summaryrefslogtreecommitdiff
path: root/arch/x86/mm/hugetlbpage.c
AgeCommit message (Collapse)Author
2016-05-20x86: mm: use hugetlb_bad_size()Vaishali Thakkar
Update setup_hugepagesz() to call hugetlb_bad_size() when unsupported hugepage size is found. Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Dominik Dingel <dingel@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-31x86/cpufeature: Remove cpu_has_gbpagesBorislav Petkov
Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1459266123-21878-6-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-06mm, hugetlb: don't require CMA for runtime gigantic pagesVlastimil Babka
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation at runtime") has added the runtime gigantic page allocation via alloc_contig_range(), making this support available only when CONFIG_CMA is enabled. Because it doesn't depend on MIGRATE_CMA pageblocks and the associated infrastructure, it is possible with few simple adjustments to require only CONFIG_MEMORY_ISOLATION instead of full CONFIG_CMA. After this patch, alloc_contig_range() and related functions are available and used for gigantic pages with just CONFIG_MEMORY_ISOLATION enabled. Note CONFIG_CMA selects CONFIG_MEMORY_ISOLATION. This allows supporting runtime gigantic pages without the CMA-specific checks in page allocator fastpaths. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm/hugetlb: pmd_huge() returns true for non-present hugepageNaoya Horiguchi
Migrating hugepages and hwpoisoned hugepages are considered as non-present hugepages, and they are referenced via migration entries and hwpoison entries in their page table slots. This behavior causes race condition because pmd_huge() doesn't tell non-huge pages from migrating/hwpoisoned hugepages. follow_page_mask() is one example where the kernel would call follow_page_pte() for such hugepage while this function is supposed to handle only normal pages. To avoid this, this patch makes pmd_huge() return true when pmd_none() is true *and* pmd_present() is false. We don't have to worry about mixing up non-present pmd entry with normal pmd (pointing to leaf level pte entry) because pmd_present() is true in normal pmd. The same race condition could happen in (x86-specific) gup_pmd_range(), where this patch simply adds pmd_present() check instead of pmd_huge(). This is because gup_pmd_range() is fast path. If we have non-present hugepage in this function, we will go into gup_huge_pmd(), then return 0 at flag mask check, and finally fall back to the slow path. Fixes: 290408d4a2 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: <stable@vger.kernel.org> [2.6.36+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm/hugetlb: reduce arch dependent code around follow_huge_*Naoya Horiguchi
Currently we have many duplicates in definitions around follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this patch tries to remove the m. The basic idea is to put the default implementation for these functions in mm/hugetlb.c as weak symbols (regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement arch-specific code only when the arch needs it. For follow_huge_addr(), only powerpc and ia64 have their own implementation, and in all other architectures this function just returns ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as default. As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to always return 0 in your architecture (like in ia64 or sparc,) it's never called (the callsite is optimized away) no matter how implemented it is. So in such architectures, we don't need arch-specific implementation. In some architecture (like mips, s390 and tile,) their current arch-specific follow_huge_(pmd|pud)() are effectively identical with the common code, so this patch lets these architecture use the common code. One exception is metag, where pmd_huge() could return non-zero but it expects follow_huge_pmd() to always return NULL. This means that we need arch-specific implementation which returns NULL. This behavior looks strange to me (because non-zero pmd_huge() implies that the architecture supports PMD-based hugepage, so follow_huge_pmd() can/should return some relevant value,) but that's beyond this cleanup patch, so let's keep it. Justification of non-trivial changes: - in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE is true when follow_huge_pmd() can be called (note that pmd_huge() has the same check and always returns 0 for !MACHINE_HAS_HPAGE.) - in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common code. This patch forces these archs use PMD_MASK, but it's OK because they are identical in both archs. In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20. In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but PTE_ORDER is always 0, so these are identical. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10hugetlb, x86: register 1G page size if we can allocate them at runtimeKirill A. Shutemov
After commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation at runtime") we can allocate 1G pages at runtime if CMA is enabled. Let's register 1G pages into hugetlb even if the user hasn't requested them explicitly at boot time with hugepagesz=1G. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04hugetlb: restrict hugepage_migration_support() to x86_64Naoya Horiguchi
Currently hugepage migration is available for all archs which support pmd-level hugepage, but testing is done only for x86_64 and there're bugs for other archs. So to avoid breaking such archs, this patch limits the availability strictly to x86_64 until developers of other archs get interested in enabling this feature. Simply disabling hugepage migration on non-x86_64 archs is not enough to fix the reported problem where sys_move_pages() hits the BUG_ON() in follow_page(FOLL_GET), so let's fix this by checking if hugepage migration is supported in vma_migratable(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-19x86/mm: Implement ASLR for hugetlb mappingsKirill A. Shutemov
Matthew noticed that hugetlb mappings don't participate in ASLR on x86-64: % for i in `seq 3`; do > tools/testing/selftests/vm/map_hugetlb | grep address > done Returned address is 0x2aaaaac00000 Returned address is 0x2aaaaac00000 Returned address is 0x2aaaaac00000 /proc/PID/maps entries for the mapping are always the same (except inode number): 2aaaaac00000-2aaabac00000 rw-p 00000000 00:0c 8200 /anon_hugepage (deleted) 2aaaaac00000-2aaabac00000 rw-p 00000000 00:0c 256 /anon_hugepage (deleted) 2aaaaac00000-2aaabac00000 rw-p 00000000 00:0c 7180 /anon_hugepage (deleted) The reason is the generic hugetlb_get_unmapped_area() function which is used on x86-64. It doesn't support randomization and use bottom-up unmapped area lookup, instead of usual top-down on x86-64. x86 has arch-specific hugetlb_get_unmapped_area(), but it's used only on x86-32. Let's use arch-specific hugetlb_get_unmapped_area() on x86-64 too. That adds ASLR and switches hugetlb mappings to use top-down unmapped area lookup: % for i in `seq 3`; do > tools/testing/selftests/vm/map_hugetlb | grep address > done Returned address is 0x7f4f08a00000 Returned address is 0x7fdda4200000 Returned address is 0x7febe0000000 /proc/PID/maps entries: 7f4f08a00000-7f4f18a00000 rw-p 00000000 00:0c 1168 /anon_hugepage (deleted) 7fdda4200000-7fddb4200000 rw-p 00000000 00:0c 7092 /anon_hugepage (deleted) 7febe0000000-7febf0000000 rw-p 00000000 00:0c 7183 /anon_hugepage (deleted) Unmapped area lookup policy for hugetlb mappings is consistent with normal mappings now -- the only difference is alignment requirements for huge pages. libhugetlbfs test-suite didn't detect any regressions with the patch applied (although it shows few failures on my machine regardless the patch). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/20131119131750.EA45CE0090@blue.fi.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-11mm: migrate: check movability of hugepage in unmap_and_move_huge_page()Naoya Horiguchi
Currently hugepage migration works well only for pmd-based hugepages (mainly due to lack of testing,) so we had better not enable migration of other levels of hugepages until we are ready for it. Some users of hugepage migration (mbind, move_pages, and migrate_pages) do page table walk and check pud/pmd_huge() there, so they are safe. But the other users (softoffline and memory hotremove) don't do this, so without this patch they can try to migrate unexpected types of hugepages. To prevent this, we introduce hugepage_migration_support() as an architecture dependent check of whether hugepage are implemented on a pmd basis or not. And on some architecture multiple sizes of hugepages are available, so hugepage_migration_support() also checks hugepage size. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-14x86: mm: Remove general hugetlb code from x86.Steve Capper
huge_pte_alloc, huge_pte_offset and follow_huge_p[mu]d have already been copied over to mm. This patch removes the x86 copies of these functions and activates the general ones by enabling: CONFIG_ARCH_WANT_GENERAL_HUGETLB Signed-off-by: Steve Capper <steve.capper@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Andrew Morton <akpm@linux-foundation.org>
2013-06-14x86: mm: Remove x86 version of huge_pmd_share.Steve Capper
The huge_pmd_share code has been copied over to mm/hugetlb.c to make it accessible to other architectures. Remove the x86 copy of the huge_pmd_share code and enable the ARCH_WANT_HUGE_PMD_SHARE config flag. That way we reference the general one. Signed-off-by: Steve Capper <steve.capper@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Andrew Morton <akpm@linux-foundation.org>
2012-12-12mm: use vm_unmapped_area() in hugetlbfs on i386 architectureMichel Lespinasse
Update the i386 hugetlb_get_unmapped_area function to make use of vm_unmapped_area() instead of implementing a brute force search. [akpm@linux-foundation.org: fix build] Signed-off-by: Michel Lespinasse <walken@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: replace vma prio_tree with an interval treeMichel Lespinasse
Implement an interval tree as a replacement for the VMA prio_tree. The algorithms are similar to lib/interval_tree.c; however that code can't be directly reused as the interval endpoints are not explicitly stored in the VMA. So instead, the common algorithm is moved into a template and the details (node type, how to get interval endpoints from the node, etc) are filled in using the C preprocessor. Once the interval tree functions are available, using them as a replacement to the VMA prio tree is a relatively simple, mechanical job. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21mm: hugetlbfs: correctly populate shared pmdMichal Hocko
Each page mapped in a process's address space must be correctly accounted for in _mapcount. Normally the rules for this are straightforward but hugetlbfs page table sharing is different. The page table pages at the PMD level are reference counted while the mapcount remains the same. If this accounting is wrong, it causes bugs like this one reported by Larry Woodman: kernel BUG at mm/filemap.c:135! invalid opcode: 0000 [#1] SMP CPU 22 Modules linked in: bridge stp llc sunrpc binfmt_misc dcdbas microcode pcspkr acpi_pad acpi] Pid: 18001, comm: mpitest Tainted: G W 3.3.0+ #4 Dell Inc. PowerEdge R620/07NDJ2 RIP: 0010:[<ffffffff8112cfed>] [<ffffffff8112cfed>] __delete_from_page_cache+0x15d/0x170 Process mpitest (pid: 18001, threadinfo ffff880428972000, task ffff880428b5cc20) Call Trace: delete_from_page_cache+0x40/0x80 truncate_hugepages+0x115/0x1f0 hugetlbfs_evict_inode+0x18/0x30 evict+0x9f/0x1b0 iput_final+0xe3/0x1e0 iput+0x3e/0x50 d_kill+0xf8/0x110 dput+0xe2/0x1b0 __fput+0x162/0x240 During fork(), copy_hugetlb_page_range() detects if huge_pte_alloc() shared page tables with the check dst_pte == src_pte. The logic is if the PMD page is the same, they must be shared. This assumes that the sharing is between the parent and child. However, if the sharing is with a different process entirely then this check fails as in this diagram: parent | ------------>pmd src_pte----------> data page ^ other--------->pmd--------------------| ^ child-----------| dst_pte For this situation to occur, it must be possible for Parent and Other to have faulted and failed to share page tables with each other. This is possible due to the following style of race. PROC A PROC B copy_hugetlb_page_range copy_hugetlb_page_range src_pte == huge_pte_offset src_pte == huge_pte_offset !src_pte so no sharing !src_pte so no sharing (time passes) hugetlb_fault hugetlb_fault huge_pte_alloc huge_pte_alloc huge_pmd_share huge_pmd_share LOCK(i_mmap_mutex) find nothing, no sharing UNLOCK(i_mmap_mutex) LOCK(i_mmap_mutex) find nothing, no sharing UNLOCK(i_mmap_mutex) pmd_alloc pmd_alloc LOCK(instantiation_mutex) fault UNLOCK(instantiation_mutex) LOCK(instantiation_mutex) fault UNLOCK(instantiation_mutex) These two processes are not poing to the same data page but are not sharing page tables because the opportunity was missed. When either process later forks, the src_pte == dst pte is potentially insufficient. As the check falls through, the wrong PTE information is copied in (harmless but wrong) and the mapcount is bumped for a page mapped by a shared page table leading to the BUG_ON. This patch addresses the issue by moving pmd_alloc into huge_pmd_share which guarantees that the shared pud is populated in the same critical section as pmd. This also means that huge_pte_offset test in huge_pmd_share is serialized correctly now which in turn means that the success of the sharing will be higher as the racing tasks see the pud and pmd populated together. Race identified and changelog written mostly by Mel Gorman. {akpm@linux-foundation.org: attempt to make the huge_pmd_share() comment comprehensible, clean up coding style] Reported-by: Larry Woodman <lwoodman@redhat.com> Tested-by: Larry Woodman <lwoodman@redhat.com> Reviewed-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Ken Chen <kenchen@google.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22hugetlb: remove prev_vma from hugetlb_get_unmapped_area_topdown()Xiao Guangrong
After looking up the vma which covers or follows the cached search address, the following condition is always true: !prev_vma || (addr >= prev_vma->vm_end) so we can stop checking the previous VMA altogether. Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22hugetlb: try to search again if it is really neededXiao Guangrong
Search again only if some holes may be skipped in the first pass. [akpm@linux-foundation.org: clean up crazy compound definition] Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-07x86: fix typo in recent find_vma_prev purgeLinus Torvalds
It turns out that test-compiling this file on x86-64 doesn't really help, because much of it is x86-32-specific. And so I hadn't noticed the slightly over-eager removal of the 'r' from 'addr' variable despite thinking I had tested it. Signed-off-by: Linus "oopsie" Torvalds <torvalds@linux-foundation.org>
2012-03-07vm: avoid using find_vma_prev() unnecessarilyLinus Torvalds
Several users of "find_vma_prev()" were not in fact interested in the previous vma if there was no primary vma to be found either. And in those cases, we're much better off just using the regular "find_vma()", and then "prev" can be looked up by just checking vma->vm_prev. The find_vma_prev() semantics are fairly subtle (see Mikulas' recent commit 83cd904d271b: "mm: fix find_vma_prev"), and the whole "return prev by reference" means that it generates worse code too. Thus this "let's avoid using this inconvenient and clearly too subtle interface when we don't really have to" patch. Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25mm: Convert i_mmap_lock to a mutexPeter Zijlstra
Straightforward conversion of i_mmap_lock to a mutex. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-18x86: Fix common misspellingsLucas De Marchi
They were generated by 'codespell' and then manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi> Cc: trivial@kernel.org LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2009-05-29x86: ignore VM_LOCKED when determining if hugetlb-backed page tables can be ↵Mel Gorman
shared or not Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 On x86 and x86-64, it is possible that page tables are shared beween shared mappings backed by hugetlbfs. As part of this, page_table_shareable() checks a pair of vma->vm_flags and they must match if they are to be shared. All VMA flags are taken into account, including VM_LOCKED. The problem is that VM_LOCKED is cleared on fork(). When a process with a shared memory segment forks() to exec() a helper, there will be shared VMAs with different flags. The impact is that the shared segment is sometimes considered shareable and other times not, depending on what process is checking. What happens is that the segment page tables are being shared but the count is inaccurate depending on the ordering of events. As the page tables are freed with put_page(), bad pmd's are found when some of the children exit. The hugepage counters also get corrupted and the Total and Free count will no longer match even when all the hugepage-backed regions are freed. This requires a reboot of the machine to "fix". This patch addresses the problem by comparing all flags except VM_LOCKED when deciding if pagetables should be shared or not for hugetlbfs-backed mapping. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24x86: add hugepagesz option on 64-bitAndi Kleen
Add an hugepagesz=... option similar to IA64, PPC etc. to x86-64. This finally allows to select GB pages for hugetlbfs in x86 now that all the infrastructure is in place. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24x86: support GB hugepages on 64-bitAndi Kleen
Acked-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: introduce pud_hugeAndi Kleen
Straight forward extensions for huge pages located in the PUD instead of PMDs. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: modular state for hugetlb page sizeAndi Kleen
The goal of this patchset is to support multiple hugetlb page sizes. This is achieved by introducing a new struct hstate structure, which encapsulates the important hugetlb state and constants (eg. huge page size, number of huge pages currently allocated, etc). The hstate structure is then passed around the code which requires these fields, they will do the right thing regardless of the exact hstate they are operating on. This patch adds the hstate structure, with a single global instance of it (default_hstate), and does the basic work of converting hugetlb to use the hstate. Future patches will add more hstate structures to allow for different hugetlbfs mounts to have different page sizes. [akpm@linux-foundation.org: coding-style fixes] Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-27x86: stricter check in follow_huge_addr()Christoph Lameter
The first page of the compound page is determined in follow_huge_addr() but then PageCompound() only checks if the page is part of a compound page. PageHead() allows checking if this is indeed the first page of the compound. Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-30x86: demacro asm-x86/pgalloc_32.hJeremy Fitzhardinge
Convert macros into inline functions, for better type-checking. This patch required a little bit of fiddling with headers in order to make __(pte|pmd)_free_tlb inline rather than macros. asm-generic/tlb.h includes asm/pgalloc.h, though it doesn't directly use any pgalloc definitions. I removed this include to avoid an include cycle, but it may cause secondary compile failures by things depending on the indirect inclusion; arch/x86/mm/hugetlbpage.c was one such place; there may be others. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-11i386: move mmThomas Gleixner
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>