summaryrefslogtreecommitdiff
path: root/arch/x86/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel')
-rw-r--r--arch/x86/kernel/ebda.c114
-rw-r--r--arch/x86/kernel/head32.c2
-rw-r--r--arch/x86/kernel/head64.c2
-rw-r--r--arch/x86/kernel/head_64.S3
-rw-r--r--arch/x86/kernel/platform-quirks.c4
-rw-r--r--arch/x86/kernel/setup.c3
6 files changed, 79 insertions, 49 deletions
diff --git a/arch/x86/kernel/ebda.c b/arch/x86/kernel/ebda.c
index afe65df..4312f8a 100644
--- a/arch/x86/kernel/ebda.c
+++ b/arch/x86/kernel/ebda.c
@@ -6,66 +6,92 @@
#include <asm/bios_ebda.h>
/*
+ * This function reserves all conventional PC system BIOS related
+ * firmware memory areas (some of which are data, some of which
+ * are code), that must not be used by the kernel as available
+ * RAM.
+ *
* The BIOS places the EBDA/XBDA at the top of conventional
* memory, and usually decreases the reported amount of
- * conventional memory (int 0x12) too. This also contains a
- * workaround for Dell systems that neglect to reserve EBDA.
- * The same workaround also avoids a problem with the AMD768MPX
- * chipset: reserve a page before VGA to prevent PCI prefetch
- * into it (errata #56). Usually the page is reserved anyways,
- * unless you have no PS/2 mouse plugged in.
+ * conventional memory (int 0x12) too.
+ *
+ * This means that as a first approximation on most systems we can
+ * guess the reserved BIOS area by looking at the low BIOS RAM size
+ * value and assume that everything above that value (up to 1MB) is
+ * reserved.
+ *
+ * But life in firmware country is not that simple:
+ *
+ * - This code also contains a quirk for Dell systems that neglect
+ * to reserve the EBDA area in the 'RAM size' value ...
+ *
+ * - The same quirk also avoids a problem with the AMD768MPX
+ * chipset: reserve a page before VGA to prevent PCI prefetch
+ * into it (errata #56). (Usually the page is reserved anyways,
+ * unless you have no PS/2 mouse plugged in.)
+ *
+ * - Plus paravirt systems don't have a reliable value in the
+ * 'BIOS RAM size' pointer we can rely on, so we must quirk
+ * them too.
+ *
+ * Due to those various problems this function is deliberately
+ * very conservative and tries to err on the side of reserving
+ * too much, to not risk reserving too little.
+ *
+ * Losing a small amount of memory in the bottom megabyte is
+ * rarely a problem, as long as we have enough memory to install
+ * the SMP bootup trampoline which *must* be in this area.
*
- * This functions is deliberately very conservative. Losing
- * memory in the bottom megabyte is rarely a problem, as long
- * as we have enough memory to install the trampoline. Using
- * memory that is in use by the BIOS or by some DMA device
- * the BIOS didn't shut down *is* a big problem.
+ * Using memory that is in use by the BIOS or by some DMA device
+ * the BIOS didn't shut down *is* a big problem to the kernel,
+ * obviously.
*/
-#define BIOS_LOWMEM_KILOBYTES 0x413
-#define LOWMEM_CAP 0x9f000U /* Absolute maximum */
-#define INSANE_CUTOFF 0x20000U /* Less than this = insane */
+#define BIOS_RAM_SIZE_KB_PTR 0x413
-void __init reserve_ebda_region(void)
+#define BIOS_START_MIN 0x20000U /* 128K, less than this is insane */
+#define BIOS_START_MAX 0x9f000U /* 640K, absolute maximum */
+
+void __init reserve_bios_regions(void)
{
- unsigned int lowmem, ebda_addr;
+ unsigned int bios_start, ebda_start;
/*
- * To determine the position of the EBDA and the
- * end of conventional memory, we need to look at
- * the BIOS data area. In a paravirtual environment
- * that area is absent. We'll just have to assume
- * that the paravirt case can handle memory setup
- * correctly, without our help.
+ * NOTE: In a paravirtual environment the BIOS reserved
+ * area is absent. We'll just have to assume that the
+ * paravirt case can handle memory setup correctly,
+ * without our help.
*/
- if (!x86_platform.legacy.ebda_search)
+ if (!x86_platform.legacy.reserve_bios_regions)
return;
- /* end of low (conventional) memory */
- lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
- lowmem <<= 10;
-
- /* start of EBDA area */
- ebda_addr = get_bios_ebda();
-
/*
- * Note: some old Dells seem to need 4k EBDA without
- * reporting so, so just consider the memory above 0x9f000
- * to be off limits (bugzilla 2990).
+ * BIOS RAM size is encoded in kilobytes, convert it
+ * to bytes to get a first guess at where the BIOS
+ * firmware area starts:
*/
+ bios_start = *(unsigned short *)__va(BIOS_RAM_SIZE_KB_PTR);
+ bios_start <<= 10;
- /* If the EBDA address is below 128K, assume it is bogus */
- if (ebda_addr < INSANE_CUTOFF)
- ebda_addr = LOWMEM_CAP;
+ /*
+ * If bios_start is less than 128K, assume it is bogus
+ * and bump it up to 640K. Similarly, if bios_start is above 640K,
+ * don't trust it.
+ */
+ if (bios_start < BIOS_START_MIN || bios_start > BIOS_START_MAX)
+ bios_start = BIOS_START_MAX;
- /* If lowmem is less than 128K, assume it is bogus */
- if (lowmem < INSANE_CUTOFF)
- lowmem = LOWMEM_CAP;
+ /* Get the start address of the EBDA page: */
+ ebda_start = get_bios_ebda();
- /* Use the lower of the lowmem and EBDA markers as the cutoff */
- lowmem = min(lowmem, ebda_addr);
- lowmem = min(lowmem, LOWMEM_CAP); /* Absolute cap */
+ /*
+ * If the EBDA start address is sane and is below the BIOS region,
+ * then also reserve everything from the EBDA start address up to
+ * the BIOS region.
+ */
+ if (ebda_start >= BIOS_START_MIN && ebda_start < bios_start)
+ bios_start = ebda_start;
- /* reserve all memory between lowmem and the 1MB mark */
- memblock_reserve(lowmem, 0x100000 - lowmem);
+ /* Reserve all memory between bios_start and the 1MB mark: */
+ memblock_reserve(bios_start, 0x100000 - bios_start);
}
diff --git a/arch/x86/kernel/head32.c b/arch/x86/kernel/head32.c
index d784bb5..2dda0bc 100644
--- a/arch/x86/kernel/head32.c
+++ b/arch/x86/kernel/head32.c
@@ -26,7 +26,7 @@ static void __init i386_default_early_setup(void)
x86_init.resources.reserve_resources = i386_reserve_resources;
x86_init.mpparse.setup_ioapic_ids = setup_ioapic_ids_from_mpc;
- reserve_ebda_region();
+ reserve_bios_regions();
}
asmlinkage __visible void __init i386_start_kernel(void)
diff --git a/arch/x86/kernel/head64.c b/arch/x86/kernel/head64.c
index b72fb0b..99d48e7 100644
--- a/arch/x86/kernel/head64.c
+++ b/arch/x86/kernel/head64.c
@@ -183,7 +183,7 @@ void __init x86_64_start_reservations(char *real_mode_data)
copy_bootdata(__va(real_mode_data));
x86_early_init_platform_quirks();
- reserve_ebda_region();
+ reserve_bios_regions();
switch (boot_params.hdr.hardware_subarch) {
case X86_SUBARCH_INTEL_MID:
diff --git a/arch/x86/kernel/head_64.S b/arch/x86/kernel/head_64.S
index 5df831e..9f8efc9 100644
--- a/arch/x86/kernel/head_64.S
+++ b/arch/x86/kernel/head_64.S
@@ -38,7 +38,7 @@
#define pud_index(x) (((x) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
-L4_PAGE_OFFSET = pgd_index(__PAGE_OFFSET)
+L4_PAGE_OFFSET = pgd_index(__PAGE_OFFSET_BASE)
L4_START_KERNEL = pgd_index(__START_KERNEL_map)
L3_START_KERNEL = pud_index(__START_KERNEL_map)
@@ -299,6 +299,7 @@ ENTRY(secondary_startup_64)
pushq $__KERNEL_CS # set correct cs
pushq %rax # target address in negative space
lretq
+ENDPROC(secondary_startup_64)
#include "verify_cpu.S"
diff --git a/arch/x86/kernel/platform-quirks.c b/arch/x86/kernel/platform-quirks.c
index b2f8a33..24a5030 100644
--- a/arch/x86/kernel/platform-quirks.c
+++ b/arch/x86/kernel/platform-quirks.c
@@ -7,12 +7,12 @@
void __init x86_early_init_platform_quirks(void)
{
x86_platform.legacy.rtc = 1;
- x86_platform.legacy.ebda_search = 0;
+ x86_platform.legacy.reserve_bios_regions = 0;
x86_platform.legacy.devices.pnpbios = 1;
switch (boot_params.hdr.hardware_subarch) {
case X86_SUBARCH_PC:
- x86_platform.legacy.ebda_search = 1;
+ x86_platform.legacy.reserve_bios_regions = 1;
break;
case X86_SUBARCH_XEN:
case X86_SUBARCH_LGUEST:
diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c
index c4e7b39..a261658 100644
--- a/arch/x86/kernel/setup.c
+++ b/arch/x86/kernel/setup.c
@@ -113,6 +113,7 @@
#include <asm/prom.h>
#include <asm/microcode.h>
#include <asm/mmu_context.h>
+#include <asm/kaslr.h>
/*
* max_low_pfn_mapped: highest direct mapped pfn under 4GB
@@ -942,6 +943,8 @@ void __init setup_arch(char **cmdline_p)
x86_init.oem.arch_setup();
+ kernel_randomize_memory();
+
iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
setup_memory_map();
parse_setup_data();