summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)Author
2016-03-22KVM: VMX: fix nested vpid for old KVM guestsPaolo Bonzini
Old KVM guests invoke single-context invvpid without actually checking whether it is supported. This was fixed by commit 518c8ae ("KVM: VMX: Make sure single type invvpid is supported before issuing invvpid instruction", 2010-08-01) and the patch after, but pre-2.6.36 kernels lack it including RHEL 6. Reported-by: jmontleo@redhat.com Tested-by: jmontleo@redhat.com Cc: stable@vger.kernel.org Fixes: 99b83ac893b84ed1a62ad6d1f2b6cc32026b9e85 Reviewed-by: David Matlack <dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-22KVM: VMX: avoid guest hang on invalid invvpid instructionPaolo Bonzini
A guest executing an invalid invvpid instruction would hang because the instruction pointer was not updated. Reported-by: jmontleo@redhat.com Tested-by: jmontleo@redhat.com Cc: stable@vger.kernel.org Fixes: 99b83ac893b84ed1a62ad6d1f2b6cc32026b9e85 Reviewed-by: David Matlack <dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-22KVM: VMX: avoid guest hang on invalid invept instructionPaolo Bonzini
A guest executing an invalid invept instruction would hang because the instruction pointer was not updated. Cc: stable@vger.kernel.org Fixes: bfd0a56b90005f8c8a004baf407ad90045c2b11e Reviewed-by: David Matlack <dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-21Merge branch 'core-objtool-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull 'objtool' stack frame validation from Ingo Molnar: "This tree adds a new kernel build-time object file validation feature (ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation. It was written by and is maintained by Josh Poimboeuf. The motivation: there's a category of hard to find kernel bugs, most of them in assembly code (but also occasionally in C code), that degrades the quality of kernel stack dumps/backtraces. These bugs are hard to detect at the source code level. Such bugs result in incorrect/incomplete backtraces most of time - but can also in some rare cases result in crashes or other undefined behavior. The build time correctness checking is done via the new 'objtool' user-space utility that was written for this purpose and which is hosted in the kernel repository in tools/objtool/. The tool's (very simple) UI and source code design is shaped after Git and perf and shares quite a bit of infrastructure with tools/perf (which tooling infrastructure sharing effort got merged via perf and is already upstream). Objtool follows the well-known kernel coding style. Objtool does not try to check .c or .S files, it instead analyzes the resulting .o generated machine code from first principles: it decodes the instruction stream and interprets it. (Right now objtool supports the x86-64 architecture.) From tools/objtool/Documentation/stack-validation.txt: "The kernel CONFIG_STACK_VALIDATION option enables a host tool named objtool which runs at compile time. It has a "check" subcommand which analyzes every .o file and ensures the validity of its stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. Currently it only checks frame pointer usage, but there are plans to add CFI validation for C files and CFI generation for asm files. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables." When this new kernel option is enabled (it's disabled by default), the tool, if it finds any suspicious assembly code pattern, outputs warnings in compiler warning format: warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup warning: objtool:__schedule()+0x3c0: duplicate frame pointer save warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer ... so that scripts that pick up compiler warnings will notice them. All known warnings triggered by the tool are fixed by the tree, most of the commits in fact prepare the kernel to be warning-free. Most of them are bugfixes or cleanups that stand on their own, but there are also some annotations of 'special' stack frames for justified cases such entries to JIT-ed code (BPF) or really special boot time code. There are two other long-term motivations behind this tool as well: - To improve the quality and reliability of kernel stack frames, so that they can be used for optimized live patching. - To create independent infrastructure to check the correctness of CFI stack frames at build time. CFI debuginfo is notoriously unreliable and we cannot use it in the kernel as-is without extra checking done both on the kernel side and on the build side. The quality of kernel stack frames matters to debuggability as well, so IMO we can merge this without having to consider the live patching or CFI debuginfo angle" * 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) objtool: Only print one warning per function objtool: Add several performance improvements tools: Copy hashtable.h into tools directory objtool: Fix false positive warnings for functions with multiple switch statements objtool: Rename some variables and functions objtool: Remove superflous INIT_LIST_HEAD objtool: Add helper macros for traversing instructions objtool: Fix false positive warnings related to sibling calls objtool: Compile with debugging symbols objtool: Detect infinite recursion objtool: Prevent infinite recursion in noreturn detection objtool: Detect and warn if libelf is missing and don't break the build tools: Support relative directory path for 'O=' objtool: Support CROSS_COMPILE x86/asm/decoder: Use explicitly signed chars objtool: Enable stack metadata validation on 64-bit x86 objtool: Add CONFIG_STACK_VALIDATION option objtool: Add tool to perform compile-time stack metadata validation x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard sched: Always inline context_switch() ...
2016-03-16Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "One of the largest releases for KVM... Hardly any generic changes, but lots of architecture-specific updates. ARM: - VHE support so that we can run the kernel at EL2 on ARMv8.1 systems - PMU support for guests - 32bit world switch rewritten in C - various optimizations to the vgic save/restore code. PPC: - enabled KVM-VFIO integration ("VFIO device") - optimizations to speed up IPIs between vcpus - in-kernel handling of IOMMU hypercalls - support for dynamic DMA windows (DDW). s390: - provide the floating point registers via sync regs; - separated instruction vs. data accesses - dirty log improvements for huge guests - bugfixes and documentation improvements. x86: - Hyper-V VMBus hypercall userspace exit - alternative implementation of lowest-priority interrupts using vector hashing (for better VT-d posted interrupt support) - fixed guest debugging with nested virtualizations - improved interrupt tracking in the in-kernel IOAPIC - generic infrastructure for tracking writes to guest memory - currently its only use is to speedup the legacy shadow paging (pre-EPT) case, but in the future it will be used for virtual GPUs as well - much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits) KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch KVM: x86: disable MPX if host did not enable MPX XSAVE features arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit arm64: KVM: vgic-v3: Reset LRs at boot time arm64: KVM: vgic-v3: Do not save an LR known to be empty arm64: KVM: vgic-v3: Save maintenance interrupt state only if required arm64: KVM: vgic-v3: Avoid accessing ICH registers KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit KVM: arm/arm64: vgic-v2: Reset LRs at boot time KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers KVM: s390: allocate only one DMA page per VM KVM: s390: enable STFLE interpretation only if enabled for the guest KVM: s390: wake up when the VCPU cpu timer expires KVM: s390: step the VCPU timer while in enabled wait KVM: s390: protect VCPU cpu timer with a seqcount KVM: s390: step VCPU cpu timer during kvm_run ioctl ...
2016-03-15Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "The main changes in this cycle are: - Make schedstats a runtime tunable (disabled by default) and optimize it via static keys. As most distributions enable CONFIG_SCHEDSTATS=y due to its instrumentation value, this is a nice performance enhancement. (Mel Gorman) - Implement 'simple waitqueues' (swait): these are just pure waitqueues without any of the more complex features of full-blown waitqueues (callbacks, wake flags, wake keys, etc.). Simple waitqueues have less memory overhead and are faster. Use simple waitqueues in the RCU code (in 4 different places) and for handling KVM vCPU wakeups. (Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker, Marcelo Tosatti) - sched/numa enhancements (Rik van Riel) - NOHZ performance enhancements (Rik van Riel) - Various sched/deadline enhancements (Steven Rostedt) - Various fixes (Peter Zijlstra) - ... and a number of other fixes, cleanups and smaller enhancements" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits) sched/cputime: Fix steal_account_process_tick() to always return jiffies sched/deadline: Remove dl_new from struct sched_dl_entity Revert "kbuild: Add option to turn incompatible pointer check into error" sched/deadline: Remove superfluous call to switched_to_dl() sched/debug: Fix preempt_disable_ip recording for preempt_disable() sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity time, acct: Drop irq save & restore from __acct_update_integrals() acct, time: Change indentation in __acct_update_integrals() sched, time: Remove non-power-of-two divides from __acct_update_integrals() sched/rt: Kick RT bandwidth timer immediately on start up sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug sched/debug: Move sched_domain_sysctl to debug.c sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c sched/rt: Fix PI handling vs. sched_setscheduler() sched/core: Remove duplicated sched_group_set_shares() prototype sched/fair: Consolidate nohz CPU load update code sched/fair: Avoid using decay_load_missed() with a negative value sched/deadline: Always calculate end of period on sched_yield() sched/cgroup: Fix cgroup entity load tracking tear-down rcu: Use simple wait queues where possible in rcutree ...
2016-03-10KVM: MMU: fix reserved bit check for ept=0/CR0.WP=0/CR4.SMEP=1/EFER.NX=0Paolo Bonzini
KVM has special logic to handle pages with pte.u=1 and pte.w=0 when CR0.WP=1. These pages' SPTEs flip continuously between two states: U=1/W=0 (user and supervisor reads allowed, supervisor writes not allowed) and U=0/W=1 (supervisor reads and writes allowed, user writes not allowed). When SMEP is in effect, however, U=0 will enable kernel execution of this page. To avoid this, KVM also sets NX=1 in the shadow PTE together with U=0, making the two states U=1/W=0/NX=gpte.NX and U=0/W=1/NX=1. When guest EFER has the NX bit cleared, the reserved bit check thinks that the latter state is invalid; teach it that the smep_andnot_wp case will also use the NX bit of SPTEs. Cc: stable@vger.kernel.org Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.inel.com> Fixes: c258b62b264fdc469b6d3610a907708068145e3b Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-10KVM: MMU: fix ept=0/pte.u=1/pte.w=0/CR0.WP=0/CR4.SMEP=1/EFER.NX=0 comboPaolo Bonzini
Yes, all of these are needed. :) This is admittedly a bit odd, but kvm-unit-tests access.flat tests this if you run it with "-cpu host" and of course ept=0. KVM runs the guest with CR0.WP=1, so it must handle supervisor writes specially when pte.u=1/pte.w=0/CR0.WP=0. Such writes cause a fault when U=1 and W=0 in the SPTE, but they must succeed because CR0.WP=0. When KVM gets the fault, it sets U=0 and W=1 in the shadow PTE and restarts execution. This will still cause a user write to fault, while supervisor writes will succeed. User reads will fault spuriously now, and KVM will then flip U and W again in the SPTE (U=1, W=0). User reads will be enabled and supervisor writes disabled, going back to the originary situation where supervisor writes fault spuriously. When SMEP is in effect, however, U=0 will enable kernel execution of this page. To avoid this, KVM also sets NX=1 in the shadow PTE together with U=0. If the guest has not enabled NX, the result is a continuous stream of page faults due to the NX bit being reserved. The fix is to force EFER.NX=1 even if the CPU is taking care of the EFER switch. (All machines with SMEP have the CPU_LOAD_IA32_EFER vm-entry control, so they do not use user-return notifiers for EFER---if they did, EFER.NX would be forced to the same value as the host). There is another bug in the reserved bit check, which I've split to a separate patch for easier application to stable kernels. Cc: stable@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Fixes: f6577a5fa15d82217ca73c74cd2dcbc0f6c781dd Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-09KVM: x86: remove eager_fpu field of struct kvm_vcpu_archPaolo Bonzini
It is now equal to use_eager_fpu(), which simply tests a cpufeature bit. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-09KVM: x86: disable MPX if host did not enable MPX XSAVE featuresPaolo Bonzini
When eager FPU is disabled, KVM will still see the MPX bit in CPUID and presumably the MPX vmentry and vmexit controls. However, it will not be able to expose the MPX XSAVE features to the guest, because the guest's accessible XSAVE features are always a subset of host_xcr0. In this case, we should disable the MPX CPUID bit, the BNDCFGS MSR, and the MPX vmentry and vmexit controls for nested virtualization. It is then unnecessary to enable guest eager FPU if the guest has the MPX CPUID bit set. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-09Merge tag 'kvm-arm-for-4.6' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/ARM updates for 4.6 - VHE support so that we can run the kernel at EL2 on ARMv8.1 systems - PMU support for guests - 32bit world switch rewritten in C - Various optimizations to the vgic save/restore code Conflicts: include/uapi/linux/kvm.h
2016-03-08KVM: VMX: disable PEBS before a guest entryRadim Krčmář
Linux guests on Haswell (and also SandyBridge and Broadwell, at least) would crash if you decided to run a host command that uses PEBS, like perf record -e 'cpu/mem-stores/pp' -a This happens because KVM is using VMX MSR switching to disable PEBS, but SDM [2015-12] 18.4.4.4 Re-configuring PEBS Facilities explains why it isn't safe: When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA). There might not be a quiescent period after the MSR switch, so a CPU ends up using host's MSR_IA32_DS_AREA to access an area in guest's memory. (Or MSR switching is just buggy on some models.) The guest can learn something about the host this way: If the guest doesn't map address pointed by MSR_IA32_DS_AREA, it results in #PF where we leak host's MSR_IA32_DS_AREA through CR2. After that, a malicious guest can map and configure memory where MSR_IA32_DS_AREA is pointing and can therefore get an output from host's tracing. This is not a critical leak as the host must initiate with PEBS tracing and I have not been able to get a record from more than one instruction before vmentry in vmx_vcpu_run() (that place has most registers already overwritten with guest's). We could disable PEBS just few instructions before vmentry, but disabling it earlier shouldn't affect host tracing too much. We also don't need to switch MSR_IA32_PEBS_ENABLE on VMENTRY, but that optimization isn't worth its code, IMO. (If you are implementing PEBS for guests, be sure to handle the case where both host and guest enable PEBS, because this patch doesn't.) Fixes: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") Cc: <stable@vger.kernel.org> Reported-by: Jiří Olša <jolsa@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: micro-optimize gpte_accessPaolo Bonzini
Avoid AND-NOT, most x86 processor lack an instruction for it. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: simplify last_pte_bitmapPaolo Bonzini
Branch-free code is fun and everybody knows how much Avi loves it, but last_pte_bitmap takes it a bit to the extreme. Since the code is simply doing a range check, like (level == 1 || ((gpte & PT_PAGE_SIZE_MASK) && level < N) we can make it branch-free without storing the entire truth table; it is enough to cache N. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: coalesce more page zapping in mmu_sync_childrenPaolo Bonzini
mmu_sync_children can only process up to 16 pages at a time. Check if we need to reschedule, and do not bother zapping the pages until that happens. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: move zap/flush to kvm_mmu_get_pagePaolo Bonzini
kvm_mmu_get_page is the only caller of kvm_sync_page_transient and kvm_sync_pages. Moving the handling of the invalid_list there removes the need for the underdocumented kvm_sync_page_transient function. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: invert return value of mmu.sync_page and *kvm_sync_page*Paolo Bonzini
Return true if the page was synced (and the TLB must be flushed) and false if the page was zapped. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: cleanup __kvm_sync_page and its callersPaolo Bonzini
Calling kvm_unlink_unsync_page in the middle of __kvm_sync_page makes things unnecessarily tricky. If kvm_mmu_prepare_zap_page is called, it will call kvm_unlink_unsync_page too. So kvm_unlink_unsync_page can be called just as well at the beginning or the end of __kvm_sync_page... which means that we might do it in kvm_sync_page too and remove the parameter. kvm_sync_page ends up being the same code that kvm_sync_pages used to have before the previous patch. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: use kvm_sync_page in kvm_sync_pagesPaolo Bonzini
If the last argument is true, kvm_unlink_unsync_page is called anyway in __kvm_sync_page (either by kvm_mmu_prepare_zap_page or by __kvm_sync_page itself). Therefore, kvm_sync_pages can just call kvm_sync_page, instead of going through kvm_unlink_unsync_page+__kvm_sync_page. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: move TLB flush out of __kvm_sync_pagePaolo Bonzini
By doing this, kvm_sync_pages can use __kvm_sync_page instead of reinventing it. Because of kvm_mmu_flush_or_zap, the code does not end up being more complex than before, and more cleanups to kvm_sync_pages will come in the next patches. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-08KVM: MMU: introduce kvm_mmu_flush_or_zapPaolo Bonzini
This is a generalization of mmu_pte_write_flush_tlb, that also takes care of calling kvm_mmu_commit_zap_page. The next patches will introduce more uses. Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: drop local copy of mul_u64_u32_divPaolo Bonzini
A function that does the same as i8254.c's muldiv64 has been added (for KVM's own use, in fact!) in include/linux/math64.h. Use it instead of muldiv64. Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: MMU: check kvm_mmu_pages and mmu_page_path indicesXiao Guangrong
Give a special invalid index to the root of the walk, so that we can check the consistency of kvm_mmu_pages and mmu_page_path. Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> [Extracted from a bigger patch proposed by Guangrong. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: MMU: Fix ubsan warningsPaolo Bonzini
kvm_mmu_pages_init is doing some really yucky stuff. It is setting up a sentinel for mmu_page_clear_parents; however, because of a) the way levels are numbered starting from 1 and b) the way mmu_page_path sizes its arrays with PT64_ROOT_LEVEL-1 elements, the access can be out of bounds. This is harmless because the code overwrites up to the first two elements of parents->idx and these are initialized, and because the sentinel is not needed in this case---mmu_page_clear_parents exits anyway when it gets to the end of the array. However ubsan complains, and everyone else should too. This fix does three things. First it makes the mmu_page_path arrays PT64_ROOT_LEVEL elements in size, so that we can write to them without checking the level in advance. Second it disintegrates kvm_mmu_pages_init between mmu_unsync_walk (to reset the struct kvm_mmu_pages) and for_each_sp (to place the NULL sentinel at the end of the current path). This is okay because the mmu_page_path is only used in mmu_pages_clear_parents; mmu_pages_clear_parents itself is called within a for_each_sp iterator, and hence always after a call to mmu_pages_next. Third it changes mmu_pages_clear_parents to just use the sentinel to stop iteration, without checking the bounds on level. Reported-by: Sasha Levin <sasha.levin@oracle.com> Reported-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: MMU: cleanup handle_abnormal_pfnPaolo Bonzini
The goto and temporary variable are unnecessary, just use return statements. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: VMX: use vmcs_clear/set_bits for debug register exitsPaolo Bonzini
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: turn kvm_kpit_state.reinject into atomic_tRadim Krčmář
Document possible races between readers and concurrent update to the ioctl. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: move PIT timer function initializationRadim Krčmář
We can do it just once. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: don't assume layout of kvm_kpit_stateRadim Krčmář
channels has offset 0 and correct size now, but that can change. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: remove pointless dereference of PITRadim Krčmář
PIT is known at that point. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: remove pit and kvm from kvm_kpit_stateRadim Krčmář
kvm isn't ever used and pit can be accessed with container_of. If you *really* need kvm, pit_state_to_pit(ps)->kvm. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: refactor kvm_free_pitRadim Krčmář
Could be easier to read, but git history will become deeper. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: refactor kvm_create_pitRadim Krčmář
Locks are gone, so we don't need to duplicate error paths. Use goto everywhere. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: remove notifiers from PIT discard policyRadim Krčmář
Discard policy doesn't rely on information from notifiers, so we don't need to register notifiers unconditionally. We kept correct counts in case userspace switched between policies during runtime, but that can be avoided by reseting the state. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: remove unnecessary uses of PIT state lockRadim Krčmář
- kvm_create_pit had to lock only because it exposed kvm->arch.vpit very early, but initialization doesn't use kvm->arch.vpit since the last patch, so we can drop locking. - kvm_free_pit is only run after there are no users of KVM and therefore is the sole actor. - Locking in kvm_vm_ioctl_reinject doesn't do anything, because reinject is only protected at that place. - kvm_pit_reset isn't used anywhere and its locking can be dropped if we hide it. Removing useless locking allows to see what actually is being protected by PIT state lock (values accessible from the guest). Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: pass struct kvm_pit instead of kvm in PITRadim Krčmář
This patch passes struct kvm_pit into internal PIT functions. Those functions used to get PIT through kvm->arch.vpit, even though most of them never used *kvm for other purposes. Another benefit is that we don't need to set kvm->arch.vpit during initialization. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: tone down WARN_ON pit.state_lockRadim Krčmář
If the guest could hit this, it would hang the host kernel, bacause of sheer number of those reports. Internal callers have to be sensible anyway, so we now only check for it in an API function. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: use atomic_t instead of pit.inject_lockRadim Krčmář
The lock was an overkill, the same can be done with atomics. A mb() was added in kvm_pit_ack_irq, to pair with implicit barrier between pit_timer_fn and pit_do_work. The mb() prevents a race that could happen if pending == 0 and irq_ack == 0: kvm_pit_ack_irq: | pit_timer_fn: p = atomic_read(&ps->pending); | | atomic_inc(&ps->pending); | queue_work(pit_do_work); | pit_do_work: | atomic_xchg(&ps->irq_ack, 0); | return; atomic_set(&ps->irq_ack, 1); | if (p == 0) return; | where the interrupt would not be delivered in this tick of pit_timer_fn. PIT would have eventually delivered the interrupt, but we sacrifice perofmance to make sure that interrupts are not needlessly delayed. sfence isn't enough: atomic_dec_if_positive does atomic_read first and x86 can reorder loads before stores. lfence isn't enough: store can pass lfence, turning it into a nop. A compiler barrier would be more than enough as CPU needs to stall for unbelievably long to use fences. This patch doesn't do anything in kvm_pit_reset_reinject, because any order of resets can race, but the result differs by at most one interrupt, which is ok, because it's the same result as if the reset happened at a slightly different time. (Original code didn't protect the reset path with a proper lock, so users have to be robust.) Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: add kvm_pit_reset_reinjectRadim Krčmář
pit_state.pending and pit_state.irq_ack are always reset at the same time. Create a function for them. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: simplify atomics in kvm_pit_ack_irqRadim Krčmář
We already have a helper that does the same thing. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-04KVM: i8254: change PIT discard tick policyRadim Krčmář
Discard policy uses ack_notifiers to prevent injection of PIT interrupts before EOI from the last one. This patch changes the policy to always try to deliver the interrupt, which makes a difference when its vector is in ISR. Old implementation would drop the interrupt, but proposed one injects to IRR, like real hardware would. The old policy breaks legacy NMI watchdogs, where PIT is used through virtual wire (LVT0): PIT never sends an interrupt before receiving EOI, thus a guest deadlock with disabled interrupts will stop NMIs. Note that NMI doesn't do EOI, so PIT also had to send a normal interrupt through IOAPIC. (KVM's PIT is deeply rotten and luckily not used much in modern systems.) Even though there is a chance of regressions, I think we can fix the LVT0 NMI bug without introducing a new tick policy. Cc: <stable@vger.kernel.org> Reported-by: Yuki Shibuya <shibuya.yk@ncos.nec.co.jp> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: MMU: apply page track notifierXiao Guangrong
Register the notifier to receive write track event so that we can update our shadow page table It makes kvm_mmu_pte_write() be the callback of the notifier, no function is changed Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: MMU: simplify mmu_need_write_protectXiao Guangrong
Now, all non-leaf shadow page are page tracked, if gfn is not tracked there is no non-leaf shadow page of gfn is existed, we can directly make the shadow page of gfn to unsync Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: MMU: use page track for non-leaf shadow pagesXiao Guangrong
non-leaf shadow pages are always write protected, it can be the user of page track Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: page track: add notifier supportXiao Guangrong
Notifier list is introduced so that any node wants to receive the track event can register to the list Two APIs are introduced here: - kvm_page_track_register_notifier(): register the notifier to receive track event - kvm_page_track_unregister_notifier(): stop receiving track event by unregister the notifier The callback, node->track_write() is called when a write access on the write tracked page happens Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: MMU: clear write-flooding on the fast path of tracked pageXiao Guangrong
If the page fault is caused by write access on write tracked page, the real shadow page walking is skipped, we lost the chance to clear write flooding for the page structure current vcpu is using Fix it by locklessly waking shadow page table to clear write flooding on the shadow page structure out of mmu-lock. So that we change the count to atomic_t Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: MMU: let page fault handler be aware tracked pageXiao Guangrong
The page fault caused by write access on the write tracked page can not be fixed, it always need to be emulated. page_fault_handle_page_track() is the fast path we introduce here to skip holding mmu-lock and shadow page table walking However, if the page table is not present, it is worth making the page table entry present and readonly to make the read access happy mmu_need_write_protect() need to be cooked to avoid page becoming writable when making page table present or sync/prefetch shadow page table entries Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: page track: introduce kvm_slot_page_track_{add,remove}_pageXiao Guangrong
These two functions are the user APIs: - kvm_slot_page_track_add_page(): add the page to the tracking pool after that later specified access on that page will be tracked - kvm_slot_page_track_remove_page(): remove the page from the tracking pool, the specified access on the page is not tracked after the last user is gone Both of these are called under the protection both of mmu-lock and kvm->srcu or kvm->slots_lock Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: page track: add the framework of guest page trackingXiao Guangrong
The array, gfn_track[mode][gfn], is introduced in memory slot for every guest page, this is the tracking count for the gust page on different modes. If the page is tracked then the count is increased, the page is not tracked after the count reaches zero We use 'unsigned short' as the tracking count which should be enough as shadow page table only can use 2^14 (2^3 for level, 2^1 for cr4_pae, 2^2 for quadrant, 2^3 for access, 2^1 for nxe, 2^1 for cr0_wp, 2^1 for smep_andnot_wp, 2^1 for smap_andnot_wp, and 2^1 for smm) at most, there is enough room for other trackers Two callbacks, kvm_page_track_create_memslot() and kvm_page_track_free_memslot() are implemented in this patch, they are internally used to initialize and reclaim the memory of the array Currently, only write track mode is supported Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-03KVM: MMU: introduce kvm_mmu_slot_gfn_write_protectXiao Guangrong
Split rmap_write_protect() and introduce the function to abstract the write protection based on the slot This function will be used in the later patch Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>