[25 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[26 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[27 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[28 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[29 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[30 - 16])/8,
+ offsetof(struct unw_frame_info, fr_loc[31 - 16])/8,
+ },
+ .pt_regs_offsets = {
+ [0] = -1,
+ offsetof(struct pt_regs, r1),
+ offsetof(struct pt_regs, r2),
+ offsetof(struct pt_regs, r3),
+ [4] = -1, [5] = -1, [6] = -1, [7] = -1,
+ offsetof(struct pt_regs, r8),
+ offsetof(struct pt_regs, r9),
+ offsetof(struct pt_regs, r10),
+ offsetof(struct pt_regs, r11),
+ offsetof(struct pt_regs, r12),
+ offsetof(struct pt_regs, r13),
+ offsetof(struct pt_regs, r14),
+ offsetof(struct pt_regs, r15),
+ offsetof(struct pt_regs, r16),
+ offsetof(struct pt_regs, r17),
+ offsetof(struct pt_regs, r18),
+ offsetof(struct pt_regs, r19),
+ offsetof(struct pt_regs, r20),
+ offsetof(struct pt_regs, r21),
+ offsetof(struct pt_regs, r22),
+ offsetof(struct pt_regs, r23),
+ offsetof(struct pt_regs, r24),
+ offsetof(struct pt_regs, r25),
+ offsetof(struct pt_regs, r26),
+ offsetof(struct pt_regs, r27),
+ offsetof(struct pt_regs, r28),
+ offsetof(struct pt_regs, r29),
+ offsetof(struct pt_regs, r30),
+ offsetof(struct pt_regs, r31),
+ },
+ .hash = { [0 ... UNW_HASH_SIZE - 1] = -1 },
+#ifdef UNW_DEBUG
+ .preg_name = {
+ "pri_unat_gr", "pri_unat_mem", "bsp", "bspstore", "ar.pfs", "ar.rnat", "psp", "rp",
+ "r4", "r5", "r6", "r7",
+ "ar.unat", "pr", "ar.lc", "ar.fpsr",
+ "b1", "b2", "b3", "b4", "b5",
+ "f2", "f3", "f4", "f5",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
+ }
+#endif
+};
+
+static inline int
+read_only (void *addr)
+{
+ return (unsigned long) ((char *) addr - (char *) &unw.r0) < sizeof(unw.r0);
+}
+
+/*
+ * Returns offset of rREG in struct pt_regs.
+ */
+static inline unsigned long
+pt_regs_off (unsigned long reg)
+{
+ short off = -1;
+
+ if (reg < ARRAY_SIZE(unw.pt_regs_offsets))
+ off = unw.pt_regs_offsets[reg];
+
+ if (off < 0) {
+ UNW_DPRINT(0, "unwind.%s: bad scratch reg r%lu\n", __FUNCTION__, reg);
+ off = 0;
+ }
+ return (unsigned long) off;
+}
+
+static inline struct pt_regs *
+get_scratch_regs (struct unw_frame_info *info)
+{
+ if (!info->pt) {
+ /* This should not happen with valid unwind info. */
+ UNW_DPRINT(0, "unwind.%s: bad unwind info: resetting info->pt\n", __FUNCTION__);
+ if (info->flags & UNW_FLAG_INTERRUPT_FRAME)
+ info->pt = (unsigned long) ((struct pt_regs *) info->psp - 1);
+ else
+ info->pt = info->sp - 16;
+ }
+ UNW_DPRINT(3, "unwind.%s: sp 0x%lx pt 0x%lx\n", __FUNCTION__, info->sp, info->pt);
+ return (struct pt_regs *) info->pt;
+}
+
+/* Unwind accessors. */
+
+int
+unw_access_gr (struct unw_frame_info *info, int regnum, unsigned long *val, char *nat, int write)
+{
+ unsigned long *addr, *nat_addr, nat_mask = 0, dummy_nat;
+ struct unw_ireg *ireg;
+ struct pt_regs *pt;
+
+ if ((unsigned) regnum - 1 >= 127) {
+ if (regnum == 0 && !write) {
+ *val = 0; /* read r0 always returns 0 */
+ *nat = 0;
+ return 0;
+ }
+ UNW_DPRINT(0, "unwind.%s: trying to access non-existent r%u\n",
+ __FUNCTION__, regnum);
+ return -1;
+ }
+
+ if (regnum < 32) {
+ if (regnum >= 4 && regnum <= 7) {
+ /* access a preserved register */
+ ireg = &info->r4 + (regnum - 4);
+ addr = ireg->loc;
+ if (addr) {
+ nat_addr = addr + ireg->nat.off;
+ switch (ireg->nat.type) {
+ case UNW_NAT_VAL:
+ /* simulate getf.sig/setf.sig */
+ if (write) {
+ if (*nat) {
+ /* write NaTVal and be done with it */
+ addr[0] = 0;
+ addr[1] = 0x1fffe;
+ return 0;
+ }
+ addr[1] = 0x1003e;
+ } else {
+ if (addr[0] == 0 && addr[1] == 0x1ffe) {
+ /* return NaT and be done with it */
+ *val = 0;
+ *nat = 1;
+ return 0;
+ }
+ }
+ /* fall through */
+ case UNW_NAT_NONE:
+ dummy_nat = 0;
+ nat_addr = &dummy_nat;
+ break;
+
+ case UNW_NAT_MEMSTK:
+ nat_mask = (1UL << ((long) addr & 0x1f8)/8);
+ break;
+
+ case UNW_NAT_REGSTK:
+ nat_addr = ia64_rse_rnat_addr(addr);
+ if ((unsigned long) addr < info->regstk.limit
+ || (unsigned long) addr >= info->regstk.top)
+ {
+ UNW_DPRINT(0, "unwind.%s: %p outside of regstk "
+ "[0x%lx-0x%lx)\n",
+ __FUNCTION__, (void *) addr,
+ info->regstk.limit,
+ info->regstk.top);
+ return -1;
+ }
+ if ((unsigned long) nat_addr >= info->regstk.top)
+ nat_addr = &info->sw->ar_rnat;
+ nat_mask = (1UL << ia64_rse_slot_num(addr));
+ break;
+ }
+ } else {
+ addr = &info->sw->r4 + (regnum - 4);
+ nat_addr = &info->sw->ar_unat;
+ nat_mask = (1UL << ((long) addr & 0x1f8)/8);
+ }
+ } else {
+ /* access a scratch register */
+ pt = get_scratch_regs(info);
+ addr = (unsigned long *) ((unsigned long)pt + pt_regs_off(regnum));
+ if (info->pri_unat_loc)
+ nat_addr = info->pri_unat_loc;
+ else
+ nat_addr = &info->sw->ar_unat;
+ nat_mask = (1UL << ((long) addr & 0x1f8)/8);
+ }
+ } else {
+ /* access a stacked register */
+ addr = ia64_rse_skip_regs((unsigned long *) info->bsp, regnum - 32);
+ nat_addr = ia64_rse_rnat_addr(addr);
+ if ((unsigned long) addr < info->regstk.limit
+ || (unsigned long) addr >= info->regstk.top)
+ {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to access register outside "
+ "of rbs\n", __FUNCTION__);
+ return -1;
+ }
+ if ((unsigned long) nat_addr >= info->regstk.top)
+ nat_addr = &info->sw->ar_rnat;
+ nat_mask = (1UL << ia64_rse_slot_num(addr));
+ }
+
+ if (write) {
+ if (read_only(addr)) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to write read-only location\n",
+ __FUNCTION__);
+ } else {
+ *addr = *val;
+ if (*nat)
+ *nat_addr |= nat_mask;
+ else
+ *nat_addr &= ~nat_mask;
+ }
+ } else {
+ if ((*nat_addr & nat_mask) == 0) {
+ *val = *addr;
+ *nat = 0;
+ } else {
+ *val = 0; /* if register is a NaT, *addr may contain kernel data! */
+ *nat = 1;
+ }
+ }
+ return 0;
+}
+EXPORT_SYMBOL(unw_access_gr);
+
+int
+unw_access_br (struct unw_frame_info *info, int regnum, unsigned long *val, int write)
+{
+ unsigned long *addr;
+ struct pt_regs *pt;
+
+ switch (regnum) {
+ /* scratch: */
+ case 0: pt = get_scratch_regs(info); addr = &pt->b0; break;
+ case 6: pt = get_scratch_regs(info); addr = &pt->b6; break;
+ case 7: pt = get_scratch_regs(info); addr = &pt->b7; break;
+
+ /* preserved: */
+ case 1: case 2: case 3: case 4: case 5:
+ addr = *(&info->b1_loc + (regnum - 1));
+ if (!addr)
+ addr = &info->sw->b1 + (regnum - 1);
+ break;
+
+ default:
+ UNW_DPRINT(0, "unwind.%s: trying to access non-existent b%u\n",
+ __FUNCTION__, regnum);
+ return -1;
+ }
+ if (write)
+ if (read_only(addr)) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to write read-only location\n",
+ __FUNCTION__);
+ } else
+ *addr = *val;
+ else
+ *val = *addr;
+ return 0;
+}
+EXPORT_SYMBOL(unw_access_br);
+
+int
+unw_access_fr (struct unw_frame_info *info, int regnum, struct ia64_fpreg *val, int write)
+{
+ struct ia64_fpreg *addr = NULL;
+ struct pt_regs *pt;
+
+ if ((unsigned) (regnum - 2) >= 126) {
+ UNW_DPRINT(0, "unwind.%s: trying to access non-existent f%u\n",
+ __FUNCTION__, regnum);
+ return -1;
+ }
+
+ if (regnum <= 5) {
+ addr = *(&info->f2_loc + (regnum - 2));
+ if (!addr)
+ addr = &info->sw->f2 + (regnum - 2);
+ } else if (regnum <= 15) {
+ if (regnum <= 11) {
+ pt = get_scratch_regs(info);
+ addr = &pt->f6 + (regnum - 6);
+ }
+ else
+ addr = &info->sw->f12 + (regnum - 12);
+ } else if (regnum <= 31) {
+ addr = info->fr_loc[regnum - 16];
+ if (!addr)
+ addr = &info->sw->f16 + (regnum - 16);
+ } else {
+ struct task_struct *t = info->task;
+
+ if (write)
+ ia64_sync_fph(t);
+ else
+ ia64_flush_fph(t);
+ addr = t->thread.fph + (regnum - 32);
+ }
+
+ if (write)
+ if (read_only(addr)) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to write read-only location\n",
+ __FUNCTION__);
+ } else
+ *addr = *val;
+ else
+ *val = *addr;
+ return 0;
+}
+EXPORT_SYMBOL(unw_access_fr);
+
+int
+unw_access_ar (struct unw_frame_info *info, int regnum, unsigned long *val, int write)
+{
+ unsigned long *addr;
+ struct pt_regs *pt;
+
+ switch (regnum) {
+ case UNW_AR_BSP:
+ addr = info->bsp_loc;
+ if (!addr)
+ addr = &info->sw->ar_bspstore;
+ break;
+
+ case UNW_AR_BSPSTORE:
+ addr = info->bspstore_loc;
+ if (!addr)
+ addr = &info->sw->ar_bspstore;
+ break;
+
+ case UNW_AR_PFS:
+ addr = info->pfs_loc;
+ if (!addr)
+ addr = &info->sw->ar_pfs;
+ break;
+
+ case UNW_AR_RNAT:
+ addr = info->rnat_loc;
+ if (!addr)
+ addr = &info->sw->ar_rnat;
+ break;
+
+ case UNW_AR_UNAT:
+ addr = info->unat_loc;
+ if (!addr)
+ addr = &info->sw->ar_unat;
+ break;
+
+ case UNW_AR_LC:
+ addr = info->lc_loc;
+ if (!addr)
+ addr = &info->sw->ar_lc;
+ break;
+
+ case UNW_AR_EC:
+ if (!info->cfm_loc)
+ return -1;
+ if (write)
+ *info->cfm_loc =
+ (*info->cfm_loc & ~(0x3fUL << 52)) | ((*val & 0x3f) << 52);
+ else
+ *val = (*info->cfm_loc >> 52) & 0x3f;
+ return 0;
+
+ case UNW_AR_FPSR:
+ addr = info->fpsr_loc;
+ if (!addr)
+ addr = &info->sw->ar_fpsr;
+ break;
+
+ case UNW_AR_RSC:
+ pt = get_scratch_regs(info);
+ addr = &pt->ar_rsc;
+ break;
+
+ case UNW_AR_CCV:
+ pt = get_scratch_regs(info);
+ addr = &pt->ar_ccv;
+ break;
+
+ case UNW_AR_CSD:
+ pt = get_scratch_regs(info);
+ addr = &pt->ar_csd;
+ break;
+
+ case UNW_AR_SSD:
+ pt = get_scratch_regs(info);
+ addr = &pt->ar_ssd;
+ break;
+
+ default:
+ UNW_DPRINT(0, "unwind.%s: trying to access non-existent ar%u\n",
+ __FUNCTION__, regnum);
+ return -1;
+ }
+
+ if (write) {
+ if (read_only(addr)) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to write read-only location\n",
+ __FUNCTION__);
+ } else
+ *addr = *val;
+ } else
+ *val = *addr;
+ return 0;
+}
+EXPORT_SYMBOL(unw_access_ar);
+
+int
+unw_access_pr (struct unw_frame_info *info, unsigned long *val, int write)
+{
+ unsigned long *addr;
+
+ addr = info->pr_loc;
+ if (!addr)
+ addr = &info->sw->pr;
+
+ if (write) {
+ if (read_only(addr)) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to write read-only location\n",
+ __FUNCTION__);
+ } else
+ *addr = *val;
+ } else
+ *val = *addr;
+ return 0;
+}
+EXPORT_SYMBOL(unw_access_pr);
+
+
+/* Routines to manipulate the state stack. */
+
+static inline void
+push (struct unw_state_record *sr)
+{
+ struct unw_reg_state *rs;
+
+ rs = alloc_reg_state();
+ if (!rs) {
+ printk(KERN_ERR "unwind: cannot stack reg state!\n");
+ return;
+ }
+ memcpy(rs, &sr->curr, sizeof(*rs));
+ sr->curr.next = rs;
+}
+
+static void
+pop (struct unw_state_record *sr)
+{
+ struct unw_reg_state *rs = sr->curr.next;
+
+ if (!rs) {
+ printk(KERN_ERR "unwind: stack underflow!\n");
+ return;
+ }
+ memcpy(&sr->curr, rs, sizeof(*rs));
+ free_reg_state(rs);
+}
+
+/* Make a copy of the state stack. Non-recursive to avoid stack overflows. */
+static struct unw_reg_state *
+dup_state_stack (struct unw_reg_state *rs)
+{
+ struct unw_reg_state *copy, *prev = NULL, *first = NULL;
+
+ while (rs) {
+ copy = alloc_reg_state();
+ if (!copy) {
+ printk(KERN_ERR "unwind.dup_state_stack: out of memory\n");
+ return NULL;
+ }
+ memcpy(copy, rs, sizeof(*copy));
+ if (first)
+ prev->next = copy;
+ else
+ first = copy;
+ rs = rs->next;
+ prev = copy;
+ }
+ return first;
+}
+
+/* Free all stacked register states (but not RS itself). */
+static void
+free_state_stack (struct unw_reg_state *rs)
+{
+ struct unw_reg_state *p, *next;
+
+ for (p = rs->next; p != NULL; p = next) {
+ next = p->next;
+ free_reg_state(p);
+ }
+ rs->next = NULL;
+}
+
+/* Unwind decoder routines */
+
+static enum unw_register_index __attribute_const__
+decode_abreg (unsigned char abreg, int memory)
+{
+ switch (abreg) {
+ case 0x04 ... 0x07: return UNW_REG_R4 + (abreg - 0x04);
+ case 0x22 ... 0x25: return UNW_REG_F2 + (abreg - 0x22);
+ case 0x30 ... 0x3f: return UNW_REG_F16 + (abreg - 0x30);
+ case 0x41 ... 0x45: return UNW_REG_B1 + (abreg - 0x41);
+ case 0x60: return UNW_REG_PR;
+ case 0x61: return UNW_REG_PSP;
+ case 0x62: return memory ? UNW_REG_PRI_UNAT_MEM : UNW_REG_PRI_UNAT_GR;
+ case 0x63: return UNW_REG_RP;
+ case 0x64: return UNW_REG_BSP;
+ case 0x65: return UNW_REG_BSPSTORE;
+ case 0x66: return UNW_REG_RNAT;
+ case 0x67: return UNW_REG_UNAT;
+ case 0x68: return UNW_REG_FPSR;
+ case 0x69: return UNW_REG_PFS;
+ case 0x6a: return UNW_REG_LC;
+ default:
+ break;
+ }
+ UNW_DPRINT(0, "unwind.%s: bad abreg=0x%x\n", __FUNCTION__, abreg);
+ return UNW_REG_LC;
+}
+
+static void
+set_reg (struct unw_reg_info *reg, enum unw_where where, int when, unsigned long val)
+{
+ reg->val = val;
+ reg->where = where;
+ if (reg->when == UNW_WHEN_NEVER)
+ reg->when = when;
+}
+
+static void
+alloc_spill_area (unsigned long *offp, unsigned long regsize,
+ struct unw_reg_info *lo, struct unw_reg_info *hi)
+{
+ struct unw_reg_info *reg;
+
+ for (reg = hi; reg >= lo; --reg) {
+ if (reg->where == UNW_WHERE_SPILL_HOME) {
+ reg->where = UNW_WHERE_PSPREL;
+ *offp -= regsize;
+ reg->val = *offp;
+ }
+ }
+}
+
+static inline void
+spill_next_when (struct unw_reg_info **regp, struct unw_reg_info *lim, unw_word t)
+{
+ struct unw_reg_info *reg;
+
+ for (reg = *regp; reg <= lim; ++reg) {
+ if (reg->where == UNW_WHERE_SPILL_HOME) {
+ reg->when = t;
+ *regp = reg + 1;
+ return;
+ }
+ }
+ UNW_DPRINT(0, "unwind.%s: excess spill!\n", __FUNCTION__);
+}
+
+static inline void
+finish_prologue (struct unw_state_record *sr)
+{
+ struct unw_reg_info *reg;
+ unsigned long off;
+ int i;
+
+ /*
+ * First, resolve implicit register save locations (see Section "11.4.2.3 Rules
+ * for Using Unwind Descriptors", rule 3):
+ */
+ for (i = 0; i < (int) ARRAY_SIZE(unw.save_order); ++i) {
+ reg = sr->curr.reg + unw.save_order[i];
+ if (reg->where == UNW_WHERE_GR_SAVE) {
+ reg->where = UNW_WHERE_GR;
+ reg->val = sr->gr_save_loc++;
+ }
+ }
+
+ /*
+ * Next, compute when the fp, general, and branch registers get
+ * saved. This must come before alloc_spill_area() because
+ * we need to know which registers are spilled to their home
+ * locations.
+ */
+ if (sr->imask) {
+ unsigned char kind, mask = 0, *cp = sr->imask;
+ int t;
+ static const unsigned char limit[3] = {
+ UNW_REG_F31, UNW_REG_R7, UNW_REG_B5
+ };
+ struct unw_reg_info *(regs[3]);
+
+ regs[0] = sr->curr.reg + UNW_REG_F2;
+ regs[1] = sr->curr.reg + UNW_REG_R4;
+ regs[2] = sr->curr.reg + UNW_REG_B1;
+
+ for (t = 0; t < sr->region_len; ++t) {
+ if ((t & 3) == 0)
+ mask = *cp++;
+ kind = (mask >> 2*(3-(t & 3))) & 3;
+ if (kind > 0)
+ spill_next_when(&regs[kind - 1], sr->curr.reg + limit[kind - 1],
+ sr->region_start + t);
+ }
+ }
+ /*
+ * Next, lay out the memory stack spill area:
+ */
+ if (sr->any_spills) {
+ off = sr->spill_offset;
+ alloc_spill_area(&off, 16, sr->curr.reg + UNW_REG_F2, sr->curr.reg + UNW_REG_F31);
+ alloc_spill_area(&off, 8, sr->curr.reg + UNW_REG_B1, sr->curr.reg + UNW_REG_B5);
+ alloc_spill_area(&off, 8, sr->curr.reg + UNW_REG_R4, sr->curr.reg + UNW_REG_R7);
+ }
+}
+
+/*
+ * Region header descriptors.
+ */
+
+static void
+desc_prologue (int body, unw_word rlen, unsigned char mask, unsigned char grsave,
+ struct unw_state_record *sr)
+{
+ int i, region_start;
+
+ if (!(sr->in_body || sr->first_region))
+ finish_prologue(sr);
+ sr->first_region = 0;
+
+ /* check if we're done: */
+ if (sr->when_target < sr->region_start + sr->region_len) {
+ sr->done = 1;
+ return;
+ }
+
+ region_start = sr->region_start + sr->region_len;
+
+ for (i = 0; i < sr->epilogue_count; ++i)
+ pop(sr);
+ sr->epilogue_count = 0;
+ sr->epilogue_start = UNW_WHEN_NEVER;
+
+ sr->region_start = region_start;
+ sr->region_len = rlen;
+ sr->in_body = body;
+
+ if (!body) {
+ push(sr);
+
+ for (i = 0; i < 4; ++i) {
+ if (mask & 0x8)
+ set_reg(sr->curr.reg + unw.save_order[i], UNW_WHERE_GR,
+ sr->region_start + sr->region_len - 1, grsave++);
+ mask <<= 1;
+ }
+ sr->gr_save_loc = grsave;
+ sr->any_spills = 0;
+ sr->imask = NULL;
+ sr->spill_offset = 0x10; /* default to psp+16 */
+ }
+}
+
+/*
+ * Prologue descriptors.
+ */
+
+static inline void
+desc_abi (unsigned char abi, unsigned char context, struct unw_state_record *sr)
+{
+ if (abi == 3 && context == 'i') {
+ sr->flags |= UNW_FLAG_INTERRUPT_FRAME;
+ UNW_DPRINT(3, "unwind.%s: interrupt frame\n", __FUNCTION__);
+ }
+ else
+ UNW_DPRINT(0, "unwind%s: ignoring unwabi(abi=0x%x,context=0x%x)\n",
+ __FUNCTION__, abi, context);
+}
+
+static inline void
+desc_br_gr (unsigned char brmask, unsigned char gr, struct unw_state_record *sr)
+{
+ int i;
+
+ for (i = 0; i < 5; ++i) {
+ if (brmask & 1)
+ set_reg(sr->curr.reg + UNW_REG_B1 + i, UNW_WHERE_GR,
+ sr->region_start + sr->region_len - 1, gr++);
+ brmask >>= 1;
+ }
+}
+
+static inline void
+desc_br_mem (unsigned char brmask, struct unw_state_record *sr)
+{
+ int i;
+
+ for (i = 0; i < 5; ++i) {
+ if (brmask & 1) {
+ set_reg(sr->curr.reg + UNW_REG_B1 + i, UNW_WHERE_SPILL_HOME,
+ sr->region_start + sr->region_len - 1, 0);
+ sr->any_spills = 1;
+ }
+ brmask >>= 1;
+ }
+}
+
+static inline void
+desc_frgr_mem (unsigned char grmask, unw_word frmask, struct unw_state_record *sr)
+{
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ if ((grmask & 1) != 0) {
+ set_reg(sr->curr.reg + UNW_REG_R4 + i, UNW_WHERE_SPILL_HOME,
+ sr->region_start + sr->region_len - 1, 0);
+ sr->any_spills = 1;
+ }
+ grmask >>= 1;
+ }
+ for (i = 0; i < 20; ++i) {
+ if ((frmask & 1) != 0) {
+ int base = (i < 4) ? UNW_REG_F2 : UNW_REG_F16 - 4;
+ set_reg(sr->curr.reg + base + i, UNW_WHERE_SPILL_HOME,
+ sr->region_start + sr->region_len - 1, 0);
+ sr->any_spills = 1;
+ }
+ frmask >>= 1;
+ }
+}
+
+static inline void
+desc_fr_mem (unsigned char frmask, struct unw_state_record *sr)
+{
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ if ((frmask & 1) != 0) {
+ set_reg(sr->curr.reg + UNW_REG_F2 + i, UNW_WHERE_SPILL_HOME,
+ sr->region_start + sr->region_len - 1, 0);
+ sr->any_spills = 1;
+ }
+ frmask >>= 1;
+ }
+}
+
+static inline void
+desc_gr_gr (unsigned char grmask, unsigned char gr, struct unw_state_record *sr)
+{
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ if ((grmask & 1) != 0)
+ set_reg(sr->curr.reg + UNW_REG_R4 + i, UNW_WHERE_GR,
+ sr->region_start + sr->region_len - 1, gr++);
+ grmask >>= 1;
+ }
+}
+
+static inline void
+desc_gr_mem (unsigned char grmask, struct unw_state_record *sr)
+{
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ if ((grmask & 1) != 0) {
+ set_reg(sr->curr.reg + UNW_REG_R4 + i, UNW_WHERE_SPILL_HOME,
+ sr->region_start + sr->region_len - 1, 0);
+ sr->any_spills = 1;
+ }
+ grmask >>= 1;
+ }
+}
+
+static inline void
+desc_mem_stack_f (unw_word t, unw_word size, struct unw_state_record *sr)
+{
+ set_reg(sr->curr.reg + UNW_REG_PSP, UNW_WHERE_NONE,
+ sr->region_start + min_t(int, t, sr->region_len - 1), 16*size);
+}
+
+static inline void
+desc_mem_stack_v (unw_word t, struct unw_state_record *sr)
+{
+ sr->curr.reg[UNW_REG_PSP].when = sr->region_start + min_t(int, t, sr->region_len - 1);
+}
+
+static inline void
+desc_reg_gr (unsigned char reg, unsigned char dst, struct unw_state_record *sr)
+{
+ set_reg(sr->curr.reg + reg, UNW_WHERE_GR, sr->region_start + sr->region_len - 1, dst);
+}
+
+static inline void
+desc_reg_psprel (unsigned char reg, unw_word pspoff, struct unw_state_record *sr)
+{
+ set_reg(sr->curr.reg + reg, UNW_WHERE_PSPREL, sr->region_start + sr->region_len - 1,
+ 0x10 - 4*pspoff);
+}
+
+static inline void
+desc_reg_sprel (unsigned char reg, unw_word spoff, struct unw_state_record *sr)
+{
+ set_reg(sr->curr.reg + reg, UNW_WHERE_SPREL, sr->region_start + sr->region_len - 1,
+ 4*spoff);
+}
+
+static inline void
+desc_rp_br (unsigned char dst, struct unw_state_record *sr)
+{
+ sr->return_link_reg = dst;
+}
+
+static inline void
+desc_reg_when (unsigned char regnum, unw_word t, struct unw_state_record *sr)
+{
+ struct unw_reg_info *reg = sr->curr.reg + regnum;
+
+ if (reg->where == UNW_WHERE_NONE)
+ reg->where = UNW_WHERE_GR_SAVE;
+ reg->when = sr->region_start + min_t(int, t, sr->region_len - 1);
+}
+
+static inline void
+desc_spill_base (unw_word pspoff, struct unw_state_record *sr)
+{
+ sr->spill_offset = 0x10 - 4*pspoff;
+}
+
+static inline unsigned char *
+desc_spill_mask (unsigned char *imaskp, struct unw_state_record *sr)
+{
+ sr->imask = imaskp;
+ return imaskp + (2*sr->region_len + 7)/8;
+}
+
+/*
+ * Body descriptors.
+ */
+static inline void
+desc_epilogue (unw_word t, unw_word ecount, struct unw_state_record *sr)
+{
+ sr->epilogue_start = sr->region_start + sr->region_len - 1 - t;
+ sr->epilogue_count = ecount + 1;
+}
+
+static inline void
+desc_copy_state (unw_word label, struct unw_state_record *sr)
+{
+ struct unw_labeled_state *ls;
+
+ for (ls = sr->labeled_states; ls; ls = ls->next) {
+ if (ls->label == label) {
+ free_state_stack(&sr->curr);
+ memcpy(&sr->curr, &ls->saved_state, sizeof(sr->curr));
+ sr->curr.next = dup_state_stack(ls->saved_state.next);
+ return;
+ }
+ }
+ printk(KERN_ERR "unwind: failed to find state labeled 0x%lx\n", label);
+}
+
+static inline void
+desc_label_state (unw_word label, struct unw_state_record *sr)
+{
+ struct unw_labeled_state *ls;
+
+ ls = alloc_labeled_state();
+ if (!ls) {
+ printk(KERN_ERR "unwind.desc_label_state(): out of memory\n");
+ return;
+ }
+ ls->label = label;
+ memcpy(&ls->saved_state, &sr->curr, sizeof(ls->saved_state));
+ ls->saved_state.next = dup_state_stack(sr->curr.next);
+
+ /* insert into list of labeled states: */
+ ls->next = sr->labeled_states;
+ sr->labeled_states = ls;
+}
+
+/*
+ * General descriptors.
+ */
+
+static inline int
+desc_is_active (unsigned char qp, unw_word t, struct unw_state_record *sr)
+{
+ if (sr->when_target <= sr->region_start + min_t(int, t, sr->region_len - 1))
+ return 0;
+ if (qp > 0) {
+ if ((sr->pr_val & (1UL << qp)) == 0)
+ return 0;
+ sr->pr_mask |= (1UL << qp);
+ }
+ return 1;
+}
+
+static inline void
+desc_restore_p (unsigned char qp, unw_word t, unsigned char abreg, struct unw_state_record *sr)
+{
+ struct unw_reg_info *r;
+
+ if (!desc_is_active(qp, t, sr))
+ return;
+
+ r = sr->curr.reg + decode_abreg(abreg, 0);
+ r->where = UNW_WHERE_NONE;
+ r->when = UNW_WHEN_NEVER;
+ r->val = 0;
+}
+
+static inline void
+desc_spill_reg_p (unsigned char qp, unw_word t, unsigned char abreg, unsigned char x,
+ unsigned char ytreg, struct unw_state_record *sr)
+{
+ enum unw_where where = UNW_WHERE_GR;
+ struct unw_reg_info *r;
+
+ if (!desc_is_active(qp, t, sr))
+ return;
+
+ if (x)
+ where = UNW_WHERE_BR;
+ else if (ytreg & 0x80)
+ where = UNW_WHERE_FR;
+
+ r = sr->curr.reg + decode_abreg(abreg, 0);
+ r->where = where;
+ r->when = sr->region_start + min_t(int, t, sr->region_len - 1);
+ r->val = (ytreg & 0x7f);
+}
+
+static inline void
+desc_spill_psprel_p (unsigned char qp, unw_word t, unsigned char abreg, unw_word pspoff,
+ struct unw_state_record *sr)
+{
+ struct unw_reg_info *r;
+
+ if (!desc_is_active(qp, t, sr))
+ return;
+
+ r = sr->curr.reg + decode_abreg(abreg, 1);
+ r->where = UNW_WHERE_PSPREL;
+ r->when = sr->region_start + min_t(int, t, sr->region_len - 1);
+ r->val = 0x10 - 4*pspoff;
+}
+
+static inline void
+desc_spill_sprel_p (unsigned char qp, unw_word t, unsigned char abreg, unw_word spoff,
+ struct unw_state_record *sr)
+{
+ struct unw_reg_info *r;
+
+ if (!desc_is_active(qp, t, sr))
+ return;
+
+ r = sr->curr.reg + decode_abreg(abreg, 1);
+ r->where = UNW_WHERE_SPREL;
+ r->when = sr->region_start + min_t(int, t, sr->region_len - 1);
+ r->val = 4*spoff;
+}
+
+#define UNW_DEC_BAD_CODE(code) printk(KERN_ERR "unwind: unknown code 0x%02x\n", \
+ code);
+
+/*
+ * region headers:
+ */
+#define UNW_DEC_PROLOGUE_GR(fmt,r,m,gr,arg) desc_prologue(0,r,m,gr,arg)
+#define UNW_DEC_PROLOGUE(fmt,b,r,arg) desc_prologue(b,r,0,32,arg)
+/*
+ * prologue descriptors:
+ */
+#define UNW_DEC_ABI(fmt,a,c,arg) desc_abi(a,c,arg)
+#define UNW_DEC_BR_GR(fmt,b,g,arg) desc_br_gr(b,g,arg)
+#define UNW_DEC_BR_MEM(fmt,b,arg) desc_br_mem(b,arg)
+#define UNW_DEC_FRGR_MEM(fmt,g,f,arg) desc_frgr_mem(g,f,arg)
+#define UNW_DEC_FR_MEM(fmt,f,arg) desc_fr_mem(f,arg)
+#define UNW_DEC_GR_GR(fmt,m,g,arg) desc_gr_gr(m,g,arg)
+#define UNW_DEC_GR_MEM(fmt,m,arg) desc_gr_mem(m,arg)
+#define UNW_DEC_MEM_STACK_F(fmt,t,s,arg) desc_mem_stack_f(t,s,arg)
+#define UNW_DEC_MEM_STACK_V(fmt,t,arg) desc_mem_stack_v(t,arg)
+#define UNW_DEC_REG_GR(fmt,r,d,arg) desc_reg_gr(r,d,arg)
+#define UNW_DEC_REG_PSPREL(fmt,r,o,arg) desc_reg_psprel(r,o,arg)
+#define UNW_DEC_REG_SPREL(fmt,r,o,arg) desc_reg_sprel(r,o,arg)
+#define UNW_DEC_REG_WHEN(fmt,r,t,arg) desc_reg_when(r,t,arg)
+#define UNW_DEC_PRIUNAT_WHEN_GR(fmt,t,arg) desc_reg_when(UNW_REG_PRI_UNAT_GR,t,arg)
+#define UNW_DEC_PRIUNAT_WHEN_MEM(fmt,t,arg) desc_reg_when(UNW_REG_PRI_UNAT_MEM,t,arg)
+#define UNW_DEC_PRIUNAT_GR(fmt,r,arg) desc_reg_gr(UNW_REG_PRI_UNAT_GR,r,arg)
+#define UNW_DEC_PRIUNAT_PSPREL(fmt,o,arg) desc_reg_psprel(UNW_REG_PRI_UNAT_MEM,o,arg)
+#define UNW_DEC_PRIUNAT_SPREL(fmt,o,arg) desc_reg_sprel(UNW_REG_PRI_UNAT_MEM,o,arg)
+#define UNW_DEC_RP_BR(fmt,d,arg) desc_rp_br(d,arg)
+#define UNW_DEC_SPILL_BASE(fmt,o,arg) desc_spill_base(o,arg)
+#define UNW_DEC_SPILL_MASK(fmt,m,arg) (m = desc_spill_mask(m,arg))
+/*
+ * body descriptors:
+ */
+#define UNW_DEC_EPILOGUE(fmt,t,c,arg) desc_epilogue(t,c,arg)
+#define UNW_DEC_COPY_STATE(fmt,l,arg) desc_copy_state(l,arg)
+#define UNW_DEC_LABEL_STATE(fmt,l,arg) desc_label_state(l,arg)
+/*
+ * general unwind descriptors:
+ */
+#define UNW_DEC_SPILL_REG_P(f,p,t,a,x,y,arg) desc_spill_reg_p(p,t,a,x,y,arg)
+#define UNW_DEC_SPILL_REG(f,t,a,x,y,arg) desc_spill_reg_p(0,t,a,x,y,arg)
+#define UNW_DEC_SPILL_PSPREL_P(f,p,t,a,o,arg) desc_spill_psprel_p(p,t,a,o,arg)
+#define UNW_DEC_SPILL_PSPREL(f,t,a,o,arg) desc_spill_psprel_p(0,t,a,o,arg)
+#define UNW_DEC_SPILL_SPREL_P(f,p,t,a,o,arg) desc_spill_sprel_p(p,t,a,o,arg)
+#define UNW_DEC_SPILL_SPREL(f,t,a,o,arg) desc_spill_sprel_p(0,t,a,o,arg)
+#define UNW_DEC_RESTORE_P(f,p,t,a,arg) desc_restore_p(p,t,a,arg)
+#define UNW_DEC_RESTORE(f,t,a,arg) desc_restore_p(0,t,a,arg)
+
+#include "unwind_decoder.c"
+
+
+/* Unwind scripts. */
+
+static inline unw_hash_index_t
+hash (unsigned long ip)
+{
+# define hashmagic 0x9e3779b97f4a7c16UL /* based on (sqrt(5)/2-1)*2^64 */
+
+ return (ip >> 4)*hashmagic >> (64 - UNW_LOG_HASH_SIZE);
+#undef hashmagic
+}
+
+static inline long
+cache_match (struct unw_script *script, unsigned long ip, unsigned long pr)
+{
+ read_lock(&script->lock);
+ if (ip == script->ip && ((pr ^ script->pr_val) & script->pr_mask) == 0)
+ /* keep the read lock... */
+ return 1;
+ read_unlock(&script->lock);
+ return 0;
+}
+
+static inline struct unw_script *
+script_lookup (struct unw_frame_info *info)
+{
+ struct unw_script *script = unw.cache + info->hint;
+ unsigned short index;
+ unsigned long ip, pr;
+
+ if (UNW_DEBUG_ON(0))
+ return NULL; /* Always regenerate scripts in debug mode */
+
+ STAT(++unw.stat.cache.lookups);
+
+ ip = info->ip;
+ pr = info->pr;
+
+ if (cache_match(script, ip, pr)) {
+ STAT(++unw.stat.cache.hinted_hits);
+ return script;
+ }
+
+ index = unw.hash[hash(ip)];
+ if (index >= UNW_CACHE_SIZE)
+ return NULL;
+
+ script = unw.cache + index;
+ while (1) {
+ if (cache_match(script, ip, pr)) {
+ /* update hint; no locking required as single-word writes are atomic */
+ STAT(++unw.stat.cache.normal_hits);
+ unw.cache[info->prev_script].hint = script - unw.cache;
+ return script;
+ }
+ if (script->coll_chain >= UNW_HASH_SIZE)
+ return NULL;
+ script = unw.cache + script->coll_chain;
+ STAT(++unw.stat.cache.collision_chain_traversals);
+ }
+}
+
+/*
+ * On returning, a write lock for the SCRIPT is still being held.
+ */
+static inline struct unw_script *
+script_new (unsigned long ip)
+{
+ struct unw_script *script, *prev, *tmp;
+ unw_hash_index_t index;
+ unsigned short head;
+
+ STAT(++unw.stat.script.news);
+
+ /*
+ * Can't (easily) use cmpxchg() here because of ABA problem
+ * that is intrinsic in cmpxchg()...
+ */
+ head = unw.lru_head;
+ script = unw.cache + head;
+ unw.lru_head = script->lru_chain;
+
+ /*
+ * We'd deadlock here if we interrupted a thread that is holding a read lock on
+ * script->lock. Thus, if the write_trylock() fails, we simply bail out. The
+ * alternative would be to disable interrupts whenever we hold a read-lock, but
+ * that seems silly.
+ */
+ if (!write_trylock(&script->lock))
+ return NULL;
+
+ /* re-insert script at the tail of the LRU chain: */
+ unw.cache[unw.lru_tail].lru_chain = head;
+ unw.lru_tail = head;
+
+ /* remove the old script from the hash table (if it's there): */
+ if (script->ip) {
+ index = hash(script->ip);
+ tmp = unw.cache + unw.hash[index];
+ prev = NULL;
+ while (1) {
+ if (tmp == script) {
+ if (prev)
+ prev->coll_chain = tmp->coll_chain;
+ else
+ unw.hash[index] = tmp->coll_chain;
+ break;
+ } else
+ prev = tmp;
+ if (tmp->coll_chain >= UNW_CACHE_SIZE)
+ /* old script wasn't in the hash-table */
+ break;
+ tmp = unw.cache + tmp->coll_chain;
+ }
+ }
+
+ /* enter new script in the hash table */
+ index = hash(ip);
+ script->coll_chain = unw.hash[index];
+ unw.hash[index] = script - unw.cache;
+
+ script->ip = ip; /* set new IP while we're holding the locks */
+
+ STAT(if (script->coll_chain < UNW_CACHE_SIZE) ++unw.stat.script.collisions);
+
+ script->flags = 0;
+ script->hint = 0;
+ script->count = 0;
+ return script;
+}
+
+static void
+script_finalize (struct unw_script *script, struct unw_state_record *sr)
+{
+ script->pr_mask = sr->pr_mask;
+ script->pr_val = sr->pr_val;
+ /*
+ * We could down-grade our write-lock on script->lock here but
+ * the rwlock API doesn't offer atomic lock downgrading, so
+ * we'll just keep the write-lock and release it later when
+ * we're done using the script.
+ */
+}
+
+static inline void
+script_emit (struct unw_script *script, struct unw_insn insn)
+{
+ if (script->count >= UNW_MAX_SCRIPT_LEN) {
+ UNW_DPRINT(0, "unwind.%s: script exceeds maximum size of %u instructions!\n",
+ __FUNCTION__, UNW_MAX_SCRIPT_LEN);
+ return;
+ }
+ script->insn[script->count++] = insn;
+}
+
+static inline void
+emit_nat_info (struct unw_state_record *sr, int i, struct unw_script *script)
+{
+ struct unw_reg_info *r = sr->curr.reg + i;
+ enum unw_insn_opcode opc;
+ struct unw_insn insn;
+ unsigned long val = 0;
+
+ switch (r->where) {
+ case UNW_WHERE_GR:
+ if (r->val >= 32) {
+ /* register got spilled to a stacked register */
+ opc = UNW_INSN_SETNAT_TYPE;
+ val = UNW_NAT_REGSTK;
+ } else
+ /* register got spilled to a scratch register */
+ opc = UNW_INSN_SETNAT_MEMSTK;
+ break;
+
+ case UNW_WHERE_FR:
+ opc = UNW_INSN_SETNAT_TYPE;
+ val = UNW_NAT_VAL;
+ break;
+
+ case UNW_WHERE_BR:
+ opc = UNW_INSN_SETNAT_TYPE;
+ val = UNW_NAT_NONE;
+ break;
+
+ case UNW_WHERE_PSPREL:
+ case UNW_WHERE_SPREL:
+ opc = UNW_INSN_SETNAT_MEMSTK;
+ break;
+
+ default:
+ UNW_DPRINT(0, "unwind.%s: don't know how to emit nat info for where = %u\n",
+ __FUNCTION__, r->where);
+ return;
+ }
+ insn.opc = opc;
+ insn.dst = unw.preg_index[i];
+ insn.val = val;
+ script_emit(script, insn);
+}
+
+static void
+compile_reg (struct unw_state_record *sr, int i, struct unw_script *script)
+{
+ struct unw_reg_info *r = sr->curr.reg + i;
+ enum unw_insn_opcode opc;
+ unsigned long val, rval;
+ struct unw_insn insn;
+ long need_nat_info;
+
+ if (r->where == UNW_WHERE_NONE || r->when >= sr->when_target)
+ return;
+
+ opc = UNW_INSN_MOVE;
+ val = rval = r->val;
+ need_nat_info = (i >= UNW_REG_R4 && i <= UNW_REG_R7);
+
+ switch (r->where) {
+ case UNW_WHERE_GR:
+ if (rval >= 32) {
+ opc = UNW_INSN_MOVE_STACKED;
+ val = rval - 32;
+ } else if (rval >= 4 && rval <= 7) {
+ if (need_nat_info) {
+ opc = UNW_INSN_MOVE2;
+ need_nat_info = 0;
+ }
+ val = unw.preg_index[UNW_REG_R4 + (rval - 4)];
+ } else if (rval == 0) {
+ opc = UNW_INSN_MOVE_CONST;
+ val = 0;
+ } else {
+ /* register got spilled to a scratch register */
+ opc = UNW_INSN_MOVE_SCRATCH;
+ val = pt_regs_off(rval);
+ }
+ break;
+
+ case UNW_WHERE_FR:
+ if (rval <= 5)
+ val = unw.preg_index[UNW_REG_F2 + (rval - 2)];
+ else if (rval >= 16 && rval <= 31)
+ val = unw.preg_index[UNW_REG_F16 + (rval - 16)];
+ else {
+ opc = UNW_INSN_MOVE_SCRATCH;
+ if (rval <= 11)
+ val = offsetof(struct pt_regs, f6) + 16*(rval - 6);
+ else
+ UNW_DPRINT(0, "unwind.%s: kernel may not touch f%lu\n",
+ __FUNCTION__, rval);
+ }
+ break;
+
+ case UNW_WHERE_BR:
+ if (rval >= 1 && rval <= 5)
+ val = unw.preg_index[UNW_REG_B1 + (rval - 1)];
+ else {
+ opc = UNW_INSN_MOVE_SCRATCH;
+ if (rval == 0)
+ val = offsetof(struct pt_regs, b0);
+ else if (rval == 6)
+ val = offsetof(struct pt_regs, b6);
+ else
+ val = offsetof(struct pt_regs, b7);
+ }
+ break;
+
+ case UNW_WHERE_SPREL:
+ opc = UNW_INSN_ADD_SP;
+ break;
+
+ case UNW_WHERE_PSPREL:
+ opc = UNW_INSN_ADD_PSP;
+ break;
+
+ default:
+ UNW_DPRINT(0, "unwind%s: register %u has unexpected `where' value of %u\n",
+ __FUNCTION__, i, r->where);
+ break;
+ }
+ insn.opc = opc;
+ insn.dst = unw.preg_index[i];
+ insn.val = val;
+ script_emit(script, insn);
+ if (need_nat_info)
+ emit_nat_info(sr, i, script);
+
+ if (i == UNW_REG_PSP) {
+ /*
+ * info->psp must contain the _value_ of the previous
+ * sp, not it's save location. We get this by
+ * dereferencing the value we just stored in
+ * info->psp:
+ */
+ insn.opc = UNW_INSN_LOAD;
+ insn.dst = insn.val = unw.preg_index[UNW_REG_PSP];
+ script_emit(script, insn);
+ }
+}
+
+static inline const struct unw_table_entry *
+lookup (struct unw_table *table, unsigned long rel_ip)
+{
+ const struct unw_table_entry *e = NULL;
+ unsigned long lo, hi, mid;
+
+ /* do a binary search for right entry: */
+ for (lo = 0, hi = table->length; lo < hi; ) {
+ mid = (lo + hi) / 2;
+ e = &table->array[mid];
+ if (rel_ip < e->start_offset)
+ hi = mid;
+ else if (rel_ip >= e->end_offset)
+ lo = mid + 1;
+ else
+ break;
+ }
+ if (rel_ip < e->start_offset || rel_ip >= e->end_offset)
+ return NULL;
+ return e;
+}
+
+/*
+ * Build an unwind script that unwinds from state OLD_STATE to the
+ * entrypoint of the function that called OLD_STATE.
+ */
+static inline struct unw_script *
+build_script (struct unw_frame_info *info)
+{
+ const struct unw_table_entry *e = NULL;
+ struct unw_script *script = NULL;
+ struct unw_labeled_state *ls, *next;
+ unsigned long ip = info->ip;
+ struct unw_state_record sr;
+ struct unw_table *table;
+ struct unw_reg_info *r;
+ struct unw_insn insn;
+ u8 *dp, *desc_end;
+ u64 hdr;
+ int i;
+ STAT(unsigned long start, parse_start;)
+
+ STAT(++unw.stat.script.builds; start = ia64_get_itc());
+
+ /* build state record */
+ memset(&sr, 0, sizeof(sr));
+ for (r = sr.curr.reg; r < sr.curr.reg + UNW_NUM_REGS; ++r)
+ r->when = UNW_WHEN_NEVER;
+ sr.pr_val = info->pr;
+
+ UNW_DPRINT(3, "unwind.%s: ip 0x%lx\n", __FUNCTION__, ip);
+ script = script_new(ip);
+ if (!script) {
+ UNW_DPRINT(0, "unwind.%s: failed to create unwind script\n", __FUNCTION__);
+ STAT(unw.stat.script.build_time += ia64_get_itc() - start);
+ return NULL;
+ }
+ unw.cache[info->prev_script].hint = script - unw.cache;
+
+ /* search the kernels and the modules' unwind tables for IP: */
+
+ STAT(parse_start = ia64_get_itc());
+
+ for (table = unw.tables; table; table = table->next) {
+ if (ip >= table->start && ip < table->end) {
+ e = lookup(table, ip - table->segment_base);
+ break;
+ }
+ }
+ if (!e) {
+ /* no info, return default unwinder (leaf proc, no mem stack, no saved regs) */
+ UNW_DPRINT(1, "unwind.%s: no unwind info for ip=0x%lx (prev ip=0x%lx)\n",
+ __FUNCTION__, ip, unw.cache[info->prev_script].ip);
+ sr.curr.reg[UNW_REG_RP].where = UNW_WHERE_BR;
+ sr.curr.reg[UNW_REG_RP].when = -1;
+ sr.curr.reg[UNW_REG_RP].val = 0;
+ compile_reg(&sr, UNW_REG_RP, script);
+ script_finalize(script, &sr);
+ STAT(unw.stat.script.parse_time += ia64_get_itc() - parse_start);
+ STAT(unw.stat.script.build_time += ia64_get_itc() - start);
+ return script;
+ }
+
+ sr.when_target = (3*((ip & ~0xfUL) - (table->segment_base + e->start_offset))/16
+ + (ip & 0xfUL));
+ hdr = *(u64 *) (table->segment_base + e->info_offset);
+ dp = (u8 *) (table->segment_base + e->info_offset + 8);
+ desc_end = dp + 8*UNW_LENGTH(hdr);
+
+ while (!sr.done && dp < desc_end)
+ dp = unw_decode(dp, sr.in_body, &sr);
+
+ if (sr.when_target > sr.epilogue_start) {
+ /*
+ * sp has been restored and all values on the memory stack below
+ * psp also have been restored.
+ */
+ sr.curr.reg[UNW_REG_PSP].val = 0;
+ sr.curr.reg[UNW_REG_PSP].where = UNW_WHERE_NONE;
+ sr.curr.reg[UNW_REG_PSP].when = UNW_WHEN_NEVER;
+ for (r = sr.curr.reg; r < sr.curr.reg + UNW_NUM_REGS; ++r)
+ if ((r->where == UNW_WHERE_PSPREL && r->val <= 0x10)
+ || r->where == UNW_WHERE_SPREL)
+ {
+ r->val = 0;
+ r->where = UNW_WHERE_NONE;
+ r->when = UNW_WHEN_NEVER;
+ }
+ }
+
+ script->flags = sr.flags;
+
+ /*
+ * If RP did't get saved, generate entry for the return link
+ * register.
+ */
+ if (sr.curr.reg[UNW_REG_RP].when >= sr.when_target) {
+ sr.curr.reg[UNW_REG_RP].where = UNW_WHERE_BR;
+ sr.curr.reg[UNW_REG_RP].when = -1;
+ sr.curr.reg[UNW_REG_RP].val = sr.return_link_reg;
+ UNW_DPRINT(1, "unwind.%s: using default for rp at ip=0x%lx where=%d val=0x%lx\n",
+ __FUNCTION__, ip, sr.curr.reg[UNW_REG_RP].where,
+ sr.curr.reg[UNW_REG_RP].val);
+ }
+
+#ifdef UNW_DEBUG
+ UNW_DPRINT(1, "unwind.%s: state record for func 0x%lx, t=%u:\n",
+ __FUNCTION__, table->segment_base + e->start_offset, sr.when_target);
+ for (r = sr.curr.reg; r < sr.curr.reg + UNW_NUM_REGS; ++r) {
+ if (r->where != UNW_WHERE_NONE || r->when != UNW_WHEN_NEVER) {
+ UNW_DPRINT(1, " %s <- ", unw.preg_name[r - sr.curr.reg]);
+ switch (r->where) {
+ case UNW_WHERE_GR: UNW_DPRINT(1, "r%lu", r->val); break;
+ case UNW_WHERE_FR: UNW_DPRINT(1, "f%lu", r->val); break;
+ case UNW_WHERE_BR: UNW_DPRINT(1, "b%lu", r->val); break;
+ case UNW_WHERE_SPREL: UNW_DPRINT(1, "[sp+0x%lx]", r->val); break;
+ case UNW_WHERE_PSPREL: UNW_DPRINT(1, "[psp+0x%lx]", r->val); break;
+ case UNW_WHERE_NONE:
+ UNW_DPRINT(1, "%s+0x%lx", unw.preg_name[r - sr.curr.reg], r->val);
+ break;
+
+ default:
+ UNW_DPRINT(1, "BADWHERE(%d)", r->where);
+ break;
+ }
+ UNW_DPRINT(1, "\t\t%d\n", r->when);
+ }
+ }
+#endif
+
+ STAT(unw.stat.script.parse_time += ia64_get_itc() - parse_start);
+
+ /* translate state record into unwinder instructions: */
+
+ /*
+ * First, set psp if we're dealing with a fixed-size frame;
+ * subsequent instructions may depend on this value.
+ */
+ if (sr.when_target > sr.curr.reg[UNW_REG_PSP].when
+ && (sr.curr.reg[UNW_REG_PSP].where == UNW_WHERE_NONE)
+ && sr.curr.reg[UNW_REG_PSP].val != 0) {
+ /* new psp is sp plus frame size */
+ insn.opc = UNW_INSN_ADD;
+ insn.dst = offsetof(struct unw_frame_info, psp)/8;
+ insn.val = sr.curr.reg[UNW_REG_PSP].val; /* frame size */
+ script_emit(script, insn);
+ }
+
+ /* determine where the primary UNaT is: */
+ if (sr.when_target < sr.curr.reg[UNW_REG_PRI_UNAT_GR].when)
+ i = UNW_REG_PRI_UNAT_MEM;
+ else if (sr.when_target < sr.curr.reg[UNW_REG_PRI_UNAT_MEM].when)
+ i = UNW_REG_PRI_UNAT_GR;
+ else if (sr.curr.reg[UNW_REG_PRI_UNAT_MEM].when > sr.curr.reg[UNW_REG_PRI_UNAT_GR].when)
+ i = UNW_REG_PRI_UNAT_MEM;
+ else
+ i = UNW_REG_PRI_UNAT_GR;
+
+ compile_reg(&sr, i, script);
+
+ for (i = UNW_REG_BSP; i < UNW_NUM_REGS; ++i)
+ compile_reg(&sr, i, script);
+
+ /* free labeled register states & stack: */
+
+ STAT(parse_start = ia64_get_itc());
+ for (ls = sr.labeled_states; ls; ls = next) {
+ next = ls->next;
+ free_state_stack(&ls->saved_state);
+ free_labeled_state(ls);
+ }
+ free_state_stack(&sr.curr);
+ STAT(unw.stat.script.parse_time += ia64_get_itc() - parse_start);
+
+ script_finalize(script, &sr);
+ STAT(unw.stat.script.build_time += ia64_get_itc() - start);
+ return script;
+}
+
+/*
+ * Apply the unwinding actions represented by OPS and update SR to
+ * reflect the state that existed upon entry to the function that this
+ * unwinder represents.
+ */
+static inline void
+run_script (struct unw_script *script, struct unw_frame_info *state)
+{
+ struct unw_insn *ip, *limit, next_insn;
+ unsigned long opc, dst, val, off;
+ unsigned long *s = (unsigned long *) state;
+ STAT(unsigned long start;)
+
+ STAT(++unw.stat.script.runs; start = ia64_get_itc());
+ state->flags = script->flags;
+ ip = script->insn;
+ limit = script->insn + script->count;
+ next_insn = *ip;
+
+ while (ip++ < limit) {
+ opc = next_insn.opc;
+ dst = next_insn.dst;
+ val = next_insn.val;
+ next_insn = *ip;
+
+ redo:
+ switch (opc) {
+ case UNW_INSN_ADD:
+ s[dst] += val;
+ break;
+
+ case UNW_INSN_MOVE2:
+ if (!s[val])
+ goto lazy_init;
+ s[dst+1] = s[val+1];
+ s[dst] = s[val];
+ break;
+
+ case UNW_INSN_MOVE:
+ if (!s[val])
+ goto lazy_init;
+ s[dst] = s[val];
+ break;
+
+ case UNW_INSN_MOVE_SCRATCH:
+ if (state->pt) {
+ s[dst] = (unsigned long) get_scratch_regs(state) + val;
+ } else {
+ s[dst] = 0;
+ UNW_DPRINT(0, "unwind.%s: no state->pt, dst=%ld, val=%ld\n",
+ __FUNCTION__, dst, val);
+ }
+ break;
+
+ case UNW_INSN_MOVE_CONST:
+ if (val == 0)
+ s[dst] = (unsigned long) &unw.r0;
+ else {
+ s[dst] = 0;
+ UNW_DPRINT(0, "unwind.%s: UNW_INSN_MOVE_CONST bad val=%ld\n",
+ __FUNCTION__, val);
+ }
+ break;
+
+
+ case UNW_INSN_MOVE_STACKED:
+ s[dst] = (unsigned long) ia64_rse_skip_regs((unsigned long *)state->bsp,
+ val);
+ break;
+
+ case UNW_INSN_ADD_PSP:
+ s[dst] = state->psp + val;
+ break;
+
+ case UNW_INSN_ADD_SP:
+ s[dst] = state->sp + val;
+ break;
+
+ case UNW_INSN_SETNAT_MEMSTK:
+ if (!state->pri_unat_loc)
+ state->pri_unat_loc = &state->sw->ar_unat;
+ /* register off. is a multiple of 8, so the least 3 bits (type) are 0 */
+ s[dst+1] = ((unsigned long) state->pri_unat_loc - s[dst]) | UNW_NAT_MEMSTK;
+ break;
+
+ case UNW_INSN_SETNAT_TYPE:
+ s[dst+1] = val;
+ break;
+
+ case UNW_INSN_LOAD:
+#ifdef UNW_DEBUG
+ if ((s[val] & (local_cpu_data->unimpl_va_mask | 0x7)) != 0
+ || s[val] < TASK_SIZE)
+ {
+ UNW_DPRINT(0, "unwind.%s: rejecting bad psp=0x%lx\n",
+ __FUNCTION__, s[val]);
+ break;
+ }
+#endif
+ s[dst] = *(unsigned long *) s[val];
+ break;
+ }
+ }
+ STAT(unw.stat.script.run_time += ia64_get_itc() - start);
+ return;
+
+ lazy_init:
+ off = unw.sw_off[val];
+ s[val] = (unsigned long) state->sw + off;
+ if (off >= offsetof(struct switch_stack, r4) && off <= offsetof(struct switch_stack, r7))
+ /*
+ * We're initializing a general register: init NaT info, too. Note that
+ * the offset is a multiple of 8 which gives us the 3 bits needed for
+ * the type field.
+ */
+ s[val+1] = (offsetof(struct switch_stack, ar_unat) - off) | UNW_NAT_MEMSTK;
+ goto redo;
+}
+
+static int
+find_save_locs (struct unw_frame_info *info)
+{
+ int have_write_lock = 0;
+ struct unw_script *scr;
+ unsigned long flags = 0;
+
+ if ((info->ip & (local_cpu_data->unimpl_va_mask | 0xf)) || info->ip < TASK_SIZE) {
+ /* don't let obviously bad addresses pollute the cache */
+ /* FIXME: should really be level 0 but it occurs too often. KAO */
+ UNW_DPRINT(1, "unwind.%s: rejecting bad ip=0x%lx\n", __FUNCTION__, info->ip);
+ info->rp_loc = NULL;
+ return -1;
+ }
+
+ scr = script_lookup(info);
+ if (!scr) {
+ spin_lock_irqsave(&unw.lock, flags);
+ scr = build_script(info);
+ if (!scr) {
+ spin_unlock_irqrestore(&unw.lock, flags);
+ UNW_DPRINT(0,
+ "unwind.%s: failed to locate/build unwind script for ip %lx\n",
+ __FUNCTION__, info->ip);
+ return -1;
+ }
+ have_write_lock = 1;
+ }
+ info->hint = scr->hint;
+ info->prev_script = scr - unw.cache;
+
+ run_script(scr, info);
+
+ if (have_write_lock) {
+ write_unlock(&scr->lock);
+ spin_unlock_irqrestore(&unw.lock, flags);
+ } else
+ read_unlock(&scr->lock);
+ return 0;
+}
+
+int
+unw_unwind (struct unw_frame_info *info)
+{
+ unsigned long prev_ip, prev_sp, prev_bsp;
+ unsigned long ip, pr, num_regs;
+ STAT(unsigned long start, flags;)
+ int retval;
+
+ STAT(local_irq_save(flags); ++unw.stat.api.unwinds; start = ia64_get_itc());
+
+ prev_ip = info->ip;
+ prev_sp = info->sp;
+ prev_bsp = info->bsp;
+
+ /* restore the ip */
+ if (!info->rp_loc) {
+ /* FIXME: should really be level 0 but it occurs too often. KAO */
+ UNW_DPRINT(1, "unwind.%s: failed to locate return link (ip=0x%lx)!\n",
+ __FUNCTION__, info->ip);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return -1;
+ }
+ ip = info->ip = *info->rp_loc;
+ if (ip < GATE_ADDR) {
+ UNW_DPRINT(2, "unwind.%s: reached user-space (ip=0x%lx)\n", __FUNCTION__, ip);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return -1;
+ }
+
+ /* restore the cfm: */
+ if (!info->pfs_loc) {
+ UNW_DPRINT(0, "unwind.%s: failed to locate ar.pfs!\n", __FUNCTION__);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return -1;
+ }
+ info->cfm_loc = info->pfs_loc;
+
+ /* restore the bsp: */
+ pr = info->pr;
+ num_regs = 0;
+ if ((info->flags & UNW_FLAG_INTERRUPT_FRAME)) {
+ info->pt = info->sp + 16;
+ if ((pr & (1UL << PRED_NON_SYSCALL)) != 0)
+ num_regs = *info->cfm_loc & 0x7f; /* size of frame */
+ info->pfs_loc =
+ (unsigned long *) (info->pt + offsetof(struct pt_regs, ar_pfs));
+ UNW_DPRINT(3, "unwind.%s: interrupt_frame pt 0x%lx\n", __FUNCTION__, info->pt);
+ } else
+ num_regs = (*info->cfm_loc >> 7) & 0x7f; /* size of locals */
+ info->bsp = (unsigned long) ia64_rse_skip_regs((unsigned long *) info->bsp, -num_regs);
+ if (info->bsp < info->regstk.limit || info->bsp > info->regstk.top) {
+ UNW_DPRINT(0, "unwind.%s: bsp (0x%lx) out of range [0x%lx-0x%lx]\n",
+ __FUNCTION__, info->bsp, info->regstk.limit, info->regstk.top);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return -1;
+ }
+
+ /* restore the sp: */
+ info->sp = info->psp;
+ if (info->sp < info->memstk.top || info->sp > info->memstk.limit) {
+ UNW_DPRINT(0, "unwind.%s: sp (0x%lx) out of range [0x%lx-0x%lx]\n",
+ __FUNCTION__, info->sp, info->memstk.top, info->memstk.limit);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return -1;
+ }
+
+ if (info->ip == prev_ip && info->sp == prev_sp && info->bsp == prev_bsp) {
+ UNW_DPRINT(0, "unwind.%s: ip, sp, bsp unchanged; stopping here (ip=0x%lx)\n",
+ __FUNCTION__, ip);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return -1;
+ }
+
+ /* as we unwind, the saved ar.unat becomes the primary unat: */
+ info->pri_unat_loc = info->unat_loc;
+
+ /* finally, restore the predicates: */
+ unw_get_pr(info, &info->pr);
+
+ retval = find_save_locs(info);
+ STAT(unw.stat.api.unwind_time += ia64_get_itc() - start; local_irq_restore(flags));
+ return retval;
+}
+EXPORT_SYMBOL(unw_unwind);
+
+int
+unw_unwind_to_user (struct unw_frame_info *info)
+{
+ unsigned long ip, sp;
+
+ while (unw_unwind(info) >= 0) {
+ if (unw_get_rp(info, &ip) < 0) {
+ unw_get_ip(info, &ip);
+ UNW_DPRINT(0, "unwind.%s: failed to read return pointer (ip=0x%lx)\n",
+ __FUNCTION__, ip);
+ return -1;
+ }
+ unw_get_sp(info, &sp);
+ if (sp >= (unsigned long)info->task + IA64_STK_OFFSET)
+ break;
+ if (ip < FIXADDR_USER_END)
+ return 0;
+ }
+ unw_get_ip(info, &ip);
+ UNW_DPRINT(0, "unwind.%s: failed to unwind to user-level (ip=0x%lx)\n", __FUNCTION__, ip);
+ return -1;
+}
+EXPORT_SYMBOL(unw_unwind_to_user);
+
+static void
+init_frame_info (struct unw_frame_info *info, struct task_struct *t,
+ struct switch_stack *sw, unsigned long stktop)
+{
+ unsigned long rbslimit, rbstop, stklimit;
+ STAT(unsigned long start, flags;)
+
+ STAT(local_irq_save(flags); ++unw.stat.api.inits; start = ia64_get_itc());
+
+ /*
+ * Subtle stuff here: we _could_ unwind through the switch_stack frame but we
+ * don't want to do that because it would be slow as each preserved register would
+ * have to be processed. Instead, what we do here is zero out the frame info and
+ * start the unwind process at the function that created the switch_stack frame.
+ * When a preserved value in switch_stack needs to be accessed, run_script() will
+ * initialize the appropriate pointer on demand.
+ */
+ memset(info, 0, sizeof(*info));
+
+ rbslimit = (unsigned long) t + IA64_RBS_OFFSET;
+ rbstop = sw->ar_bspstore;
+ if (rbstop - (unsigned long) t >= IA64_STK_OFFSET)
+ rbstop = rbslimit;
+
+ stklimit = (unsigned long) t + IA64_STK_OFFSET;
+ if (stktop <= rbstop)
+ stktop = rbstop;
+
+ info->regstk.limit = rbslimit;
+ info->regstk.top = rbstop;
+ info->memstk.limit = stklimit;
+ info->memstk.top = stktop;
+ info->task = t;
+ info->sw = sw;
+ info->sp = info->psp = stktop;
+ info->pr = sw->pr;
+ UNW_DPRINT(3, "unwind.%s:\n"
+ " task 0x%lx\n"
+ " rbs = [0x%lx-0x%lx)\n"
+ " stk = [0x%lx-0x%lx)\n"
+ " pr 0x%lx\n"
+ " sw 0x%lx\n"
+ " sp 0x%lx\n",
+ __FUNCTION__, (unsigned long) t, rbslimit, rbstop, stktop, stklimit,
+ info->pr, (unsigned long) info->sw, info->sp);
+ STAT(unw.stat.api.init_time += ia64_get_itc() - start; local_irq_restore(flags));
+}
+
+void
+unw_init_from_interruption (struct unw_frame_info *info, struct task_struct *t,
+ struct pt_regs *pt, struct switch_stack *sw)
+{
+ unsigned long sof;
+
+ init_frame_info(info, t, sw, pt->r12);
+ info->cfm_loc = &pt->cr_ifs;
+ info->unat_loc = &pt->ar_unat;
+ info->pfs_loc = &pt->ar_pfs;
+ sof = *info->cfm_loc & 0x7f;
+ info->bsp = (unsigned long) ia64_rse_skip_regs((unsigned long *) info->regstk.top, -sof);
+ info->ip = pt->cr_iip + ia64_psr(pt)->ri;
+ info->pt = (unsigned long) pt;
+ UNW_DPRINT(3, "unwind.%s:\n"
+ " bsp 0x%lx\n"
+ " sof 0x%lx\n"
+ " ip 0x%lx\n",
+ __FUNCTION__, info->bsp, sof, info->ip);
+ find_save_locs(info);
+}
+
+void
+unw_init_frame_info (struct unw_frame_info *info, struct task_struct *t, struct switch_stack *sw)
+{
+ unsigned long sol;
+
+ init_frame_info(info, t, sw, (unsigned long) (sw + 1) - 16);
+ info->cfm_loc = &sw->ar_pfs;
+ sol = (*info->cfm_loc >> 7) & 0x7f;
+ info->bsp = (unsigned long) ia64_rse_skip_regs((unsigned long *) info->regstk.top, -sol);
+ info->ip = sw->b0;
+ UNW_DPRINT(3, "unwind.%s:\n"
+ " bsp 0x%lx\n"
+ " sol 0x%lx\n"
+ " ip 0x%lx\n",
+ __FUNCTION__, info->bsp, sol, info->ip);
+ find_save_locs(info);
+}
+
+EXPORT_SYMBOL(unw_init_frame_info);
+
+void
+unw_init_from_blocked_task (struct unw_frame_info *info, struct task_struct *t)
+{
+ struct switch_stack *sw = (struct switch_stack *) (t->thread.ksp + 16);
+
+ UNW_DPRINT(1, "unwind.%s\n", __FUNCTION__);
+ unw_init_frame_info(info, t, sw);
+}
+EXPORT_SYMBOL(unw_init_from_blocked_task);
+
+static void
+init_unwind_table (struct unw_table *table, const char *name, unsigned long segment_base,
+ unsigned long gp, const void *table_start, const void *table_end)
+{
+ const struct unw_table_entry *start = table_start, *end = table_end;
+
+ table->name = name;
+ table->segment_base = segment_base;
+ table->gp = gp;
+ table->start = segment_base + start[0].start_offset;
+ table->end = segment_base + end[-1].end_offset;
+ table->array = start;
+ table->length = end - start;
+}
+
+void *
+unw_add_unwind_table (const char *name, unsigned long segment_base, unsigned long gp,
+ const void *table_start, const void *table_end)
+{
+ const struct unw_table_entry *start = table_start, *end = table_end;
+ struct unw_table *table;
+ unsigned long flags;
+
+ if (end - start <= 0) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to insert empty unwind table\n",
+ __FUNCTION__);
+ return NULL;
+ }
+
+ table = kmalloc(sizeof(*table), GFP_USER);
+ if (!table)
+ return NULL;
+
+ init_unwind_table(table, name, segment_base, gp, table_start, table_end);
+
+ spin_lock_irqsave(&unw.lock, flags);
+ {
+ /* keep kernel unwind table at the front (it's searched most commonly): */
+ table->next = unw.tables->next;
+ unw.tables->next = table;
+ }
+ spin_unlock_irqrestore(&unw.lock, flags);
+
+ return table;
+}
+
+void
+unw_remove_unwind_table (void *handle)
+{
+ struct unw_table *table, *prev;
+ struct unw_script *tmp;
+ unsigned long flags;
+ long index;
+
+ if (!handle) {
+ UNW_DPRINT(0, "unwind.%s: ignoring attempt to remove non-existent unwind table\n",
+ __FUNCTION__);
+ return;
+ }
+
+ table = handle;
+ if (table == &unw.kernel_table) {
+ UNW_DPRINT(0, "unwind.%s: sorry, freeing the kernel's unwind table is a "
+ "no-can-do!\n", __FUNCTION__);
+ return;
+ }
+
+ spin_lock_irqsave(&unw.lock, flags);
+ {
+ /* first, delete the table: */
+
+ for (prev = (struct unw_table *) &unw.tables; prev; prev = prev->next)
+ if (prev->next == table)
+ break;
+ if (!prev) {
+ UNW_DPRINT(0, "unwind.%s: failed to find unwind table %p\n",
+ __FUNCTION__, (void *) table);
+ spin_unlock_irqrestore(&unw.lock, flags);
+ return;
+ }
+ prev->next = table->next;
+ }
+ spin_unlock_irqrestore(&unw.lock, flags);
+
+ /* next, remove hash table entries for this table */
+
+ for (index = 0; index <= UNW_HASH_SIZE; ++index) {
+ tmp = unw.cache + unw.hash[index];
+ if (unw.hash[index] >= UNW_CACHE_SIZE
+ || tmp->ip < table->start || tmp->ip >= table->end)
+ continue;
+
+ write_lock(&tmp->lock);
+ {
+ if (tmp->ip >= table->start && tmp->ip < table->end) {
+ unw.hash[index] = tmp->coll_chain;
+ tmp->ip = 0;
+ }
+ }
+ write_unlock(&tmp->lock);
+ }
+
+ kfree(table);
+}
+
+static int __init
+create_gate_table (void)
+{
+ const struct unw_table_entry *entry, *start, *end;
+ unsigned long *lp, segbase = GATE_ADDR;
+ size_t info_size, size;
+ char *info;
+ Elf64_Phdr *punw = NULL, *phdr = (Elf64_Phdr *) (GATE_ADDR + GATE_EHDR->e_phoff);
+ int i;
+
+ for (i = 0; i < GATE_EHDR->e_phnum; ++i, ++phdr)
+ if (phdr->p_type == PT_IA_64_UNWIND) {
+ punw = phdr;
+ break;
+ }
+
+ if (!punw) {
+ printk("%s: failed to find gate DSO's unwind table!\n", __FUNCTION__);
+ return 0;
+ }
+
+ start = (const struct unw_table_entry *) punw->p_vaddr;
+ end = (struct unw_table_entry *) ((char *) start + punw->p_memsz);
+ size = 0;
+
+ unw_add_unwind_table("linux-gate.so", segbase, 0, start, end);
+
+ for (entry = start; entry < end; ++entry)
+ size += 3*8 + 8 + 8*UNW_LENGTH(*(u64 *) (segbase + entry->info_offset));
+ size += 8; /* reserve space for "end of table" marker */
+
+ unw.gate_table = kmalloc(size, GFP_KERNEL);
+ if (!unw.gate_table) {
+ unw.gate_table_size = 0;
+ printk(KERN_ERR "%s: unable to create unwind data for gate page!\n", __FUNCTION__);
+ return 0;
+ }
+ unw.gate_table_size = size;
+
+ lp = unw.gate_table;
+ info = (char *) unw.gate_table + size;
+
+ for (entry = start; entry < end; ++entry, lp += 3) {
+ info_size = 8 + 8*UNW_LENGTH(*(u64 *) (segbase + entry->info_offset));
+ info -= info_size;
+ memcpy(info, (char *) segbase + entry->info_offset, info_size);
+
+ lp[0] = segbase + entry->start_offset; /* start */
+ lp[1] = segbase + entry->end_offset; /* end */
+ lp[2] = info - (char *) unw.gate_table; /* info */
+ }
+ *lp = 0; /* end-of-table marker */
+ return 0;
+}
+
+__initcall(create_gate_table);
+
+void __init
+unw_init (void)
+{
+ extern char __gp[];
+ extern void unw_hash_index_t_is_too_narrow (void);
+ long i, off;
+
+ if (8*sizeof(unw_hash_index_t) < UNW_LOG_HASH_SIZE)
+ unw_hash_index_t_is_too_narrow();
+
+ unw.sw_off[unw.preg_index[UNW_REG_PRI_UNAT_GR]] = SW(AR_UNAT);
+ unw.sw_off[unw.preg_index[UNW_REG_BSPSTORE]] = SW(AR_BSPSTORE);
+ unw.sw_off[unw.preg_index[UNW_REG_PFS]] = SW(AR_UNAT);
+ unw.sw_off[unw.preg_index[UNW_REG_RP]] = SW(B0);
+ unw.sw_off[unw.preg_index[UNW_REG_UNAT]] = SW(AR_UNAT);
+ unw.sw_off[unw.preg_index[UNW_REG_PR]] = SW(PR);
+ unw.sw_off[unw.preg_index[UNW_REG_LC]] = SW(AR_LC);
+ unw.sw_off[unw.preg_index[UNW_REG_FPSR]] = SW(AR_FPSR);
+ for (i = UNW_REG_R4, off = SW(R4); i <= UNW_REG_R7; ++i, off += 8)
+ unw.sw_off[unw.preg_index[i]] = off;
+ for (i = UNW_REG_B1, off = SW(B1); i <= UNW_REG_B5; ++i, off += 8)
+ unw.sw_off[unw.preg_index[i]] = off;
+ for (i = UNW_REG_F2, off = SW(F2); i <= UNW_REG_F5; ++i, off += 16)
+ unw.sw_off[unw.preg_index[i]] = off;
+ for (i = UNW_REG_F16, off = SW(F16); i <= UNW_REG_F31; ++i, off += 16)
+ unw.sw_off[unw.preg_index[i]] = off;
+
+ for (i = 0; i < UNW_CACHE_SIZE; ++i) {
+ if (i > 0)
+ unw.cache[i].lru_chain = (i - 1);
+ unw.cache[i].coll_chain = -1;
+ rwlock_init(&unw.cache[i].lock);
+ }
+ unw.lru_head = UNW_CACHE_SIZE - 1;
+ unw.lru_tail = 0;
+
+ init_unwind_table(&unw.kernel_table, "kernel", KERNEL_START, (unsigned long) __gp,
+ __start_unwind, __end_unwind);
+}
+
+/*
+ * DEPRECATED DEPRECATED DEPRECATED DEPRECATED DEPRECATED DEPRECATED DEPRECATED
+ *
+ * This system call has been deprecated. The new and improved way to get
+ * at the kernel's unwind info is via the gate DSO. The address of the
+ * ELF header for this DSO is passed to user-level via AT_SYSINFO_EHDR.
+ *
+ * DEPRECATED DEPRECATED DEPRECATED DEPRECATED DEPRECATED DEPRECATED DEPRECATED
+ *
+ * This system call copies the unwind data into the buffer pointed to by BUF and returns
+ * the size of the unwind data. If BUF_SIZE is smaller than the size of the unwind data
+ * or if BUF is NULL, nothing is copied, but the system call still returns the size of the
+ * unwind data.
+ *
+ * The first portion of the unwind data contains an unwind table and rest contains the
+ * associated unwind info (in no particular order). The unwind table consists of a table
+ * of entries of the form:
+ *
+ * u64 start; (64-bit address of start of function)
+ * u64 end; (64-bit address of start of function)
+ * u64 info; (BUF-relative offset to unwind info)
+ *
+ * The end of the unwind table is indicated by an entry with a START address of zero.
+ *
+ * Please see the IA-64 Software Conventions and Runtime Architecture manual for details
+ * on the format of the unwind info.
+ *
+ * ERRORS
+ * EFAULT BUF points outside your accessible address space.
+ */
+asmlinkage long
+sys_getunwind (void __user *buf, size_t buf_size)
+{
+ if (buf && buf_size >= unw.gate_table_size)
+ if (copy_to_user(buf, unw.gate_table, unw.gate_table_size) != 0)
+ return -EFAULT;
+ return unw.gate_table_size;
+}
diff --git a/arch/ia64/kernel/unwind_decoder.c b/arch/ia64/kernel/unwind_decoder.c
new file mode 100644
index 0000000..50ac2d8
--- /dev/null
+++ b/arch/ia64/kernel/unwind_decoder.c
@@ -0,0 +1,459 @@
+/*
+ * Copyright (C) 2000 Hewlett-Packard Co
+ * Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Generic IA-64 unwind info decoder.
+ *
+ * This file is used both by the Linux kernel and objdump. Please keep
+ * the two copies of this file in sync.
+ *
+ * You need to customize the decoder by defining the following
+ * macros/constants before including this file:
+ *
+ * Types:
+ * unw_word Unsigned integer type with at least 64 bits
+ *
+ * Register names:
+ * UNW_REG_BSP
+ * UNW_REG_BSPSTORE
+ * UNW_REG_FPSR
+ * UNW_REG_LC
+ * UNW_REG_PFS
+ * UNW_REG_PR
+ * UNW_REG_RNAT
+ * UNW_REG_PSP
+ * UNW_REG_RP
+ * UNW_REG_UNAT
+ *
+ * Decoder action macros:
+ * UNW_DEC_BAD_CODE(code)
+ * UNW_DEC_ABI(fmt,abi,context,arg)
+ * UNW_DEC_BR_GR(fmt,brmask,gr,arg)
+ * UNW_DEC_BR_MEM(fmt,brmask,arg)
+ * UNW_DEC_COPY_STATE(fmt,label,arg)
+ * UNW_DEC_EPILOGUE(fmt,t,ecount,arg)
+ * UNW_DEC_FRGR_MEM(fmt,grmask,frmask,arg)
+ * UNW_DEC_FR_MEM(fmt,frmask,arg)
+ * UNW_DEC_GR_GR(fmt,grmask,gr,arg)
+ * UNW_DEC_GR_MEM(fmt,grmask,arg)
+ * UNW_DEC_LABEL_STATE(fmt,label,arg)
+ * UNW_DEC_MEM_STACK_F(fmt,t,size,arg)
+ * UNW_DEC_MEM_STACK_V(fmt,t,arg)
+ * UNW_DEC_PRIUNAT_GR(fmt,r,arg)
+ * UNW_DEC_PRIUNAT_WHEN_GR(fmt,t,arg)
+ * UNW_DEC_PRIUNAT_WHEN_MEM(fmt,t,arg)
+ * UNW_DEC_PRIUNAT_WHEN_PSPREL(fmt,pspoff,arg)
+ * UNW_DEC_PRIUNAT_WHEN_SPREL(fmt,spoff,arg)
+ * UNW_DEC_PROLOGUE(fmt,body,rlen,arg)
+ * UNW_DEC_PROLOGUE_GR(fmt,rlen,mask,grsave,arg)
+ * UNW_DEC_REG_PSPREL(fmt,reg,pspoff,arg)
+ * UNW_DEC_REG_REG(fmt,src,dst,arg)
+ * UNW_DEC_REG_SPREL(fmt,reg,spoff,arg)
+ * UNW_DEC_REG_WHEN(fmt,reg,t,arg)
+ * UNW_DEC_RESTORE(fmt,t,abreg,arg)
+ * UNW_DEC_RESTORE_P(fmt,qp,t,abreg,arg)
+ * UNW_DEC_SPILL_BASE(fmt,pspoff,arg)
+ * UNW_DEC_SPILL_MASK(fmt,imaskp,arg)
+ * UNW_DEC_SPILL_PSPREL(fmt,t,abreg,pspoff,arg)
+ * UNW_DEC_SPILL_PSPREL_P(fmt,qp,t,abreg,pspoff,arg)
+ * UNW_DEC_SPILL_REG(fmt,t,abreg,x,ytreg,arg)
+ * UNW_DEC_SPILL_REG_P(fmt,qp,t,abreg,x,ytreg,arg)
+ * UNW_DEC_SPILL_SPREL(fmt,t,abreg,spoff,arg)
+ * UNW_DEC_SPILL_SPREL_P(fmt,qp,t,abreg,pspoff,arg)
+ */
+
+static unw_word
+unw_decode_uleb128 (unsigned char **dpp)
+{
+ unsigned shift = 0;
+ unw_word byte, result = 0;
+ unsigned char *bp = *dpp;
+
+ while (1)
+ {
+ byte = *bp++;
+ result |= (byte & 0x7f) << shift;
+ if ((byte & 0x80) == 0)
+ break;
+ shift += 7;
+ }
+ *dpp = bp;
+ return result;
+}
+
+static unsigned char *
+unw_decode_x1 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char byte1, abreg;
+ unw_word t, off;
+
+ byte1 = *dp++;
+ t = unw_decode_uleb128 (&dp);
+ off = unw_decode_uleb128 (&dp);
+ abreg = (byte1 & 0x7f);
+ if (byte1 & 0x80)
+ UNW_DEC_SPILL_SPREL(X1, t, abreg, off, arg);
+ else
+ UNW_DEC_SPILL_PSPREL(X1, t, abreg, off, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_x2 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char byte1, byte2, abreg, x, ytreg;
+ unw_word t;
+
+ byte1 = *dp++; byte2 = *dp++;
+ t = unw_decode_uleb128 (&dp);
+ abreg = (byte1 & 0x7f);
+ ytreg = byte2;
+ x = (byte1 >> 7) & 1;
+ if ((byte1 & 0x80) == 0 && ytreg == 0)
+ UNW_DEC_RESTORE(X2, t, abreg, arg);
+ else
+ UNW_DEC_SPILL_REG(X2, t, abreg, x, ytreg, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_x3 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char byte1, byte2, abreg, qp;
+ unw_word t, off;
+
+ byte1 = *dp++; byte2 = *dp++;
+ t = unw_decode_uleb128 (&dp);
+ off = unw_decode_uleb128 (&dp);
+
+ qp = (byte1 & 0x3f);
+ abreg = (byte2 & 0x7f);
+
+ if (byte1 & 0x80)
+ UNW_DEC_SPILL_SPREL_P(X3, qp, t, abreg, off, arg);
+ else
+ UNW_DEC_SPILL_PSPREL_P(X3, qp, t, abreg, off, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_x4 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char byte1, byte2, byte3, qp, abreg, x, ytreg;
+ unw_word t;
+
+ byte1 = *dp++; byte2 = *dp++; byte3 = *dp++;
+ t = unw_decode_uleb128 (&dp);
+
+ qp = (byte1 & 0x3f);
+ abreg = (byte2 & 0x7f);
+ x = (byte2 >> 7) & 1;
+ ytreg = byte3;
+
+ if ((byte2 & 0x80) == 0 && byte3 == 0)
+ UNW_DEC_RESTORE_P(X4, qp, t, abreg, arg);
+ else
+ UNW_DEC_SPILL_REG_P(X4, qp, t, abreg, x, ytreg, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_r1 (unsigned char *dp, unsigned char code, void *arg)
+{
+ int body = (code & 0x20) != 0;
+ unw_word rlen;
+
+ rlen = (code & 0x1f);
+ UNW_DEC_PROLOGUE(R1, body, rlen, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_r2 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char byte1, mask, grsave;
+ unw_word rlen;
+
+ byte1 = *dp++;
+
+ mask = ((code & 0x7) << 1) | ((byte1 >> 7) & 1);
+ grsave = (byte1 & 0x7f);
+ rlen = unw_decode_uleb128 (&dp);
+ UNW_DEC_PROLOGUE_GR(R2, rlen, mask, grsave, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_r3 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unw_word rlen;
+
+ rlen = unw_decode_uleb128 (&dp);
+ UNW_DEC_PROLOGUE(R3, ((code & 0x3) == 1), rlen, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_p1 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char brmask = (code & 0x1f);
+
+ UNW_DEC_BR_MEM(P1, brmask, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_p2_p5 (unsigned char *dp, unsigned char code, void *arg)
+{
+ if ((code & 0x10) == 0)
+ {
+ unsigned char byte1 = *dp++;
+
+ UNW_DEC_BR_GR(P2, ((code & 0xf) << 1) | ((byte1 >> 7) & 1),
+ (byte1 & 0x7f), arg);
+ }
+ else if ((code & 0x08) == 0)
+ {
+ unsigned char byte1 = *dp++, r, dst;
+
+ r = ((code & 0x7) << 1) | ((byte1 >> 7) & 1);
+ dst = (byte1 & 0x7f);
+ switch (r)
+ {
+ case 0: UNW_DEC_REG_GR(P3, UNW_REG_PSP, dst, arg); break;
+ case 1: UNW_DEC_REG_GR(P3, UNW_REG_RP, dst, arg); break;
+ case 2: UNW_DEC_REG_GR(P3, UNW_REG_PFS, dst, arg); break;
+ case 3: UNW_DEC_REG_GR(P3, UNW_REG_PR, dst, arg); break;
+ case 4: UNW_DEC_REG_GR(P3, UNW_REG_UNAT, dst, arg); break;
+ case 5: UNW_DEC_REG_GR(P3, UNW_REG_LC, dst, arg); break;
+ case 6: UNW_DEC_RP_BR(P3, dst, arg); break;
+ case 7: UNW_DEC_REG_GR(P3, UNW_REG_RNAT, dst, arg); break;
+ case 8: UNW_DEC_REG_GR(P3, UNW_REG_BSP, dst, arg); break;
+ case 9: UNW_DEC_REG_GR(P3, UNW_REG_BSPSTORE, dst, arg); break;
+ case 10: UNW_DEC_REG_GR(P3, UNW_REG_FPSR, dst, arg); break;
+ case 11: UNW_DEC_PRIUNAT_GR(P3, dst, arg); break;
+ default: UNW_DEC_BAD_CODE(r); break;
+ }
+ }
+ else if ((code & 0x7) == 0)
+ UNW_DEC_SPILL_MASK(P4, dp, arg);
+ else if ((code & 0x7) == 1)
+ {
+ unw_word grmask, frmask, byte1, byte2, byte3;
+
+ byte1 = *dp++; byte2 = *dp++; byte3 = *dp++;
+ grmask = ((byte1 >> 4) & 0xf);
+ frmask = ((byte1 & 0xf) << 16) | (byte2 << 8) | byte3;
+ UNW_DEC_FRGR_MEM(P5, grmask, frmask, arg);
+ }
+ else
+ UNW_DEC_BAD_CODE(code);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_p6 (unsigned char *dp, unsigned char code, void *arg)
+{
+ int gregs = (code & 0x10) != 0;
+ unsigned char mask = (code & 0x0f);
+
+ if (gregs)
+ UNW_DEC_GR_MEM(P6, mask, arg);
+ else
+ UNW_DEC_FR_MEM(P6, mask, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_p7_p10 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unsigned char r, byte1, byte2;
+ unw_word t, size;
+
+ if ((code & 0x10) == 0)
+ {
+ r = (code & 0xf);
+ t = unw_decode_uleb128 (&dp);
+ switch (r)
+ {
+ case 0:
+ size = unw_decode_uleb128 (&dp);
+ UNW_DEC_MEM_STACK_F(P7, t, size, arg);
+ break;
+
+ case 1: UNW_DEC_MEM_STACK_V(P7, t, arg); break;
+ case 2: UNW_DEC_SPILL_BASE(P7, t, arg); break;
+ case 3: UNW_DEC_REG_SPREL(P7, UNW_REG_PSP, t, arg); break;
+ case 4: UNW_DEC_REG_WHEN(P7, UNW_REG_RP, t, arg); break;
+ case 5: UNW_DEC_REG_PSPREL(P7, UNW_REG_RP, t, arg); break;
+ case 6: UNW_DEC_REG_WHEN(P7, UNW_REG_PFS, t, arg); break;
+ case 7: UNW_DEC_REG_PSPREL(P7, UNW_REG_PFS, t, arg); break;
+ case 8: UNW_DEC_REG_WHEN(P7, UNW_REG_PR, t, arg); break;
+ case 9: UNW_DEC_REG_PSPREL(P7, UNW_REG_PR, t, arg); break;
+ case 10: UNW_DEC_REG_WHEN(P7, UNW_REG_LC, t, arg); break;
+ case 11: UNW_DEC_REG_PSPREL(P7, UNW_REG_LC, t, arg); break;
+ case 12: UNW_DEC_REG_WHEN(P7, UNW_REG_UNAT, t, arg); break;
+ case 13: UNW_DEC_REG_PSPREL(P7, UNW_REG_UNAT, t, arg); break;
+ case 14: UNW_DEC_REG_WHEN(P7, UNW_REG_FPSR, t, arg); break;
+ case 15: UNW_DEC_REG_PSPREL(P7, UNW_REG_FPSR, t, arg); break;
+ default: UNW_DEC_BAD_CODE(r); break;
+ }
+ }
+ else
+ {
+ switch (code & 0xf)
+ {
+ case 0x0: /* p8 */
+ {
+ r = *dp++;
+ t = unw_decode_uleb128 (&dp);
+ switch (r)
+ {
+ case 1: UNW_DEC_REG_SPREL(P8, UNW_REG_RP, t, arg); break;
+ case 2: UNW_DEC_REG_SPREL(P8, UNW_REG_PFS, t, arg); break;
+ case 3: UNW_DEC_REG_SPREL(P8, UNW_REG_PR, t, arg); break;
+ case 4: UNW_DEC_REG_SPREL(P8, UNW_REG_LC, t, arg); break;
+ case 5: UNW_DEC_REG_SPREL(P8, UNW_REG_UNAT, t, arg); break;
+ case 6: UNW_DEC_REG_SPREL(P8, UNW_REG_FPSR, t, arg); break;
+ case 7: UNW_DEC_REG_WHEN(P8, UNW_REG_BSP, t, arg); break;
+ case 8: UNW_DEC_REG_PSPREL(P8, UNW_REG_BSP, t, arg); break;
+ case 9: UNW_DEC_REG_SPREL(P8, UNW_REG_BSP, t, arg); break;
+ case 10: UNW_DEC_REG_WHEN(P8, UNW_REG_BSPSTORE, t, arg); break;
+ case 11: UNW_DEC_REG_PSPREL(P8, UNW_REG_BSPSTORE, t, arg); break;
+ case 12: UNW_DEC_REG_SPREL(P8, UNW_REG_BSPSTORE, t, arg); break;
+ case 13: UNW_DEC_REG_WHEN(P8, UNW_REG_RNAT, t, arg); break;
+ case 14: UNW_DEC_REG_PSPREL(P8, UNW_REG_RNAT, t, arg); break;
+ case 15: UNW_DEC_REG_SPREL(P8, UNW_REG_RNAT, t, arg); break;
+ case 16: UNW_DEC_PRIUNAT_WHEN_GR(P8, t, arg); break;
+ case 17: UNW_DEC_PRIUNAT_PSPREL(P8, t, arg); break;
+ case 18: UNW_DEC_PRIUNAT_SPREL(P8, t, arg); break;
+ case 19: UNW_DEC_PRIUNAT_WHEN_MEM(P8, t, arg); break;
+ default: UNW_DEC_BAD_CODE(r); break;
+ }
+ }
+ break;
+
+ case 0x1:
+ byte1 = *dp++; byte2 = *dp++;
+ UNW_DEC_GR_GR(P9, (byte1 & 0xf), (byte2 & 0x7f), arg);
+ break;
+
+ case 0xf: /* p10 */
+ byte1 = *dp++; byte2 = *dp++;
+ UNW_DEC_ABI(P10, byte1, byte2, arg);
+ break;
+
+ case 0x9:
+ return unw_decode_x1 (dp, code, arg);
+
+ case 0xa:
+ return unw_decode_x2 (dp, code, arg);
+
+ case 0xb:
+ return unw_decode_x3 (dp, code, arg);
+
+ case 0xc:
+ return unw_decode_x4 (dp, code, arg);
+
+ default:
+ UNW_DEC_BAD_CODE(code);
+ break;
+ }
+ }
+ return dp;
+}
+
+static unsigned char *
+unw_decode_b1 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unw_word label = (code & 0x1f);
+
+ if ((code & 0x20) != 0)
+ UNW_DEC_COPY_STATE(B1, label, arg);
+ else
+ UNW_DEC_LABEL_STATE(B1, label, arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_b2 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unw_word t;
+
+ t = unw_decode_uleb128 (&dp);
+ UNW_DEC_EPILOGUE(B2, t, (code & 0x1f), arg);
+ return dp;
+}
+
+static unsigned char *
+unw_decode_b3_x4 (unsigned char *dp, unsigned char code, void *arg)
+{
+ unw_word t, ecount, label;
+
+ if ((code & 0x10) == 0)
+ {
+ t = unw_decode_uleb128 (&dp);
+ ecount = unw_decode_uleb128 (&dp);
+ UNW_DEC_EPILOGUE(B3, t, ecount, arg);
+ }
+ else if ((code & 0x07) == 0)
+ {
+ label = unw_decode_uleb128 (&dp);
+ if ((code & 0x08) != 0)
+ UNW_DEC_COPY_STATE(B4, label, arg);
+ else
+ UNW_DEC_LABEL_STATE(B4, label, arg);
+ }
+ else
+ switch (code & 0x7)
+ {
+ case 1: return unw_decode_x1 (dp, code, arg);
+ case 2: return unw_decode_x2 (dp, code, arg);
+ case 3: return unw_decode_x3 (dp, code, arg);
+ case 4: return unw_decode_x4 (dp, code, arg);
+ default: UNW_DEC_BAD_CODE(code); break;
+ }
+ return dp;
+}
+
+typedef unsigned char *(*unw_decoder) (unsigned char *, unsigned char, void *);
+
+static unw_decoder unw_decode_table[2][8] =
+{
+ /* prologue table: */
+ {
+ unw_decode_r1, /* 0 */
+ unw_decode_r1,
+ unw_decode_r2,
+ unw_decode_r3,
+ unw_decode_p1, /* 4 */
+ unw_decode_p2_p5,
+ unw_decode_p6,
+ unw_decode_p7_p10
+ },
+ {
+ unw_decode_r1, /* 0 */
+ unw_decode_r1,
+ unw_decode_r2,
+ unw_decode_r3,
+ unw_decode_b1, /* 4 */
+ unw_decode_b1,
+ unw_decode_b2,
+ unw_decode_b3_x4
+ }
+};
+
+/*
+ * Decode one descriptor and return address of next descriptor.
+ */
+static inline unsigned char *
+unw_decode (unsigned char *dp, int inside_body, void *arg)
+{
+ unw_decoder decoder;
+ unsigned char code;
+
+ code = *dp++;
+ decoder = unw_decode_table[inside_body][code >> 5];
+ dp = (*decoder) (dp, code, arg);
+ return dp;
+}
diff --git a/arch/ia64/kernel/unwind_i.h b/arch/ia64/kernel/unwind_i.h
new file mode 100644
index 0000000..96693a6
--- /dev/null
+++ b/arch/ia64/kernel/unwind_i.h
@@ -0,0 +1,164 @@
+/*
+ * Copyright (C) 2000, 2002-2003 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Kernel unwind support.
+ */
+
+#define UNW_VER(x) ((x) >> 48)
+#define UNW_FLAG_MASK 0x0000ffff00000000
+#define UNW_FLAG_OSMASK 0x0000f00000000000
+#define UNW_FLAG_EHANDLER(x) ((x) & 0x0000000100000000L)
+#define UNW_FLAG_UHANDLER(x) ((x) & 0x0000000200000000L)
+#define UNW_LENGTH(x) ((x) & 0x00000000ffffffffL)
+
+enum unw_register_index {
+ /* primary unat: */
+ UNW_REG_PRI_UNAT_GR,
+ UNW_REG_PRI_UNAT_MEM,
+
+ /* register stack */
+ UNW_REG_BSP, /* register stack pointer */
+ UNW_REG_BSPSTORE,
+ UNW_REG_PFS, /* previous function state */
+ UNW_REG_RNAT,
+ /* memory stack */
+ UNW_REG_PSP, /* previous memory stack pointer */
+ /* return pointer: */
+ UNW_REG_RP,
+
+ /* preserved registers: */
+ UNW_REG_R4, UNW_REG_R5, UNW_REG_R6, UNW_REG_R7,
+ UNW_REG_UNAT, UNW_REG_PR, UNW_REG_LC, UNW_REG_FPSR,
+ UNW_REG_B1, UNW_REG_B2, UNW_REG_B3, UNW_REG_B4, UNW_REG_B5,
+ UNW_REG_F2, UNW_REG_F3, UNW_REG_F4, UNW_REG_F5,
+ UNW_REG_F16, UNW_REG_F17, UNW_REG_F18, UNW_REG_F19,
+ UNW_REG_F20, UNW_REG_F21, UNW_REG_F22, UNW_REG_F23,
+ UNW_REG_F24, UNW_REG_F25, UNW_REG_F26, UNW_REG_F27,
+ UNW_REG_F28, UNW_REG_F29, UNW_REG_F30, UNW_REG_F31,
+ UNW_NUM_REGS
+};
+
+struct unw_info_block {
+ u64 header;
+ u64 desc[0]; /* unwind descriptors */
+ /* personality routine and language-specific data follow behind descriptors */
+};
+
+struct unw_table {
+ struct unw_table *next; /* must be first member! */
+ const char *name;
+ unsigned long gp; /* global pointer for this load-module */
+ unsigned long segment_base; /* base for offsets in the unwind table entries */
+ unsigned long start;
+ unsigned long end;
+ const struct unw_table_entry *array;
+ unsigned long length;
+};
+
+enum unw_where {
+ UNW_WHERE_NONE, /* register isn't saved at all */
+ UNW_WHERE_GR, /* register is saved in a general register */
+ UNW_WHERE_FR, /* register is saved in a floating-point register */
+ UNW_WHERE_BR, /* register is saved in a branch register */
+ UNW_WHERE_SPREL, /* register is saved on memstack (sp-relative) */
+ UNW_WHERE_PSPREL, /* register is saved on memstack (psp-relative) */
+ /*
+ * At the end of each prologue these locations get resolved to
+ * UNW_WHERE_PSPREL and UNW_WHERE_GR, respectively:
+ */
+ UNW_WHERE_SPILL_HOME, /* register is saved in its spill home */
+ UNW_WHERE_GR_SAVE /* register is saved in next general register */
+};
+
+#define UNW_WHEN_NEVER 0x7fffffff
+
+struct unw_reg_info {
+ unsigned long val; /* save location: register number or offset */
+ enum unw_where where; /* where the register gets saved */
+ int when; /* when the register gets saved */
+};
+
+struct unw_reg_state {
+ struct unw_reg_state *next; /* next (outer) element on state stack */
+ struct unw_reg_info reg[UNW_NUM_REGS]; /* register save locations */
+};
+
+struct unw_labeled_state {
+ struct unw_labeled_state *next; /* next labeled state (or NULL) */
+ unsigned long label; /* label for this state */
+ struct unw_reg_state saved_state;
+};
+
+struct unw_state_record {
+ unsigned int first_region : 1; /* is this the first region? */
+ unsigned int done : 1; /* are we done scanning descriptors? */
+ unsigned int any_spills : 1; /* got any register spills? */
+ unsigned int in_body : 1; /* are we inside a body (as opposed to a prologue)? */
+ unsigned long flags; /* see UNW_FLAG_* in unwind.h */
+
+ u8 *imask; /* imask of spill_mask record or NULL */
+ unsigned long pr_val; /* predicate values */
+ unsigned long pr_mask; /* predicate mask */
+ long spill_offset; /* psp-relative offset for spill base */
+ int region_start;
+ int region_len;
+ int epilogue_start;
+ int epilogue_count;
+ int when_target;
+
+ u8 gr_save_loc; /* next general register to use for saving a register */
+ u8 return_link_reg; /* branch register in which the return link is passed */
+
+ struct unw_labeled_state *labeled_states; /* list of all labeled states */
+ struct unw_reg_state curr; /* current state */
+};
+
+enum unw_nat_type {
+ UNW_NAT_NONE, /* NaT not represented */
+ UNW_NAT_VAL, /* NaT represented by NaT value (fp reg) */
+ UNW_NAT_MEMSTK, /* NaT value is in unat word at offset OFF */
+ UNW_NAT_REGSTK /* NaT is in rnat */
+};
+
+enum unw_insn_opcode {
+ UNW_INSN_ADD, /* s[dst] += val */
+ UNW_INSN_ADD_PSP, /* s[dst] = (s.psp + val) */
+ UNW_INSN_ADD_SP, /* s[dst] = (s.sp + val) */
+ UNW_INSN_MOVE, /* s[dst] = s[val] */
+ UNW_INSN_MOVE2, /* s[dst] = s[val]; s[dst+1] = s[val+1] */
+ UNW_INSN_MOVE_STACKED, /* s[dst] = ia64_rse_skip(*s.bsp, val) */
+ UNW_INSN_SETNAT_MEMSTK, /* s[dst+1].nat.type = MEMSTK;
+ s[dst+1].nat.off = *s.pri_unat - s[dst] */
+ UNW_INSN_SETNAT_TYPE, /* s[dst+1].nat.type = val */
+ UNW_INSN_LOAD, /* s[dst] = *s[val] */
+ UNW_INSN_MOVE_SCRATCH, /* s[dst] = scratch reg "val" */
+ UNW_INSN_MOVE_CONST, /* s[dst] = constant reg "val" */
+};
+
+struct unw_insn {
+ unsigned int opc : 4;
+ unsigned int dst : 9;
+ signed int val : 19;
+};
+
+/*
+ * Preserved general static registers (r4-r7) give rise to two script
+ * instructions; everything else yields at most one instruction; at
+ * the end of the script, the psp gets popped, accounting for one more
+ * instruction.
+ */
+#define UNW_MAX_SCRIPT_LEN (UNW_NUM_REGS + 5)
+
+struct unw_script {
+ unsigned long ip; /* ip this script is for */
+ unsigned long pr_mask; /* mask of predicates script depends on */
+ unsigned long pr_val; /* predicate values this script is for */
+ rwlock_t lock;
+ unsigned int flags; /* see UNW_FLAG_* in unwind.h */
+ unsigned short lru_chain; /* used for least-recently-used chain */
+ unsigned short coll_chain; /* used for hash collisions */
+ unsigned short hint; /* hint for next script to try (or -1) */
+ unsigned short count; /* number of instructions in script */
+ struct unw_insn insn[UNW_MAX_SCRIPT_LEN];
+};
diff --git a/arch/ia64/kernel/vmlinux.lds.S b/arch/ia64/kernel/vmlinux.lds.S
new file mode 100644
index 0000000..b9f0db4
--- /dev/null
+++ b/arch/ia64/kernel/vmlinux.lds.S
@@ -0,0 +1,251 @@
+#include <linux/config.h>
+
+#include <asm/cache.h>
+#include <asm/ptrace.h>
+#include <asm/system.h>
+#include <asm/pgtable.h>
+
+#define LOAD_OFFSET (KERNEL_START - KERNEL_TR_PAGE_SIZE)
+#include <asm-generic/vmlinux.lds.h>
+
+OUTPUT_FORMAT("elf64-ia64-little")
+OUTPUT_ARCH(ia64)
+ENTRY(phys_start)
+jiffies = jiffies_64;
+PHDRS {
+ code PT_LOAD;
+ percpu PT_LOAD;
+ data PT_LOAD;
+}
+SECTIONS
+{
+ /* Sections to be discarded */
+ /DISCARD/ : {
+ *(.exit.text)
+ *(.exit.data)
+ *(.exitcall.exit)
+ *(.IA_64.unwind.exit.text)
+ *(.IA_64.unwind_info.exit.text)
+ }
+
+ v = PAGE_OFFSET; /* this symbol is here to make debugging easier... */
+ phys_start = _start - LOAD_OFFSET;
+
+ code : { } :code
+ . = KERNEL_START;
+
+ _text = .;
+ _stext = .;
+
+ .text : AT(ADDR(.text) - LOAD_OFFSET)
+ {
+ *(.text.ivt)
+ *(.text)
+ SCHED_TEXT
+ LOCK_TEXT
+ *(.gnu.linkonce.t*)
+ }
+ .text2 : AT(ADDR(.text2) - LOAD_OFFSET)
+ { *(.text2) }
+#ifdef CONFIG_SMP
+ .text.lock : AT(ADDR(.text.lock) - LOAD_OFFSET)
+ { *(.text.lock) }
+#endif
+ _etext = .;
+
+ /* Read-only data */
+
+ /* Exception table */
+ . = ALIGN(16);
+ __ex_table : AT(ADDR(__ex_table) - LOAD_OFFSET)
+ {
+ __start___ex_table = .;
+ *(__ex_table)
+ __stop___ex_table = .;
+ }
+
+ .data.patch.vtop : AT(ADDR(.data.patch.vtop) - LOAD_OFFSET)
+ {
+ __start___vtop_patchlist = .;
+ *(.data.patch.vtop)
+ __end___vtop_patchlist = .;
+ }
+
+ .data.patch.mckinley_e9 : AT(ADDR(.data.patch.mckinley_e9) - LOAD_OFFSET)
+ {
+ __start___mckinley_e9_bundles = .;
+ *(.data.patch.mckinley_e9)
+ __end___mckinley_e9_bundles = .;
+ }
+
+ /* Global data */
+ _data = .;
+
+#if defined(CONFIG_IA64_GENERIC)
+ /* Machine Vector */
+ . = ALIGN(16);
+ .machvec : AT(ADDR(.machvec) - LOAD_OFFSET)
+ {
+ machvec_start = .;
+ *(.machvec)
+ machvec_end = .;
+ }
+#endif
+
+ /* Unwind info & table: */
+ . = ALIGN(8);
+ .IA_64.unwind_info : AT(ADDR(.IA_64.unwind_info) - LOAD_OFFSET)
+ { *(.IA_64.unwind_info*) }
+ .IA_64.unwind : AT(ADDR(.IA_64.unwind) - LOAD_OFFSET)
+ {
+ __start_unwind = .;
+ *(.IA_64.unwind*)
+ __end_unwind = .;
+ }
+
+ RODATA
+
+ .opd : AT(ADDR(.opd) - LOAD_OFFSET)
+ { *(.opd) }
+
+ /* Initialization code and data: */
+
+ . = ALIGN(PAGE_SIZE);
+ __init_begin = .;
+ .init.text : AT(ADDR(.init.text) - LOAD_OFFSET)
+ {
+ _sinittext = .;
+ *(.init.text)
+ _einittext = .;
+ }
+
+ .init.data : AT(ADDR(.init.data) - LOAD_OFFSET)
+ { *(.init.data) }
+
+ .init.ramfs : AT(ADDR(.init.ramfs) - LOAD_OFFSET)
+ {
+ __initramfs_start = .;
+ *(.init.ramfs)
+ __initramfs_end = .;
+ }
+
+ . = ALIGN(16);
+ .init.setup : AT(ADDR(.init.setup) - LOAD_OFFSET)
+ {
+ __setup_start = .;
+ *(.init.setup)
+ __setup_end = .;
+ }
+ .initcall.init : AT(ADDR(.initcall.init) - LOAD_OFFSET)
+ {
+ __initcall_start = .;
+ *(.initcall1.init)
+ *(.initcall2.init)
+ *(.initcall3.init)
+ *(.initcall4.init)
+ *(.initcall5.init)
+ *(.initcall6.init)
+ *(.initcall7.init)
+ __initcall_end = .;
+ }
+ __con_initcall_start = .;
+ .con_initcall.init : AT(ADDR(.con_initcall.init) - LOAD_OFFSET)
+ { *(.con_initcall.init) }
+ __con_initcall_end = .;
+ __security_initcall_start = .;
+ .security_initcall.init : AT(ADDR(.security_initcall.init) - LOAD_OFFSET)
+ { *(.security_initcall.init) }
+ __security_initcall_end = .;
+ . = ALIGN(PAGE_SIZE);
+ __init_end = .;
+
+ /* The initial task and kernel stack */
+ .data.init_task : AT(ADDR(.data.init_task) - LOAD_OFFSET)
+ { *(.data.init_task) }
+
+ .data.page_aligned : AT(ADDR(.data.page_aligned) - LOAD_OFFSET)
+ { *(__special_page_section)
+ __start_gate_section = .;
+ *(.data.gate)
+ __stop_gate_section = .;
+ }
+ . = ALIGN(PAGE_SIZE); /* make sure the gate page doesn't expose kernel data */
+
+ .data.cacheline_aligned : AT(ADDR(.data.cacheline_aligned) - LOAD_OFFSET)
+ { *(.data.cacheline_aligned) }
+
+ /* Per-cpu data: */
+ percpu : { } :percpu
+ . = ALIGN(PERCPU_PAGE_SIZE);
+ __phys_per_cpu_start = .;
+ .data.percpu PERCPU_ADDR : AT(__phys_per_cpu_start - LOAD_OFFSET)
+ {
+ __per_cpu_start = .;
+ *(.data.percpu)
+ __per_cpu_end = .;
+ }
+ . = __phys_per_cpu_start + PERCPU_PAGE_SIZE; /* ensure percpu data fits into percpu page size */
+
+ data : { } :data
+ .data : AT(ADDR(.data) - LOAD_OFFSET)
+ { *(.data) *(.data1) *(.gnu.linkonce.d*) CONSTRUCTORS }
+
+ . = ALIGN(16); /* gp must be 16-byte aligned for exc. table */
+ .got : AT(ADDR(.got) - LOAD_OFFSET)
+ { *(.got.plt) *(.got) }
+ __gp = ADDR(.got) + 0x200000;
+ /* We want the small data sections together, so single-instruction offsets
+ can access them all, and initialized data all before uninitialized, so
+ we can shorten the on-disk segment size. */
+ .sdata : AT(ADDR(.sdata) - LOAD_OFFSET)
+ { *(.sdata) *(.sdata1) *(.srdata) }
+ _edata = .;
+ _bss = .;
+ .sbss : AT(ADDR(.sbss) - LOAD_OFFSET)
+ { *(.sbss) *(.scommon) }
+ .bss : AT(ADDR(.bss) - LOAD_OFFSET)
+ { *(.bss) *(COMMON) }
+
+ _end = .;
+
+ code : { } :code
+ /* Stabs debugging sections. */
+ .stab 0 : { *(.stab) }
+ .stabstr 0 : { *(.stabstr) }
+ .stab.excl 0 : { *(.stab.excl) }
+ .stab.exclstr 0 : { *(.stab.exclstr) }
+ .stab.index 0 : { *(.stab.index) }
+ .stab.indexstr 0 : { *(.stab.indexstr) }
+ /* DWARF debug sections.
+ Symbols in the DWARF debugging sections are relative to the beginning
+ of the section so we begin them at 0. */
+ /* DWARF 1 */
+ .debug 0 : { *(.debug) }
+ .line 0 : { *(.line) }
+ /* GNU DWARF 1 extensions */
+ .debug_srcinfo 0 : { *(.debug_srcinfo) }
+ .debug_sfnames 0 : { *(.debug_sfnames) }
+ /* DWARF 1.1 and DWARF 2 */
+ .debug_aranges 0 : { *(.debug_aranges) }
+ .debug_pubnames 0 : { *(.debug_pubnames) }
+ /* DWARF 2 */
+ .debug_info 0 : { *(.debug_info) }
+ .debug_abbrev 0 : { *(.debug_abbrev) }
+ .debug_line 0 : { *(.debug_line) }
+ .debug_frame 0 : { *(.debug_frame) }
+ .debug_str 0 : { *(.debug_str) }
+ .debug_loc 0 : { *(.debug_loc) }
+ .debug_macinfo 0 : { *(.debug_macinfo) }
+ /* SGI/MIPS DWARF 2 extensions */
+ .debug_weaknames 0 : { *(.debug_weaknames) }
+ .debug_funcnames 0 : { *(.debug_funcnames) }
+ .debug_typenames 0 : { *(.debug_typenames) }
+ .debug_varnames 0 : { *(.debug_varnames) }
+ /* These must appear regardless of . */
+ /* Discard them for now since Intel SoftSDV cannot handle them.
+ .comment 0 : { *(.comment) }
+ .note 0 : { *(.note) }
+ */
+ /DISCARD/ : { *(.comment) }
+ /DISCARD/ : { *(.note) }
+}