diff options
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r-- | kernel/sched/fair.c | 67 |
1 files changed, 33 insertions, 34 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 8b384b8d..ea23f9f 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -4726,26 +4726,29 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) #endif +/* + * Detect M:N waker/wakee relationships via a switching-frequency heuristic. + * A waker of many should wake a different task than the one last awakened + * at a frequency roughly N times higher than one of its wakees. In order + * to determine whether we should let the load spread vs consolodating to + * shared cache, we look for a minimum 'flip' frequency of llc_size in one + * partner, and a factor of lls_size higher frequency in the other. With + * both conditions met, we can be relatively sure that the relationship is + * non-monogamous, with partner count exceeding socket size. Waker/wakee + * being client/server, worker/dispatcher, interrupt source or whatever is + * irrelevant, spread criteria is apparent partner count exceeds socket size. + */ static int wake_wide(struct task_struct *p) { + unsigned int master = current->wakee_flips; + unsigned int slave = p->wakee_flips; int factor = this_cpu_read(sd_llc_size); - /* - * Yeah, it's the switching-frequency, could means many wakee or - * rapidly switch, use factor here will just help to automatically - * adjust the loose-degree, so bigger node will lead to more pull. - */ - if (p->wakee_flips > factor) { - /* - * wakee is somewhat hot, it needs certain amount of cpu - * resource, so if waker is far more hot, prefer to leave - * it alone. - */ - if (current->wakee_flips > (factor * p->wakee_flips)) - return 1; - } - - return 0; + if (master < slave) + swap(master, slave); + if (slave < factor || master < slave * factor) + return 0; + return 1; } static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) @@ -4757,13 +4760,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) unsigned long weight; int balanced; - /* - * If we wake multiple tasks be careful to not bounce - * ourselves around too much. - */ - if (wake_wide(p)) - return 0; - idx = sd->wake_idx; this_cpu = smp_processor_id(); prev_cpu = task_cpu(p); @@ -5017,17 +5013,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f { struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; int cpu = smp_processor_id(); - int new_cpu = cpu; + int new_cpu = prev_cpu; int want_affine = 0; int sync = wake_flags & WF_SYNC; if (sd_flag & SD_BALANCE_WAKE) - want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); + want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); rcu_read_lock(); for_each_domain(cpu, tmp) { if (!(tmp->flags & SD_LOAD_BALANCE)) - continue; + break; /* * If both cpu and prev_cpu are part of this domain, @@ -5041,17 +5037,21 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f if (tmp->flags & sd_flag) sd = tmp; + else if (!want_affine) + break; } - if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) - prev_cpu = cpu; - - if (sd_flag & SD_BALANCE_WAKE) { - new_cpu = select_idle_sibling(p, prev_cpu); - goto unlock; + if (affine_sd) { + sd = NULL; /* Prefer wake_affine over balance flags */ + if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) + new_cpu = cpu; } - while (sd) { + if (!sd) { + if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ + new_cpu = select_idle_sibling(p, new_cpu); + + } else while (sd) { struct sched_group *group; int weight; @@ -5085,7 +5085,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f } /* while loop will break here if sd == NULL */ } -unlock: rcu_read_unlock(); return new_cpu; |