Age | Commit message (Collapse) | Author |
|
commit dbb236c1ceb697a559e0694ac4c9e7b9131d0b16 upstream.
Recently vDSO support for CLOCK_MONOTONIC_RAW was added in
49eea433b326 ("arm64: Add support for CLOCK_MONOTONIC_RAW in
clock_gettime() vDSO"). Noticing that the core timekeeping code
never set tkr_raw.xtime_nsec, the vDSO implementation didn't
bother exposing it via the data page and instead took the
unshifted tk->raw_time.tv_nsec value which was then immediately
shifted left in the vDSO code.
Unfortunately, by accellerating the MONOTONIC_RAW clockid, it
uncovered potential 1ns time inconsistencies caused by the
timekeeping core not handing sub-ns resolution.
Now that the core code has been fixed and is actually setting
tkr_raw.xtime_nsec, we need to take that into account in the
vDSO by adding it to the shifted raw_time value, in order to
fix the user-visible inconsistency. Rather than do that at each
use (and expand the data page in the process), instead perform
the shift/addition operation when populating the data page and
remove the shift from the vDSO code entirely.
[jstultz: minor whitespace tweak, tried to improve commit
message to make it more clear this fixes a regression]
Reported-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Daniel Mentz <danielmentz@google.com>
Acked-by: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Link: http://lkml.kernel.org/r/1496965462-20003-4-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3d88d56c5873f6eebe23e05c3da701960146b801 upstream.
Due to how the MONOTONIC_RAW accumulation logic was handled,
there is the potential for a 1ns discontinuity when we do
accumulations. This small discontinuity has for the most part
gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW
in their vDSO clock_gettime implementation, we've seen failures
with the inconsistency-check test in kselftest.
This patch addresses the issue by using the same sub-ns
accumulation handling that CLOCK_MONOTONIC uses, which avoids
the issue for in-kernel users.
Since the ARM64 vDSO implementation has its own clock_gettime
calculation logic, this patch reduces the frequency of errors,
but failures are still seen. The ARM64 vDSO will need to be
updated to include the sub-nanosecond xtime_nsec values in its
calculation for this issue to be completely fixed.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Daniel Mentz <danielmentz@google.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ceea5e3771ed2378668455fa21861bead7504df5 upstream.
In tests, which excercise switching of clocksources, a NULL
pointer dereference can be observed on AMR64 platforms in the
clocksource read() function:
u64 clocksource_mmio_readl_down(struct clocksource *c)
{
return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask;
}
This is called from the core timekeeping code via:
cycle_now = tkr->read(tkr->clock);
tkr->read is the cached tkr->clock->read() function pointer.
When the clocksource is changed then tkr->clock and tkr->read
are updated sequentially. The code above results in a sequential
load operation of tkr->read and tkr->clock as well.
If the store to tkr->clock hits between the loads of tkr->read
and tkr->clock, then the old read() function is called with the
new clock pointer. As a consequence the read() function
dereferences a different data structure and the resulting 'reg'
pointer can point anywhere including NULL.
This problem was introduced when the timekeeping code was
switched over to use struct tk_read_base. Before that, it was
theoretically possible as well when the compiler decided to
reload clock in the code sequence:
now = tk->clock->read(tk->clock);
Add a helper function which avoids the issue by reading
tk_read_base->clock once into a local variable clk and then issue
the read function via clk->read(clk). This guarantees that the
read() function always gets the proper clocksource pointer handed
in.
Since there is now no use for the tkr.read pointer, this patch
also removes it, and to address stopping the fast timekeeper
during suspend/resume, it introduces a dummy clocksource to use
rather then just a dummy read function.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Daniel Mentz <danielmentz@google.com>
Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7a51461fc2da82a6c565a3ee65c41c197f28225d upstream.
When request firmware fails, brcmf_ops_sdio_remove is being called and
brcmf_bus freed. In such circumstancies if you do a suspend/resume cycle
the kernel hangs on resume due a NULL pointer dereference in resume
function. So in brcmf_sdio_firmware_callback() we need to unbind the
driver from both sdio_func devices when firmware load failure is indicated.
Tested-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
Reviewed-by: Hante Meuleman <hante.meuleman@broadcom.com>
Reviewed-by: Pieter-Paul Giesberts <pieter-paul.giesberts@broadcom.com>
Reviewed-by: Franky Lin <franky.lin@broadcom.com>
Signed-off-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 03fb0e8393fae8ebb6710a99387853ed0becbc8e upstream.
When firmware loading failed the code used to unbind the device provided
by the calling code. However, for the sdio driver two devices are bound
and both need to be released upon failure. The callback has been extended
with parameter to pass error code so add that in this commit upon firmware
loading failure.
Reviewed-by: Hante Meuleman <hante.meuleman@broadcom.com>
Reviewed-by: Pieter-Paul Giesberts <pieter-paul.giesberts@broadcom.com>
Reviewed-by: Franky Lin <franky.lin@broadcom.com>
Signed-off-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6d0507a777fbc533f7f1bf5664a81982dd50dece upstream.
Extend the parameters in the firmware callback so it can be called
upon success and failure. This allows the caller to properly clear
all resources in the failure path. Right now the error code is
always zero, ie. success.
Reviewed-by: Hante Meuleman <hante.meuleman@broadcom.com>
Reviewed-by: Pieter-Paul Giesberts <pieter-paul.giesberts@broadcom.com>
Reviewed-by: Franky Lin <franky.lin@broadcom.com>
Signed-off-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 817ae460c784f32cd45e60b2b1b21378c3c6a847 upstream.
Without this quirk, the touchpad is not responsive on this product, with
the following message repeated in the logs:
psmouse serio1: bad data from KBC - timeout
Add it to the notimeout list alongside other similar Fujitsu laptops.
Signed-off-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d89ba5353f301971dd7d2f9fdf25c4432728f38e upstream.
On Power9, trying to use data breakpoints throws the splat shown
below. This is because the check for a data breakpoint in DSISR is in
do_hash_page(), which is not called when in Radix mode.
Unable to handle kernel paging request for data at address 0xc000000000e19218
Faulting instruction address: 0xc0000000001155e8
cpu 0x0: Vector: 300 (Data Access) at [c0000000ef1e7b20]
pc: c0000000001155e8: find_pid_ns+0x48/0xe0
lr: c000000000116ac4: find_task_by_vpid+0x44/0x90
sp: c0000000ef1e7da0
msr: 9000000000009033
dar: c000000000e19218
dsisr: 400000
Move the check to handle_page_fault() so as to catch data breakpoints
in both Hash and Radix MMU modes.
We have to change the check in do_hash_page() against 0xa410 to use
0xa450, so as to include the value of (DSISR_DABRMATCH << 16).
There are two sites that call handle_page_fault() when in Radix, both
already pass DSISR in r4.
Fixes: caca285e5ab4 ("powerpc/mm/radix: Use STD_MMU_64 to properly isolate hash related code")
Reported-by: Shriya R. Kulkarni <shriykul@in.ibm.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
[mpe: Fix the fall-through case on hash, we need to reload DSISR]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a9f8553e935f26cb5447f67e280946b0923cd2dc upstream.
This fixes a crash when function_graph and jprobes are used together.
This is essentially commit 237d28db036e ("ftrace/jprobes/x86: Fix
conflict between jprobes and function graph tracing"), but for powerpc.
Jprobes breaks function_graph tracing since the jprobe hook needs to use
jprobe_return(), which never returns back to the hook, but instead to
the original jprobe'd function. The solution is to momentarily pause
function_graph tracing before invoking the jprobe hook and re-enable it
when returning back to the original jprobe'd function.
Fixes: 6794c78243bf ("powerpc64: port of the function graph tracer")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 57db7e4a2d92c2d3dfbca4ef8057849b2682436b upstream.
Thomas Gleixner wrote:
> The CRIU support added a 'feature' which allows a user space task to send
> arbitrary (kernel) signals to itself. The changelog says:
>
> The kernel prevents sending of siginfo with positive si_code, because
> these codes are reserved for kernel. I think we can allow a task to
> send such a siginfo to itself. This operation should not be dangerous.
>
> Quite contrary to that claim, it turns out that it is outright dangerous
> for signals with info->si_code == SI_TIMER. The following code sequence in
> a user space task allows to crash the kernel:
>
> id = timer_create(CLOCK_XXX, ..... signo = SIGX);
> timer_set(id, ....);
> info->si_signo = SIGX;
> info->si_code = SI_TIMER:
> info->_sifields._timer._tid = id;
> info->_sifields._timer._sys_private = 2;
> rt_[tg]sigqueueinfo(..., SIGX, info);
> sigemptyset(&sigset);
> sigaddset(&sigset, SIGX);
> rt_sigtimedwait(sigset, info);
>
> For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this
> results in a kernel crash because sigwait() dequeues the signal and the
> dequeue code observes:
>
> info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0
>
> which triggers the following callchain:
>
> do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer()
>
> arm_timer() executes a list_add() on the timer, which is already armed via
> the timer_set() syscall. That's a double list add which corrupts the posix
> cpu timer list. As a consequence the kernel crashes on the next operation
> touching the posix cpu timer list.
>
> Posix clocks which are internally implemented based on hrtimers are not
> affected by this because hrtimer_start() can handle already armed timers
> nicely, but it's a reliable way to trigger the WARN_ON() in
> hrtimer_forward(), which complains about calling that function on an
> already armed timer.
This problem has existed since the posix timer code was merged into
2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to
inject not just a signal (which linux has supported since 1.0) but the
full siginfo of a signal.
The core problem is that the code will reschedule in response to
signals getting dequeued not just for signals the timers sent but
for other signals that happen to a si_code of SI_TIMER.
Avoid this confusion by testing to see if the queued signal was
preallocated as all timer signals are preallocated, and so far
only the timer code preallocates signals.
Move the check for if a timer needs to be rescheduled up into
collect_signal where the preallocation check must be performed,
and pass the result back to dequeue_signal where the code reschedules
timers. This makes it clear why the code cares about preallocated
timers.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself")
Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO")
Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3db28271f0feae129262d30e41384a7c4c767987 upstream.
This mouse is also known under other IDs. It needs the quirk
ALWAYS_POLL or will disconnect in runlevel 1 or 3.
Signed-off-by: Sebastian Parschauer <sparschauer@suse.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dec6b33163d24e2c19ba521c89fffbaab53ae986 upstream.
During the module initialisation there is a possible race
(basically race between uld and lld) where neither the uld
nor lld notifies the uP about where to route the ctrl queue
completions. LLD skips notifying uP as the rdma queues were
not created by then (will leave it to ULD to notify the uP).
As the ULD comes up, it also skips notifying the uP as the
flag FULL_INIT_DONE is not set yet (ULD assumes that the
interface is not up yet).
Consequently, this race between uld and lld leaves uP
unnotified about where to send the ctrl queue completions
to, leading to iwarp RI_RES WR failure.
Here is the race:
CPU 0 CPU1
- allocates nic rx queus
- t4_sge_alloc_ctrl_txq()
(if rdma rsp queues exists,
tell uP to route ctrl queue
compl to rdma rspq)
- acquires the mutex_lock
- allocates rdma response queues
- if FULL_INIT_DONE set,
tell uP to route ctrl queue compl
to rdma rspq
- relinquishes mutex_lock
- acquires the mutex_lock
- enable_rx()
- set FULL_INIT_DONE
- relinquishes mutex_lock
This patch fixes the above issue.
Fixes: e7519f9926f1('cxgb4: avoid enabling napi twice to the same queue')
Signed-off-by: Raju Rangoju <rajur@chelsio.com>
Acked-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Ganesh Goudar <ganeshgr@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dcd87838c06f05ab7650b249ebf0d5b57ae63e1e upstream.
Downgrade the loglevel for SMB2 to prevent filling the log
with messages if e.g. readdir was interrupted. Also make SMB2
and SMB1 codepaths do the same logging during readdir.
Signed-off-by: Pavel Shilovsky <pshilov@microsoft.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ca8efa1df1d15a1795a2da57f9f6aada6ed6b946 upstream.
This adds code to save the values of three SPRs (special-purpose
registers) used by userspace to control event-based branches (EBBs),
which are essentially interrupts that get delivered directly to
userspace. These registers are loaded up with guest values when
entering the guest, and their values are saved when exiting the
guest, but we were not saving the host values and restoring them
before going back to userspace.
On POWER8 this would only affect userspace programs which explicitly
request the use of EBBs and also use the KVM_RUN ioctl, since the
only source of EBBs on POWER8 is the PMU, and there is an explicit
enable bit in the PMU registers (and those PMU registers do get
properly context-switched between host and guest). On POWER9 there
is provision for externally-generated EBBs, and these are not subject
to the control in the PMU registers.
Since these registers only affect userspace, we can save them when
we first come in from userspace and restore them before returning to
userspace, rather than saving/restoring the host values on every
guest entry/exit. Similarly, we don't need to worry about their
values on offline secondary threads since they execute in the context
of the idle task, which never executes in userspace.
Fixes: b005255e12a3 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 46a704f8409f79fd66567ad3f8a7304830a84293 upstream.
If userspace attempts to call the KVM_RUN ioctl when it has hardware
transactional memory (HTM) enabled, the values that it has put in the
HTM-related SPRs TFHAR, TFIAR and TEXASR will get overwritten by
guest values. To fix this, we detect this condition and save those
SPR values in the thread struct, and disable HTM for the task. If
userspace goes to access those SPRs or the HTM facility in future,
a TM-unavailable interrupt will occur and the handler will reload
those SPRs and re-enable HTM.
If userspace has started a transaction and suspended it, we would
currently lose the transactional state in the guest entry path and
would almost certainly get a "TM Bad Thing" interrupt, which would
cause the host to crash. To avoid this, we detect this case and
return from the KVM_RUN ioctl with an EINVAL error, with the KVM
exit reason set to KVM_EXIT_FAIL_ENTRY.
Fixes: b005255e12a3 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit addb63c18a0d52a9ce2611d039f981f7b6148d2b upstream.
For real-space designation asces the asce origin part is only a token.
The asce token origin must not be used to generate an effective
address for storage references. This however is erroneously done
within kvm_s390_shadow_tables().
Furthermore within the same function the wrong parts of virtual
addresses are used to generate a corresponding real address
(e.g. the region second index is used as region first index).
Both of the above can result in incorrect address translations. Only
for real space designations with a token origin of zero and addresses
below one megabyte the translation was correct.
Furthermore replace a "!asce.r" statement with a "!*fake" statement to
make it more obvious that a specific condition has nothing to do with
the architecture, but with the fake handling of real space designations.
Fixes: 3218f7094b6b ("s390/mm: support real-space for gmap shadows")
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fb3a5055cd7098f8d1dd0cd38d7172211113255f upstream.
Current DTLB load/store miss events (0x608/0x649) only counts 4K,2M and
4M page size.
Need to extend the events to support any page size (4K/2M/4M/1G).
The complete DTLB load/store miss events are:
DTLB_LOAD_MISSES.WALK_COMPLETED 0xe08
DTLB_STORE_MISSES.WALK_COMPLETED 0xe49
Signed-off-by: Kan Liang <Kan.liang@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20170619142609.11058-1-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a91e0f680bcd9e10c253ae8b62462a38bd48f09f upstream.
When using get_options() it's possible to specify a range of numbers,
like 1-100500. The problem is that it doesn't track array size while
calling internally to get_range() which iterates over the range and
fills the memory with numbers.
Link: http://lkml.kernel.org/r/2613C75C-B04D-4BFF-82A6-12F97BA0F620@gmail.com
Signed-off-by: Ilya V. Matveychikov <matvejchikov@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9fa4eb8e490a28de40964b1b0e583d8db4c7e57c upstream.
If a positive status is passed with the AUTOFS_DEV_IOCTL_FAIL ioctl,
autofs4_d_automount() will return
ERR_PTR(status)
with that status to follow_automount(), which will then dereference an
invalid pointer.
So treat a positive status the same as zero, and map to ENOENT.
See comment in systemd src/core/automount.c::automount_send_ready().
Link: http://lkml.kernel.org/r/871sqwczx5.fsf@notabene.neil.brown.name
Signed-off-by: NeilBrown <neilb@suse.com>
Cc: Ian Kent <raven@themaw.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf05fc25f268cd62f147f368fe65ad3e5b04fe9f upstream.
When a kthread calls call_usermodehelper() the steps are:
1. allocate current->mm
2. load_elf_binary()
3. populate current->thread.regs
While doing this, interrupts are not disabled. If there is a perf
interrupt in the middle of this process (i.e. step 1 has completed
but not yet reached to step 3) and if perf tries to read userspace
regs, kernel oops with following log:
Unable to handle kernel paging request for data at address 0x00000000
Faulting instruction address: 0xc0000000000da0fc
...
Call Trace:
perf_output_sample_regs+0x6c/0xd0
perf_output_sample+0x4e4/0x830
perf_event_output_forward+0x64/0x90
__perf_event_overflow+0x8c/0x1e0
record_and_restart+0x220/0x5c0
perf_event_interrupt+0x2d8/0x4d0
performance_monitor_exception+0x54/0x70
performance_monitor_common+0x158/0x160
--- interrupt: f01 at avtab_search_node+0x150/0x1a0
LR = avtab_search_node+0x100/0x1a0
...
load_elf_binary+0x6e8/0x15a0
search_binary_handler+0xe8/0x290
do_execveat_common.isra.14+0x5f4/0x840
call_usermodehelper_exec_async+0x170/0x210
ret_from_kernel_thread+0x5c/0x7c
Fix it by setting abi to PERF_SAMPLE_REGS_ABI_NONE when userspace
pt_regs are not set.
Fixes: ed4a4ef85cf5 ("powerpc/perf: Add support for sampling interrupt register state")
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.vnet.ibm.com>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 98da7d08850fb8bdeb395d6368ed15753304aa0c upstream.
When limiting the argv/envp strings during exec to 1/4 of the stack limit,
the storage of the pointers to the strings was not included. This means
that an exec with huge numbers of tiny strings could eat 1/4 of the stack
limit in strings and then additional space would be later used by the
pointers to the strings.
For example, on 32-bit with a 8MB stack rlimit, an exec with 1677721
single-byte strings would consume less than 2MB of stack, the max (8MB /
4) amount allowed, but the pointers to the strings would consume the
remaining additional stack space (1677721 * 4 == 6710884).
The result (1677721 + 6710884 == 8388605) would exhaust stack space
entirely. Controlling this stack exhaustion could result in
pathological behavior in setuid binaries (CVE-2017-1000365).
[akpm@linux-foundation.org: additional commenting from Kees]
Fixes: b6a2fea39318 ("mm: variable length argument support")
Link: http://lkml.kernel.org/r/20170622001720.GA32173@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Qualys Security Advisory <qsa@qualys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2deaeaf102d692cb6f764123b1df7aa118a8e97c upstream.
The standard PCM chmap helper callbacks treat the NULL info->chmap as
a fatal error and spews the kernel warning with stack trace when
CONFIG_SND_DEBUG is on. This was OK, originally it was supposed to be
always static and non-NULL. But, as the recent addition of Intel LPE
audio driver shows, the chmap content may vary dynamically, and it can
be even NULL when disconnected. The user still sees the kernel
warning unnecessarily.
For clearing such a confusion, this patch simply removes the
snd_BUG_ON() in each place, just returns an error without warning.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4a9bfafc64f44ef83de4e00ca1b57352af6cd8c2 upstream.
At Linux v3.5, packet processing can be done in process context of ALSA
PCM application as well as software IRQ context for OHCI 1394. Below is
an example of the callgraph (some calls are omitted).
ioctl(2) with e.g. HWSYNC
(sound/core/pcm_native.c)
->snd_pcm_common_ioctl1()
->snd_pcm_hwsync()
->snd_pcm_stream_lock_irq
(sound/core/pcm_lib.c)
->snd_pcm_update_hw_ptr()
->snd_pcm_udpate_hw_ptr0()
->struct snd_pcm_ops.pointer()
(sound/firewire/*)
= Each handler on drivers in ALSA firewire stack
(sound/firewire/amdtp-stream.c)
->amdtp_stream_pcm_pointer()
(drivers/firewire/core-iso.c)
->fw_iso_context_flush_completions()
->struct fw_card_driver.flush_iso_completion()
(drivers/firewire/ohci.c)
= flush_iso_completions()
->struct fw_iso_context.callback.sc
(sound/firewire/amdtp-stream.c)
= in_stream_callback() or out_stream_callback()
->...
->snd_pcm_stream_unlock_irq
When packet queueing error occurs or detecting invalid packets in
'in_stream_callback()' or 'out_stream_callback()', 'snd_pcm_stop_xrun()'
is called on local CPU with disabled IRQ.
(sound/firewire/amdtp-stream.c)
in_stream_callback() or out_stream_callback()
->amdtp_stream_pcm_abort()
->snd_pcm_stop_xrun()
->snd_pcm_stream_lock_irqsave()
->snd_pcm_stop()
->snd_pcm_stream_unlock_irqrestore()
The process is stalled on the CPU due to attempt to acquire recursive lock.
[ 562.630853] INFO: rcu_sched detected stalls on CPUs/tasks:
[ 562.630861] 2-...: (1 GPs behind) idle=37d/140000000000000/0 softirq=38323/38323 fqs=7140
[ 562.630862] (detected by 3, t=15002 jiffies, g=21036, c=21035, q=5933)
[ 562.630866] Task dump for CPU 2:
[ 562.630867] alsa-source-OXF R running task 0 6619 1 0x00000008
[ 562.630870] Call Trace:
[ 562.630876] ? vt_console_print+0x79/0x3e0
[ 562.630880] ? msg_print_text+0x9d/0x100
[ 562.630883] ? up+0x32/0x50
[ 562.630885] ? irq_work_queue+0x8d/0xa0
[ 562.630886] ? console_unlock+0x2b6/0x4b0
[ 562.630888] ? vprintk_emit+0x312/0x4a0
[ 562.630892] ? dev_vprintk_emit+0xbf/0x230
[ 562.630895] ? do_sys_poll+0x37a/0x550
[ 562.630897] ? dev_printk_emit+0x4e/0x70
[ 562.630900] ? __dev_printk+0x3c/0x80
[ 562.630903] ? _raw_spin_lock+0x20/0x30
[ 562.630909] ? snd_pcm_stream_lock+0x31/0x50 [snd_pcm]
[ 562.630914] ? _snd_pcm_stream_lock_irqsave+0x2e/0x40 [snd_pcm]
[ 562.630918] ? snd_pcm_stop_xrun+0x16/0x70 [snd_pcm]
[ 562.630922] ? in_stream_callback+0x3e6/0x450 [snd_firewire_lib]
[ 562.630925] ? handle_ir_packet_per_buffer+0x8e/0x1a0 [firewire_ohci]
[ 562.630928] ? ohci_flush_iso_completions+0xa3/0x130 [firewire_ohci]
[ 562.630932] ? fw_iso_context_flush_completions+0x15/0x20 [firewire_core]
[ 562.630935] ? amdtp_stream_pcm_pointer+0x2d/0x40 [snd_firewire_lib]
[ 562.630938] ? pcm_capture_pointer+0x19/0x20 [snd_oxfw]
[ 562.630943] ? snd_pcm_update_hw_ptr0+0x47/0x3d0 [snd_pcm]
[ 562.630945] ? poll_select_copy_remaining+0x150/0x150
[ 562.630947] ? poll_select_copy_remaining+0x150/0x150
[ 562.630952] ? snd_pcm_update_hw_ptr+0x10/0x20 [snd_pcm]
[ 562.630956] ? snd_pcm_hwsync+0x45/0xb0 [snd_pcm]
[ 562.630960] ? snd_pcm_common_ioctl1+0x1ff/0xc90 [snd_pcm]
[ 562.630962] ? futex_wake+0x90/0x170
[ 562.630966] ? snd_pcm_capture_ioctl1+0x136/0x260 [snd_pcm]
[ 562.630970] ? snd_pcm_capture_ioctl+0x27/0x40 [snd_pcm]
[ 562.630972] ? do_vfs_ioctl+0xa3/0x610
[ 562.630974] ? vfs_read+0x11b/0x130
[ 562.630976] ? SyS_ioctl+0x79/0x90
[ 562.630978] ? entry_SYSCALL_64_fastpath+0x1e/0xad
This commit fixes the above bug. This assumes two cases:
1. Any error is detected in software IRQ context of OHCI 1394 context.
In this case, PCM substream should be aborted in packet handler. On the
other hand, it should not be done in any process context. TO distinguish
these two context, use 'in_interrupt()' macro.
2. Any error is detect in process context of ALSA PCM application.
In this case, PCM substream should not be aborted in packet handler
because PCM substream lock is acquired. The task to abort PCM substream
should be done in ALSA PCM core. For this purpose, SNDRV_PCM_POS_XRUN is
returned at 'struct snd_pcm_ops.pointer()'.
Suggested-by: Clemens Ladisch <clemens@ladisch.de>
Fixes: e9148dddc3c7("ALSA: firewire-lib: flush completed packets when reading PCM position")
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 089bc0143f489bd3a4578bdff5f4ca68fb26f341 upstream.
Rather than constructing a local structure instance on the stack, fill
the fields directly on the shared ring, just like other backends do.
Build on the fact that all response structure flavors are actually
identical (the old code did make this assumption too).
This is XSA-216.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 46464411307746e6297a034a9983a22c9dfc5a0c upstream.
Today disconnecting xen-blkback is broken in case there are still
I/Os in flight: xen_blkif_disconnect() will bail out early without
releasing all resources in the hope it will be called again when
the last request has terminated. This, however, won't happen as
xen_blkif_free() won't be called on termination of the last running
request: xen_blkif_put() won't decrement the blkif refcnt to 0 as
xen_blkif_disconnect() didn't finish before thus some xen_blkif_put()
calls in xen_blkif_disconnect() didn't happen.
To solve this deadlock xen_blkif_disconnect() and
xen_blkif_alloc_rings() shouldn't use xen_blkif_put() and
xen_blkif_get() but use some other way to do their accounting of
resources.
This at once fixes another error in xen_blkif_disconnect(): when it
returned early with -EBUSY for another ring than 0 it would call
xen_blkif_put() again for already handled rings on a subsequent call.
This will lead to inconsistencies in the refcnt handling.
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Steven Haigh <netwiz@crc.id.au>
Acked-by: Roger Pau Monné <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 38b8f823864707eb1cf331d2247608c419ed388c upstream.
The register offset for the lcd1-ch1 clock was incorrectly pointing to
the lcd0-ch1 clock. This resulted in the lcd0-ch1 clock being disabled
when the clk core disables unused clocks. This then stops the simplefb
HDMI output path.
Reported-by: Bob Ham <rah@settrans.net>
Fixes: c6e6c96d8fa6 ("clk: sunxi-ng: Add A31/A31s clocks")
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
commit f4cb767d76cf7ee72f97dd76f6cfa6c76a5edc89 upstream.
Trinity gets kernel BUG at mm/mmap.c:1963! in about 3 minutes of
mmap testing. That's the VM_BUG_ON(gap_end < gap_start) at the
end of unmapped_area_topdown(). Linus points out how MAP_FIXED
(which does not have to respect our stack guard gap intentions)
could result in gap_end below gap_start there. Fix that, and
the similar case in its alternative, unmapped_area().
Fixes: 1be7107fbe18 ("mm: larger stack guard gap, between vmas")
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Debugged-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bd726c90b6b8ce87602208701b208a208e6d5600 upstream.
Fix expand_upwards() on architectures with an upward-growing stack (parisc,
metag and partly IA-64) to allow the stack to reliably grow exactly up to
the address space limit given by TASK_SIZE.
Signed-off-by: Helge Deller <deller@gmx.de>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1be7107fbe18eed3e319a6c3e83c78254b693acb upstream.
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[wt: backport to 4.11: adjust context]
[wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide]
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ff86bf0c65f14346bf2440534f9ba5ac232c39a0 upstream.
The alarmtimer code has another source of potentially rearming itself too
fast. Interval timers with a very samll interval have a similar CPU hog
effect as the previously fixed overflow issue.
The reason is that alarmtimers do not implement the normal protection
against this kind of problem which the other posix timer use:
timer expires -> queue signal -> deliver signal -> rearm timer
This scheme brings the rearming under scheduler control and prevents
permanently firing timers which hog the CPU.
Bringing this scheme to the alarm timer code is a major overhaul because it
lacks all the necessary mechanisms completely.
So for a quick fix limit the interval to one jiffie. This is not
problematic in practice as alarmtimers are usually backed by an RTC for
suspend which have 1 second resolution. It could be therefor argued that
the resolution of this clock should be set to 1 second in general, but
that's outside the scope of this fix.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kostya Serebryany <kcc@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20170530211655.896767100@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d41519a69b35b10af7fda867fb9100df24fdf403 upstream.
On sparc, if we have an alloca() like situation, as is the case with
SHASH_DESC_ON_STACK(), we can end up referencing deallocated stack
memory. The result can be that the value is clobbered if a trap
or interrupt arrives at just the right instruction.
It only occurs if the function ends returning a value from that
alloca() area and that value can be placed into the return value
register using a single instruction.
For example, in lib/libcrc32c.c:crc32c() we end up with a return
sequence like:
return %i7+8
lduw [%o5+16], %o0 ! MEM[(u32 *)__shash_desc.1_10 + 16B],
%o5 holds the base of the on-stack area allocated for the shash
descriptor. But the return released the stack frame and the
register window.
So if an intererupt arrives between 'return' and 'lduw', then
the value read at %o5+16 can be corrupted.
Add a data compiler barrier to work around this problem. This is
exactly what the gcc fix will end up doing as well, and it absolutely
should not change the code generated for other cpus (unless gcc
on them has the same bug :-)
With crucial insight from Eric Sandeen.
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 31574d321c70f6d3b40fe98f9b2eafd9a903fef9 upstream.
The current code passes the address of tpm_chip as the argument to
dev_get_drvdata() without prior NULL check in
tpm_ibmvtpm_get_desired_dma. This resulted an oops during kernel
boot when vTPM is enabled in Power partition configured in active
memory sharing mode.
The vio_driver's get_desired_dma() is called before the probe(), which
for vtpm is tpm_ibmvtpm_probe, and it's this latter function that
initializes the driver and set data. Attempting to get data before
the probe() caused the problem.
This patch adds a NULL check to the tpm_ibmvtpm_get_desired_dma.
fixes: 9e0d39d8a6a0 ("tpm: Remove useless priv field in struct tpm_vendor_specific")
Signed-off-by: Hon Ching(Vicky) Lo <honclo@linux.vnet.ibm.com>
Reviewed-by: Jarkko Sakkine <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bcd7c45e0d5a82be9a64b90050f0e09d41a50758 upstream.
The .its targets require information about the kernel binary, such as
its entry point, which is extracted from the vmlinux ELF. We therefore
require that the ELF is built before the .its files are generated.
Declare this requirement in the Makefile such that make will ensure this
is always the case, otherwise in corner cases we can hit issues as the
.its is generated with an incorrect (either invalid or stale) entry
point.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Fixes: cf2a5e0bb4c6 ("MIPS: Support generating Flattened Image Trees (.itb)")
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/16179/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1a73d9310e093fc3adffba4d0a67b9fab2ee3f63 upstream.
The code handling the pop76 opcode (ie. bnezc & jialc instructions) in
__compute_return_epc_for_insn() needs to set the value of $31 in the
jialc case, which is encoded with rs = 0. However its check to
differentiate bnezc (rs != 0) from jialc (rs = 0) was unfortunately
backwards, meaning that if we emulate a bnezc instruction we clobber $31
& if we emulate a jialc instruction it actually behaves like a jic
instruction.
Fix this by inverting the check of rs to match the way the instructions
are actually encoded.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Fixes: 28d6f93d201d ("MIPS: Emulate the new MIPS R6 BNEZC and JIALC instructions")
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/16178/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8ae584d1951f241efd45499f8774fd7066f22823 upstream.
Axius clock error path returns without disabling clock and suspend clock.
Fix it to disable them before returning error.
Reviewed-by: Javier Martinez Canillas <javier@osg.samsung.com>
Signed-off-by: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 990758c53eafe5a220a780ed12e7b4d51b3df032 upstream.
'cdev->os_desc_req' has been allocated with 'usb_ep_alloc_request()' so
'usb_ep_free_request()' should be used to free it.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f4781e76f90df7aec400635d73ea4c35ee1d4765 upstream.
Andrey reported a alartimer related RCU stall while fuzzing the kernel with
syzkaller.
The reason for this is an overflow in ktime_add() which brings the
resulting time into negative space and causes immediate expiry of the
timer. The following rearm with a small interval does not bring the timer
back into positive space due to the same issue.
This results in a permanent firing alarmtimer which hogs the CPU.
Use ktime_add_safe() instead which detects the overflow and clamps the
result to KTIME_SEC_MAX.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kostya Serebryany <kcc@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20170530211655.802921648@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fa07ab72cbb0d843429e61bf179308aed6cbe0dd upstream.
In case __irq_set_trigger() fails the resources requested via
irq_request_resources() are not released.
Add the missing release call into the error handling path.
Fixes: c1bacbae8192 ("genirq: Provide irq_request/release_resources chip callbacks")
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/655538f5-cb20-a892-ff15-fbd2dd1fa4ec@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 252d2a4117bc181b287eeddf848863788da733ae upstream.
idle_task_exit() can be called with IRQs on x86 on and therefore
should use switch_mm(), not switch_mm_irqs_off().
This doesn't seem to cause any problems right now, but it will
confuse my upcoming TLB flush changes. Nonetheless, I think it
should be backported because it's trivial. There won't be any
meaningful performance impact because idle_task_exit() is only
used when offlining a CPU.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f98db6013c55 ("sched/core: Add switch_mm_irqs_off() and use it in the scheduler")
Link: http://lkml.kernel.org/r/ca3d1a9fa93a0b49f5a8ff729eda3640fb6abdf9.1497034141.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 948588e25b8af5e66962ed3f53e1cae1656fa5af upstream.
Starting from MPU6500, accelerometer dlpf is set in a separate
register named ACCEL_CONFIG_2.
Add this new register in the map and set it for the corresponding
chips.
Signed-off-by: Jean-Baptiste Maneyrol <jmaneyrol@invensense.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef70762948dde012146926720b70e79736336764 upstream.
I saw need_resched() warnings when swapping on large swapfile (TBs)
because continuously allocating many pages in swap_cgroup_prepare() took
too long.
We already cond_resched when freeing page in swap_cgroup_swapoff(). Do
the same for the page allocation.
Link: http://lkml.kernel.org/r/20170604200109.17606-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7258ae5c5a2ce2f5969e8b18b881be40ab55433d upstream.
memory_failure() chooses a recovery action function based on the page
flags. For huge pages it uses the tail page flags which don't have
anything interesting set, resulting in:
> Memory failure: 0x9be3b4: Unknown page state
> Memory failure: 0x9be3b4: recovery action for unknown page: Failed
Instead, save a copy of the head page's flags if this is a huge page,
this means if there are no relevant flags for this tail page, we use the
head pages flags instead. This results in the me_huge_page() recovery
action being called:
> Memory failure: 0x9b7969: recovery action for huge page: Delayed
For hugepages that have not yet been allocated, this allows the hugepage
to be dequeued.
Fixes: 524fca1e7356 ("HWPOISON: fix misjudgement of page_action() for errors on mlocked pages")
Link: http://lkml.kernel.org/r/20170524130204.21845-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f16443a034c7aa359ddf6f0f9bc40d01ca31faea upstream.
Using the syzkaller kernel fuzzer, Andrey Konovalov generated the
following error in gadgetfs:
> BUG: KASAN: use-after-free in __lock_acquire+0x3069/0x3690
> kernel/locking/lockdep.c:3246
> Read of size 8 at addr ffff88003a2bdaf8 by task kworker/3:1/903
>
> CPU: 3 PID: 903 Comm: kworker/3:1 Not tainted 4.12.0-rc4+ #35
> Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
> Workqueue: usb_hub_wq hub_event
> Call Trace:
> __dump_stack lib/dump_stack.c:16 [inline]
> dump_stack+0x292/0x395 lib/dump_stack.c:52
> print_address_description+0x78/0x280 mm/kasan/report.c:252
> kasan_report_error mm/kasan/report.c:351 [inline]
> kasan_report+0x230/0x340 mm/kasan/report.c:408
> __asan_report_load8_noabort+0x19/0x20 mm/kasan/report.c:429
> __lock_acquire+0x3069/0x3690 kernel/locking/lockdep.c:3246
> lock_acquire+0x22d/0x560 kernel/locking/lockdep.c:3855
> __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
> _raw_spin_lock+0x2f/0x40 kernel/locking/spinlock.c:151
> spin_lock include/linux/spinlock.h:299 [inline]
> gadgetfs_suspend+0x89/0x130 drivers/usb/gadget/legacy/inode.c:1682
> set_link_state+0x88e/0xae0 drivers/usb/gadget/udc/dummy_hcd.c:455
> dummy_hub_control+0xd7e/0x1fb0 drivers/usb/gadget/udc/dummy_hcd.c:2074
> rh_call_control drivers/usb/core/hcd.c:689 [inline]
> rh_urb_enqueue drivers/usb/core/hcd.c:846 [inline]
> usb_hcd_submit_urb+0x92f/0x20b0 drivers/usb/core/hcd.c:1650
> usb_submit_urb+0x8b2/0x12c0 drivers/usb/core/urb.c:542
> usb_start_wait_urb+0x148/0x5b0 drivers/usb/core/message.c:56
> usb_internal_control_msg drivers/usb/core/message.c:100 [inline]
> usb_control_msg+0x341/0x4d0 drivers/usb/core/message.c:151
> usb_clear_port_feature+0x74/0xa0 drivers/usb/core/hub.c:412
> hub_port_disable+0x123/0x510 drivers/usb/core/hub.c:4177
> hub_port_init+0x1ed/0x2940 drivers/usb/core/hub.c:4648
> hub_port_connect drivers/usb/core/hub.c:4826 [inline]
> hub_port_connect_change drivers/usb/core/hub.c:4999 [inline]
> port_event drivers/usb/core/hub.c:5105 [inline]
> hub_event+0x1ae1/0x3d40 drivers/usb/core/hub.c:5185
> process_one_work+0xc08/0x1bd0 kernel/workqueue.c:2097
> process_scheduled_works kernel/workqueue.c:2157 [inline]
> worker_thread+0xb2b/0x1860 kernel/workqueue.c:2233
> kthread+0x363/0x440 kernel/kthread.c:231
> ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:424
>
> Allocated by task 9958:
> save_stack_trace+0x1b/0x20 arch/x86/kernel/stacktrace.c:59
> save_stack+0x43/0xd0 mm/kasan/kasan.c:513
> set_track mm/kasan/kasan.c:525 [inline]
> kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:617
> kmem_cache_alloc_trace+0x87/0x280 mm/slub.c:2745
> kmalloc include/linux/slab.h:492 [inline]
> kzalloc include/linux/slab.h:665 [inline]
> dev_new drivers/usb/gadget/legacy/inode.c:170 [inline]
> gadgetfs_fill_super+0x24f/0x540 drivers/usb/gadget/legacy/inode.c:1993
> mount_single+0xf6/0x160 fs/super.c:1192
> gadgetfs_mount+0x31/0x40 drivers/usb/gadget/legacy/inode.c:2019
> mount_fs+0x9c/0x2d0 fs/super.c:1223
> vfs_kern_mount.part.25+0xcb/0x490 fs/namespace.c:976
> vfs_kern_mount fs/namespace.c:2509 [inline]
> do_new_mount fs/namespace.c:2512 [inline]
> do_mount+0x41b/0x2d90 fs/namespace.c:2834
> SYSC_mount fs/namespace.c:3050 [inline]
> SyS_mount+0xb0/0x120 fs/namespace.c:3027
> entry_SYSCALL_64_fastpath+0x1f/0xbe
>
> Freed by task 9960:
> save_stack_trace+0x1b/0x20 arch/x86/kernel/stacktrace.c:59
> save_stack+0x43/0xd0 mm/kasan/kasan.c:513
> set_track mm/kasan/kasan.c:525 [inline]
> kasan_slab_free+0x72/0xc0 mm/kasan/kasan.c:590
> slab_free_hook mm/slub.c:1357 [inline]
> slab_free_freelist_hook mm/slub.c:1379 [inline]
> slab_free mm/slub.c:2961 [inline]
> kfree+0xed/0x2b0 mm/slub.c:3882
> put_dev+0x124/0x160 drivers/usb/gadget/legacy/inode.c:163
> gadgetfs_kill_sb+0x33/0x60 drivers/usb/gadget/legacy/inode.c:2027
> deactivate_locked_super+0x8d/0xd0 fs/super.c:309
> deactivate_super+0x21e/0x310 fs/super.c:340
> cleanup_mnt+0xb7/0x150 fs/namespace.c:1112
> __cleanup_mnt+0x1b/0x20 fs/namespace.c:1119
> task_work_run+0x1a0/0x280 kernel/task_work.c:116
> exit_task_work include/linux/task_work.h:21 [inline]
> do_exit+0x18a8/0x2820 kernel/exit.c:878
> do_group_exit+0x14e/0x420 kernel/exit.c:982
> get_signal+0x784/0x1780 kernel/signal.c:2318
> do_signal+0xd7/0x2130 arch/x86/kernel/signal.c:808
> exit_to_usermode_loop+0x1ac/0x240 arch/x86/entry/common.c:157
> prepare_exit_to_usermode arch/x86/entry/common.c:194 [inline]
> syscall_return_slowpath+0x3ba/0x410 arch/x86/entry/common.c:263
> entry_SYSCALL_64_fastpath+0xbc/0xbe
>
> The buggy address belongs to the object at ffff88003a2bdae0
> which belongs to the cache kmalloc-1024 of size 1024
> The buggy address is located 24 bytes inside of
> 1024-byte region [ffff88003a2bdae0, ffff88003a2bdee0)
> The buggy address belongs to the page:
> page:ffffea0000e8ae00 count:1 mapcount:0 mapping: (null)
> index:0x0 compound_mapcount: 0
> flags: 0x100000000008100(slab|head)
> raw: 0100000000008100 0000000000000000 0000000000000000 0000000100170017
> raw: ffffea0000ed3020 ffffea0000f5f820 ffff88003e80efc0 0000000000000000
> page dumped because: kasan: bad access detected
>
> Memory state around the buggy address:
> ffff88003a2bd980: fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
> ffff88003a2bda00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
> >ffff88003a2bda80: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fb
> ^
> ffff88003a2bdb00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff88003a2bdb80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ==================================================================
What this means is that the gadgetfs_suspend() routine was trying to
access dev->lock after it had been deallocated. The root cause is a
race in the dummy_hcd driver; the dummy_udc_stop() routine can race
with the rest of the driver because it contains no locking. And even
when proper locking is added, it can still race with the
set_link_state() function because that function incorrectly drops the
private spinlock before invoking any gadget driver callbacks.
The result of this race, as seen above, is that set_link_state() can
invoke a callback in gadgetfs even after gadgetfs has been unbound
from dummy_hcd's UDC and its private data structures have been
deallocated.
include/linux/usb/gadget.h documents that the ->reset, ->disconnect,
->suspend, and ->resume callbacks may be invoked in interrupt context.
In general this is necessary, to prevent races with gadget driver
removal. This patch fixes dummy_hcd to retain the spinlock across
these calls, and it adds a spinlock acquisition to dummy_udc_stop() to
prevent the race.
The net2280 driver makes the same mistake of dropping the private
spinlock for its ->disconnect and ->reset callback invocations. The
patch fixes it too.
Lastly, since gadgetfs_suspend() may be invoked in interrupt context,
it cannot assume that interrupts are enabled when it runs. It must
use spin_lock_irqsave() instead of spin_lock_irq(). The patch fixes
that bug as well.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Reported-and-tested-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f50b878fed33e360d01dcdc31a8eeb1815d033d5 upstream.
A NULL-pointer dereference bug in gadgetfs was uncovered by syzkaller:
> kasan: GPF could be caused by NULL-ptr deref or user memory access
> general protection fault: 0000 [#1] SMP KASAN
> Dumping ftrace buffer:
> (ftrace buffer empty)
> Modules linked in:
> CPU: 2 PID: 4820 Comm: syz-executor0 Not tainted 4.12.0-rc4+ #5
> Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
> task: ffff880039542dc0 task.stack: ffff88003bdd0000
> RIP: 0010:__list_del_entry_valid+0x7e/0x170 lib/list_debug.c:51
> RSP: 0018:ffff88003bdd6e50 EFLAGS: 00010246
> RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000010000
> RDX: 0000000000000000 RSI: ffffffff86504948 RDI: ffffffff86504950
> RBP: ffff88003bdd6e68 R08: ffff880039542dc0 R09: ffffffff8778ce00
> R10: ffff88003bdd6e68 R11: dffffc0000000000 R12: 0000000000000000
> R13: dffffc0000000000 R14: 1ffff100077badd2 R15: ffffffff864d2e40
> FS: 0000000000000000(0000) GS:ffff88006dc00000(0000) knlGS:0000000000000000
> CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 000000002014aff9 CR3: 0000000006022000 CR4: 00000000000006e0
> Call Trace:
> __list_del_entry include/linux/list.h:116 [inline]
> list_del include/linux/list.h:124 [inline]
> usb_gadget_unregister_driver+0x166/0x4c0 drivers/usb/gadget/udc/core.c:1387
> dev_release+0x80/0x160 drivers/usb/gadget/legacy/inode.c:1187
> __fput+0x332/0x7f0 fs/file_table.c:209
> ____fput+0x15/0x20 fs/file_table.c:245
> task_work_run+0x19b/0x270 kernel/task_work.c:116
> exit_task_work include/linux/task_work.h:21 [inline]
> do_exit+0x18a3/0x2820 kernel/exit.c:878
> do_group_exit+0x149/0x420 kernel/exit.c:982
> get_signal+0x77f/0x1780 kernel/signal.c:2318
> do_signal+0xd2/0x2130 arch/x86/kernel/signal.c:808
> exit_to_usermode_loop+0x1a7/0x240 arch/x86/entry/common.c:157
> prepare_exit_to_usermode arch/x86/entry/common.c:194 [inline]
> syscall_return_slowpath+0x3ba/0x410 arch/x86/entry/common.c:263
> entry_SYSCALL_64_fastpath+0xbc/0xbe
> RIP: 0033:0x4461f9
> RSP: 002b:00007fdac2b1ecf8 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
> RAX: fffffffffffffe00 RBX: 00000000007080c8 RCX: 00000000004461f9
> RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00000000007080c8
> RBP: 00000000007080a8 R08: 0000000000000000 R09: 0000000000000000
> R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
> R13: 0000000000000000 R14: 00007fdac2b1f9c0 R15: 00007fdac2b1f700
> Code: 00 00 00 00 ad de 49 39 c4 74 6a 48 b8 00 02 00 00 00 00 ad de
> 48 89 da 48 39 c3 74 74 48 c1 ea 03 48 b8 00 00 00 00 00 fc ff df <80>
> 3c 02 00 0f 85 92 00 00 00 48 8b 13 48 39 f2 75 66 49 8d 7c
> RIP: __list_del_entry_valid+0x7e/0x170 lib/list_debug.c:51 RSP: ffff88003bdd6e50
> ---[ end trace 30e94b1eec4831c8 ]---
> Kernel panic - not syncing: Fatal exception
The bug was caused by dev_release() failing to turn off its
gadget_registered flag after unregistering the gadget driver. As a
result, when a later user closed the device file before writing a
valid set of descriptors, dev_release() thought the gadget had been
registered and tried to unregister it, even though it had not been.
This led to the NULL pointer dereference.
The fix is simple: turn off the flag when the gadget is unregistered.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Reported-and-tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d2f48f05cd2a2a0a708fbfa45f1a00a87660d937 upstream.
When plugging an USB webcam I see the following message:
[106385.615559] xhci_hcd 0000:04:00.0: WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?
[106390.583860] handle_tx_event: 913 callbacks suppressed
With this patch applied, I get no more printing of this message.
Signed-off-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b72eb8435b25be3a1880264cf32ac91e626ba5ba upstream.
xHCI host controllers can have both USB 3.1 and 3.0 extended speed
protocol lists. If the USB3.1 speed is parsed first and 3.0 second then
the minor revision supported will be overwritten by the 3.0 speeds and
the USB3 roothub will only show support for USB 3.0 speeds.
This was the case with a xhci controller with the supported protocol
capability listed below.
In xhci-mem.c, the USB 3.1 speed is parsed first, the min_rev of usb3_rhub
is set as 0x10. And then USB 3.0 is parsed. However, the min_rev of
usb3_rhub will be changed to 0x00. If USB 3.1 device is connected behind
this host controller, the speed of USB 3.1 device just reports 5G speed
using lsusb.
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 01 08 00 00 00 00 00 40 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20 02 08 10 03 55 53 42 20 01 02 00 00 00 00 00 00 //USB 3.1
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 02 08 00 03 55 53 42 20 03 06 00 00 00 00 00 00 //USB 3.0
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 02 08 00 02 55 53 42 20 09 0E 19 00 00 00 00 00 //USB 2.0
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
This patch fixes the issue by only owerwriting the minor revision if
it is higher than the existing one.
[reword commit message -Mathias]
Signed-off-by: YD Tseng <yd_tseng@asmedia.com.tw>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8128a31eaadbcdfa37774bbd28f3f00bac69996a upstream.
c2port_device_register() never returns NULL, it uses error pointers.
Link: http://lkml.kernel.org/r/20170412083321.GC3250@mwanda
Fixes: 65131cd52b9e ("c2port: add c2port support for Eurotech Duramar 2150")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Rodolfo Giometti <giometti@linux.it>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 816c9311f1144a03da1fdc4feb2f6b0d3299fca0 upstream.
This function only has one caller. Freeing "vdev" here leads to a use
after free bug. There are several other error paths in this function
but this is the only one which frees "vdev". It looks like the kfree()
can be safely removed.
Fixes: 61e9c905df78 ("misc: mic: Enable VOP host side functionality")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1427228d5869f5804b03d47acfa4a88122572a78 upstream.
This fixes the below crash when ath10k probe firmware fails, NAPI polling tries
to access a rx ring resource which was never allocated. An easy way to
reproduce this is easy to remove all the firmware files, load ath10k modules
and ath10k will crash when calling 'rmmod ath10k_pci'. The fix is to call
napi_enable() from ath10k_pci_hif_start() so that it matches with
napi_disable() being called from ath10k_pci_hif_stop().
Big thanks to Mohammed Shafi Shajakhan who debugged this and provided first
version of the fix. In this patch I just fix the actual problem in pci.c
instead of having a workaround in core.c.
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: __ath10k_htt_rx_ring_fill_n+0x19/0x230 [ath10k_core]
__ath10k_htt_rx_ring_fill_n+0x19/0x230 [ath10k_core]
Call Trace:
[<ffffffffa113ec62>] ath10k_htt_rx_msdu_buff_replenish+0x42/0x90
[ath10k_core]
[<ffffffffa113f393>] ath10k_htt_txrx_compl_task+0x433/0x17d0
[ath10k_core]
[<ffffffff8114406d>] ? __wake_up_common+0x4d/0x80
[<ffffffff811349ec>] ? cpu_load_update+0xdc/0x150
[<ffffffffa119301d>] ? ath10k_pci_read32+0xd/0x10 [ath10k_pci]
[<ffffffffa1195b17>] ath10k_pci_napi_poll+0x47/0x110 [ath10k_pci]
[<ffffffff817863af>] net_rx_action+0x20f/0x370
Reported-by: Ben Greear <greearb@candelatech.com>
Fixes: 3c97f5de1f28 ("ath10k: implement NAPI support")
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|