summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2017-07-15x86/mm/pat: Don't report PAT on CPUs that don't support itMikulas Patocka
commit 99c13b8c8896d7bcb92753bf0c63a8de4326e78d upstream. The pat_enabled() logic is broken on CPUs which do not support PAT and where the initialization code fails to call pat_init(). Due to that the enabled flag stays true and pat_enabled() returns true wrongfully. As a consequence the mappings, e.g. for Xorg, are set up with the wrong caching mode and the required MTRR setups are omitted. To cure this the following changes are required: 1) Make pat_enabled() return true only if PAT initialization was invoked and successful. 2) Invoke init_cache_modes() unconditionally in setup_arch() and remove the extra callsites in pat_disable() and the pat disabled code path in pat_init(). Also rename __pat_enabled to pat_disabled to reflect the real purpose of this variable. Fixes: 9cd25aac1f44 ("x86/mm/pat: Emulate PAT when it is disabled") Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Bernhard Held <berny156@gmx.de> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: "Luis R. Rodriguez" <mcgrof@suse.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1707041749300.3456@file01.intranet.prod.int.rdu2.redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-12x86/uaccess: Optimize copy_user_enhanced_fast_string() for short stringsPaolo Abeni
commit 236222d39347e0e486010f10c1493e83dbbdfba8 upstream. According to the Intel datasheet, the REP MOVSB instruction exposes a pretty heavy setup cost (50 ticks), which hurts short string copy operations. This change tries to avoid this cost by calling the explicit loop available in the unrolled code for strings shorter than 64 bytes. The 64 bytes cutoff value is arbitrary from the code logic point of view - it has been selected based on measurements, as the largest value that still ensures a measurable gain. Micro benchmarks of the __copy_from_user() function with lengths in the [0-63] range show this performance gain (shorter the string, larger the gain): - in the [55%-4%] range on Intel Xeon(R) CPU E5-2690 v4 - in the [72%-9%] range on Intel Core i7-4810MQ Other tested CPUs - namely Intel Atom S1260 and AMD Opteron 8216 - show no difference, because they do not expose the ERMS feature bit. Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/4533a1d101fd460f80e21329a34928fad521c1d4.1498744345.git.pabeni@redhat.com [ Clarified the changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
2017-07-12x86/tools: Fix gcc-7 warning in relocs.cMarkus Trippelsdorf
commit 7ebb916782949621ff6819acf373a06902df7679 upstream. gcc-7 warns: In file included from arch/x86/tools/relocs_64.c:17:0: arch/x86/tools/relocs.c: In function ‘process_64’: arch/x86/tools/relocs.c:953:2: warning: argument 1 null where non-null expected [-Wnonnull] qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from arch/x86/tools/relocs.h:6:0, from arch/x86/tools/relocs_64.c:1: /usr/include/stdlib.h:741:13: note: in a call to function ‘qsort’ declared here extern void qsort This happens because relocs16 is not used for ELF_BITS == 64, so there is no point in trying to sort it. Make the sort_relocs(&relocs16) call 32bit only. Signed-off-by: Markus Trippelsdorf <markus@trippelsdorf.de> Link: http://lkml.kernel.org/r/20161215124513.GA289@x4 Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05KVM: nVMX: Fix exception injectionWanpeng Li
commit d4912215d1031e4fb3d1038d2e1857218dba0d0a upstream. WARNING: CPU: 3 PID: 2840 at arch/x86/kvm/vmx.c:10966 nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel] CPU: 3 PID: 2840 Comm: qemu-system-x86 Tainted: G OE 4.12.0-rc3+ #23 RIP: 0010:nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel] Call Trace: ? kvm_check_async_pf_completion+0xef/0x120 [kvm] ? rcu_read_lock_sched_held+0x79/0x80 vmx_queue_exception+0x104/0x160 [kvm_intel] ? vmx_queue_exception+0x104/0x160 [kvm_intel] kvm_arch_vcpu_ioctl_run+0x1171/0x1ce0 [kvm] ? kvm_arch_vcpu_load+0x47/0x240 [kvm] ? kvm_arch_vcpu_load+0x62/0x240 [kvm] kvm_vcpu_ioctl+0x384/0x7b0 [kvm] ? kvm_vcpu_ioctl+0x384/0x7b0 [kvm] ? __fget+0xf3/0x210 do_vfs_ioctl+0xa4/0x700 ? __fget+0x114/0x210 SyS_ioctl+0x79/0x90 do_syscall_64+0x81/0x220 entry_SYSCALL64_slow_path+0x25/0x25 This is triggered occasionally by running both win7 and win2016 in L2, in addition, EPT is disabled on both L1 and L2. It can't be reproduced easily. Commit 0b6ac343fc (KVM: nVMX: Correct handling of exception injection) mentioned that "KVM wants to inject page-faults which it got to the guest. This function assumes it is called with the exit reason in vmcs02 being a #PF exception". Commit e011c663 (KVM: nVMX: Check all exceptions for intercept during delivery to L2) allows to check all exceptions for intercept during delivery to L2. However, there is no guarantee the exit reason is exception currently, when there is an external interrupt occurred on host, maybe a time interrupt for host which should not be injected to guest, and somewhere queues an exception, then the function nested_vmx_check_exception() will be called and the vmexit emulation codes will try to emulate the "Acknowledge interrupt on exit" behavior, the warning is triggered. Reusing the exit reason from the L2->L0 vmexit is wrong in this case, the reason must always be EXCEPTION_NMI when injecting an exception into L1 as a nested vmexit. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Fixes: e011c663b9c7 ("KVM: nVMX: Check all exceptions for intercept during delivery to L2") Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05KVM: x86: zero base3 of unusable segmentsRadim Krčmář
commit f0367ee1d64d27fa08be2407df5c125442e885e3 upstream. Static checker noticed that base3 could be used uninitialized if the segment was not present (useable). Random stack values probably would not pass VMCS entry checks. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Fixes: 1aa366163b8b ("KVM: x86 emulator: consolidate segment accessors") Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05KVM: x86/vPMU: fix undefined shift in intel_pmu_refresh()Radim Krčmář
commit 34b0dadbdf698f9b277a31b2747b625b9a75ea1f upstream. Static analysis noticed that pmu->nr_arch_gp_counters can be 32 (INTEL_PMC_MAX_GENERIC) and therefore cannot be used to shift 'int'. I didn't add BUILD_BUG_ON for it as we have a better checker. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Fixes: 25462f7f5295 ("KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch") Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05KVM: x86: fix emulation of RSM and IRET instructionsLadi Prosek
commit 6ed071f051e12cf7baa1b69d3becb8f232fdfb7b upstream. On AMD, the effect of set_nmi_mask called by emulate_iret_real and em_rsm on hflags is reverted later on in x86_emulate_instruction where hflags are overwritten with ctxt->emul_flags (the kvm_set_hflags call). This manifests as a hang when rebooting Windows VMs with QEMU, OVMF, and >1 vcpu. Instead of trying to merge ctxt->emul_flags into vcpu->arch.hflags after an instruction is emulated, this commit deletes emul_flags altogether and makes the emulator access vcpu->arch.hflags using two new accessors. This way all changes, on the emulator side as well as in functions called from the emulator and accessing vcpu state with emul_to_vcpu, are preserved. More details on the bug and its manifestation with Windows and OVMF: It's a KVM bug in the interaction between SMI/SMM and NMI, specific to AMD. I believe that the SMM part explains why we started seeing this only with OVMF. KVM masks and unmasks NMI when entering and leaving SMM. When KVM emulates the RSM instruction in em_rsm, the set_nmi_mask call doesn't stick because later on in x86_emulate_instruction we overwrite arch.hflags with ctxt->emul_flags, effectively reverting the effect of the set_nmi_mask call. The AMD-specific hflag of interest here is HF_NMI_MASK. When rebooting the system, Windows sends an NMI IPI to all but the current cpu to shut them down. Only after all of them are parked in HLT will the initiating cpu finish the restart. If NMI is masked, other cpus never get the memo and the initiating cpu spins forever, waiting for hal!HalpInterruptProcessorsStarted to drop. That's the symptom we observe. Fixes: a584539b24b8 ("KVM: x86: pass the whole hflags field to emulator and back") Signed-off-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05x86/mm: Fix flush_tlb_page() on XenAndy Lutomirski
commit dbd68d8e84c606673ebbcf15862f8c155fa92326 upstream. flush_tlb_page() passes a bogus range to flush_tlb_others() and expects the latter to fix it up. native_flush_tlb_others() has the fixup but Xen's version doesn't. Move the fixup to flush_tlb_others(). AFAICS the only real effect is that, without this fix, Xen would flush everything instead of just the one page on remote vCPUs in when flush_tlb_page() was called. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Nadav Amit <namit@vmware.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: e7b52ffd45a6 ("x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range") Link: http://lkml.kernel.org/r/10ed0e4dfea64daef10b87fb85df1746999b4dba.1492844372.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05x86/mpx: Correctly report do_mpx_bt_fault() failures to user-spaceJoerg Roedel
commit 5ed386ec09a5d75bcf073967e55e895c2607a5c3 upstream. When this function fails it just sends a SIGSEGV signal to user-space using force_sig(). This signal is missing essential information about the cause, e.g. the trap_nr or an error code. Fix this by propagating the error to the only caller of mpx_handle_bd_fault(), do_bounds(), which sends the correct SIGSEGV signal to the process. Signed-off-by: Joerg Roedel <jroedel@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: fe3d197f84319 ('x86, mpx: On-demand kernel allocation of bounds tables') Link: http://lkml.kernel.org/r/1491488362-27198-1-git-send-email-joro@8bytes.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05x86/boot/KASLR: Fix kexec crash due to 'virt_addr' calculation bugBaoquan He
commit 8eabf42ae5237e6b699aeac687b5b629e3537c8d upstream. Kernel text KASLR is separated into physical address and virtual address randomization. And for virtual address randomization, we only randomiza to get an offset between 16M and KERNEL_IMAGE_SIZE. So the initial value of 'virt_addr' should be LOAD_PHYSICAL_ADDR, but not the original kernel loading address 'output'. The bug will cause kernel boot failure if kernel is loaded at a different position than the address, 16M, which is decided at compiled time. Kexec/kdump is such practical case. To fix it, just assign LOAD_PHYSICAL_ADDR to virt_addr as initial value. Tested-by: Dave Young <dyoung@redhat.com> Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 8391c73 ("x86/KASLR: Randomize virtual address separately") Link: http://lkml.kernel.org/r/1498567146-11990-3-git-send-email-bhe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05perf/x86: Reject non sampling events with precise_ipJiri Olsa
[ Upstream commit 18e7a45af91acdde99d3aa1372cc40e1f8142f7b ] As Peter suggested [1] rejecting non sampling PEBS events, because they dont make any sense and could cause bugs in the NMI handler [2]. [1] http://lkml.kernel.org/r/20170103094059.GC3093@worktop [2] http://lkml.kernel.org/r/1482931866-6018-3-git-send-email-jolsa@kernel.org Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vince@deater.net> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/20170103142454.GA26251@krava Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05x86/mpx: Use compatible types in comparison to fix sparse errorTobias Klauser
[ Upstream commit 453828625731d0ba7218242ef6ec88f59408f368 ] info->si_addr is of type void __user *, so it should be compared against something from the same address space. This fixes the following sparse error: arch/x86/mm/mpx.c:296:27: error: incompatible types in comparison expression (different address spaces) Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05x86/tsc: Add the Intel Denverton Processor to native_calibrate_tsc()Len Brown
[ Upstream commit 695085b4bc7603551db0b3da897b8bf9893ca218 ] The Intel Denverton microserver uses a 25 MHz TSC crystal, so we can derive its exact [*] TSC frequency using CPUID and some arithmetic, eg.: TSC: 1800 MHz (25000000 Hz * 216 / 3 / 1000000) [*] 'exact' is only as good as the crystal, which should be +/- 20ppm Signed-off-by: Len Brown <len.brown@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/306899f94804aece6d8fa8b4223ede3b48dbb59c.1484287748.git.len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05perf/x86/intel: Use ULL constant to prevent undefined shift behaviourColin King
[ Upstream commit ad5013d5699d30ded0cdbbc68b93b2aa28222c6e ] When x86_pmu.num_counters is 32 the shift of the integer constant 1 is exceeding 32bit and therefor undefined behaviour. Fix this by shifting 1ULL instead of 1. Reported-by: CoverityScan CID#1192105 ("Bad bit shift operation") Signed-off-by: Colin Ian King <colin.king@canonical.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kan Liang <kan.liang@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Link: http://lkml.kernel.org/r/20170111114310.17928-1-colin.king@canonical.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05perf/x86/intel/uncore: Fix hardcoded socket 0 assumption in the Haswell init ↵Prarit Bhargava
code [ Upstream commit 6d6daa20945f3f598e56e18d1f926c08754f5801 ] hswep_uncore_cpu_init() uses a hardcoded physical package id 0 for the boot cpu. This works as long as the boot CPU is actually on the physical package 0, which is normaly the case after power on / reboot. But it fails with a NULL pointer dereference when a kdump kernel is started on a secondary socket which has a different physical package id because the locigal package translation for physical package 0 does not exist. Use the logical package id of the boot cpu instead of hard coded 0. [ tglx: Rewrote changelog once more ] Fixes: cf6d445f6897 ("perf/x86/uncore: Track packages, not per CPU data") Signed-off-by: Prarit Bhargava <prarit@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Harish Chegondi <harish.chegondi@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1483628965-2890-1-git-send-email-prarit@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05perf/x86/intel: Handle exclusive threadid correctly on CPU hotplugZhou Chengming
[ Upstream commit 4e71de7986386d5fd3765458f27d612931f27f5e ] The CPU hotplug function intel_pmu_cpu_starting() sets cpu_hw_events.excl_thread_id unconditionally to 1 when the shared exclusive counters data structure is already availabe for the sibling thread. This works during the boot process because the first sibling gets threadid 0 assigned and the second sibling which shares the data structure gets 1. But when the first thread of the core is offlined and onlined again it shares the data structure with the second thread and gets exclusive thread id 1 assigned as well. Prevent this by checking the threadid of the already online thread. [ tglx: Rewrote changelog ] Signed-off-by: Zhou Chengming <zhouchengming1@huawei.com> Cc: NuoHan Qiao <qiaonuohan@huawei.com> Cc: ak@linux.intel.com Cc: peterz@infradead.org Cc: kan.liang@intel.com Cc: dave.hansen@linux.intel.com Cc: eranian@google.com Cc: qiaonuohan@huawei.com Cc: davidcc@google.com Cc: guohanjun@huawei.com Link: http://lkml.kernel.org/r/1484536871-3131-1-git-send-email-zhouchengming1@huawei.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05KVM: x86: fix fixing of hypercallsDmitry Vyukov
[ Upstream commit ce2e852ecc9a42e4b8dabb46025cfef63209234a ] emulator_fix_hypercall() replaces hypercall with vmcall instruction, but it does not handle GP exception properly when writes the new instruction. It can return X86EMUL_PROPAGATE_FAULT without setting exception information. This leads to incorrect emulation and triggers WARN_ON(ctxt->exception.vector > 0x1f) in x86_emulate_insn() as discovered by syzkaller fuzzer: WARNING: CPU: 2 PID: 18646 at arch/x86/kvm/emulate.c:5558 Call Trace: warn_slowpath_null+0x2c/0x40 kernel/panic.c:582 x86_emulate_insn+0x16a5/0x4090 arch/x86/kvm/emulate.c:5572 x86_emulate_instruction+0x403/0x1cc0 arch/x86/kvm/x86.c:5618 emulate_instruction arch/x86/include/asm/kvm_host.h:1127 [inline] handle_exception+0x594/0xfd0 arch/x86/kvm/vmx.c:5762 vmx_handle_exit+0x2b7/0x38b0 arch/x86/kvm/vmx.c:8625 vcpu_enter_guest arch/x86/kvm/x86.c:6888 [inline] vcpu_run arch/x86/kvm/x86.c:6947 [inline] Set exception information when write in emulator_fix_hypercall() fails. Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: kvm@vger.kernel.org Cc: syzkaller@googlegroups.com Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05x86/mm: Fix boot crash caused by incorrect loop count calculation in ↵Baoquan He
sync_global_pgds() commit fc5f9d5f151c9fff21d3d1d2907b888a5aec3ff7 upstream. Jeff Moyer reported that on his system with two memory regions 0~64G and 1T~1T+192G, and kernel option "memmap=192G!1024G" added, enabling KASLR will make the system hang intermittently during boot. While adding 'nokaslr' won't. The back trace is: Oops: 0000 [#1] SMP RIP: memcpy_erms() [ .... ] Call Trace: pmem_rw_page() bdev_read_page() do_mpage_readpage() mpage_readpages() blkdev_readpages() __do_page_cache_readahead() force_page_cache_readahead() page_cache_sync_readahead() generic_file_read_iter() blkdev_read_iter() __vfs_read() vfs_read() SyS_read() entry_SYSCALL_64_fastpath() This crash happens because the for loop count calculation in sync_global_pgds() is not correct. When a mapping area crosses PGD entries, we should calculate the starting address of region which next PGD covers and assign it to next for loop count, but not add PGDIR_SIZE directly. The old code works right only if the mapping area is an exact multiple of PGDIR_SIZE, otherwize the end region could be skipped so that it can't be synchronized to all other processes from kernel PGD init_mm.pgd. In Jeff's system, emulated pmem area [1024G, 1216G) is smaller than PGDIR_SIZE. While 'nokaslr' works because PAGE_OFFSET is 1T aligned, it makes this area be mapped inside one PGD entry. With KASLR enabled, this area could cross two PGD entries, then the next PGD entry won't be synced to all other processes. That is why we saw empty PGD. Fix it. Reported-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jinbum Park <jinb.park7@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1493864747-8506-1-git-send-email-bhe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-29perf/x86/intel: Add 1G DTLB load/store miss support for SKLKan Liang
commit fb3a5055cd7098f8d1dd0cd38d7172211113255f upstream. Current DTLB load/store miss events (0x608/0x649) only counts 4K,2M and 4M page size. Need to extend the events to support any page size (4K/2M/4M/1G). The complete DTLB load/store miss events are: DTLB_LOAD_MISSES.WALK_COMPLETED 0xe08 DTLB_STORE_MISSES.WALK_COMPLETED 0xe49 Signed-off-by: Kan Liang <Kan.liang@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: eranian@google.com Link: http://lkml.kernel.org/r/20170619142609.11058-1-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-24mm: larger stack guard gap, between vmasHugh Dickins
commit 1be7107fbe18eed3e319a6c3e83c78254b693acb upstream. Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: Oleg Nesterov <oleg@redhat.com> Original-patch-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [wt: backport to 4.11: adjust context] [wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide] Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-24x86/mm/32: Set the '__vmalloc_start_set' flag in initmem_init()Laura Abbott
commit 861ce4a3244c21b0af64f880d5bfe5e6e2fb9e4a upstream. '__vmalloc_start_set' currently only gets set in initmem_init() when !CONFIG_NEED_MULTIPLE_NODES. This breaks detection of vmalloc address with virt_addr_valid() with CONFIG_NEED_MULTIPLE_NODES=y, causing a kernel crash: [mm/usercopy] 517e1fbeb6: kernel BUG at arch/x86/mm/physaddr.c:78! Set '__vmalloc_start_set' appropriately for that case as well. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: dc16ecf7fd1f ("x86-32: use specific __vmalloc_start_set flag in __virt_addr_valid") Link: http://lkml.kernel.org/r/1494278596-30373-1-git-send-email-labbott@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14KVM: async_pf: avoid async pf injection when in guest modeWanpeng Li
commit 9bc1f09f6fa76fdf31eb7d6a4a4df43574725f93 upstream. INFO: task gnome-terminal-:1734 blocked for more than 120 seconds. Not tainted 4.12.0-rc4+ #8 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. gnome-terminal- D 0 1734 1015 0x00000000 Call Trace: __schedule+0x3cd/0xb30 schedule+0x40/0x90 kvm_async_pf_task_wait+0x1cc/0x270 ? __vfs_read+0x37/0x150 ? prepare_to_swait+0x22/0x70 do_async_page_fault+0x77/0xb0 ? do_async_page_fault+0x77/0xb0 async_page_fault+0x28/0x30 This is triggered by running both win7 and win2016 on L1 KVM simultaneously, and then gives stress to memory on L1, I can observed this hang on L1 when at least ~70% swap area is occupied on L0. This is due to async pf was injected to L2 which should be injected to L1, L2 guest starts receiving pagefault w/ bogus %cr2(apf token from the host actually), and L1 guest starts accumulating tasks stuck in D state in kvm_async_pf_task_wait() since missing PAGE_READY async_pfs. This patch fixes the hang by doing async pf when executing L1 guest. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14KVM: cpuid: Fix read/write out-of-bounds vulnerability in cpuid emulationWanpeng Li
commit a3641631d14571242eec0d30c9faa786cbf52d44 upstream. If "i" is the last element in the vcpu->arch.cpuid_entries[] array, it potentially can be exploited the vulnerability. this will out-of-bounds read and write. Luckily, the effect is small: /* when no next entry is found, the current entry[i] is reselected */ for (j = i + 1; ; j = (j + 1) % nent) { struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; if (ej->function == e->function) { It reads ej->maxphyaddr, which is user controlled. However... ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; After cpuid_entries there is int maxphyaddr; struct x86_emulate_ctxt emulate_ctxt; /* 16-byte aligned */ So we have: - cpuid_entries at offset 1B50 (6992) - maxphyaddr at offset 27D0 (6992 + 3200 = 10192) - padding at 27D4...27DF - emulate_ctxt at 27E0 And it writes in the padding. Pfew, writing the ops field of emulate_ctxt would have been much worse. This patch fixes it by modding the index to avoid the out-of-bounds access. Worst case, i == j and ej->function == e->function, the loop can bail out. Reported-by: Moguofang <moguofang@huawei.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Guofang Mo <moguofang@huawei.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14kvm: async_pf: fix rcu_irq_enter() with irqs enabledPaolo Bonzini
commit bbaf0e2b1c1b4f88abd6ef49576f0efb1734eae5 upstream. native_safe_halt enables interrupts, and you just shouldn't call rcu_irq_enter() with interrupts enabled. Reorder the call with the following local_irq_disable() to respect the invariant. Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14efi: Don't issue error message when booted under XenJuergen Gross
commit 1ea34adb87c969b89dfd83f1905a79161e9ada26 upstream. When booted as Xen dom0 there won't be an EFI memmap allocated. Avoid issuing an error message in this case: [ 0.144079] efi: Failed to allocate new EFI memmap Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170526113652.21339-2-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07x86/boot: Use CROSS_COMPILE prefix for readelfRob Landley
commit 3780578761921f094179c6289072a74b2228c602 upstream. The boot code Makefile contains a straight 'readelf' invocation. This causes build warnings in cross compile environments, when there is no unprefixed readelf accessible via $PATH. Add the missing $(CROSS_COMPILE) prefix. [ tglx: Rewrote changelog ] Fixes: 98f78525371b ("x86/boot: Refuse to build with data relocations") Signed-off-by: Rob Landley <rob@landley.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Bolle <pebolle@tiscali.nl> Cc: "H.J. Lu" <hjl.tools@gmail.com> Link: http://lkml.kernel.org/r/ced18878-693a-9576-a024-113ef39a22c0@landley.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07x86/MCE: Export memory_error()Borislav Petkov
commit 2d1f406139ec20320bf38bcd2461aa8e358084b5 upstream. Export the function which checks whether an MCE is a memory error to other users so that we can reuse the logic. Drop the boot_cpu_data use, while at it, as mce.cpuvendor already has the CPU vendor in there. Integrate a piece from a patch from Vishal Verma <vishal.l.verma@intel.com> to export it for modules (nfit). The main reason we're exporting it is that the nfit handler nfit_handle_mce() needs to detect a memory error properly before doing its recovery actions. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Link: http://lkml.kernel.org/r/20170519093915.15413-2-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25x86: fix 32-bit case of __get_user_asm_u64()Linus Torvalds
commit 33c9e9729033387ef0521324c62e7eba529294af upstream. The code to fetch a 64-bit value from user space was entirely buggered, and has been since the code was merged in early 2016 in commit b2f680380ddf ("x86/mm/32: Add support for 64-bit __get_user() on 32-bit kernels"). Happily the buggered routine is almost certainly entirely unused, since the normal way to access user space memory is just with the non-inlined "get_user()", and the inlined version didn't even historically exist. The normal "get_user()" case is handled by external hand-written asm in arch/x86/lib/getuser.S that doesn't have either of these issues. There were two independent bugs in __get_user_asm_u64(): - it still did the STAC/CLAC user space access marking, even though that is now done by the wrapper macros, see commit 11f1a4b9755f ("x86: reorganize SMAP handling in user space accesses"). This didn't result in a semantic error, it just means that the inlined optimized version was hugely less efficient than the allegedly slower standard version, since the CLAC/STAC overhead is quite high on modern Intel CPU's. - the double register %eax/%edx was marked as an output, but the %eax part of it was touched early in the asm, and could thus clobber other inputs to the asm that gcc didn't expect it to touch. In particular, that meant that the generated code could look like this: mov (%eax),%eax mov 0x4(%eax),%edx where the load of %edx obviously was _supposed_ to be from the 32-bit word that followed the source of %eax, but because %eax was overwritten by the first instruction, the source of %edx was basically random garbage. The fixes are trivial: remove the extraneous STAC/CLAC entries, and mark the 64-bit output as early-clobber to let gcc know that no inputs should alias with the output register. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25KVM: X86: Fix read out-of-bounds vulnerability in kvm pio emulationWanpeng Li
commit cbfc6c9184ce71b52df4b1d82af5afc81a709178 upstream. Huawei folks reported a read out-of-bounds vulnerability in kvm pio emulation. - "inb" instruction to access PIT Mod/Command register (ioport 0x43, write only, a read should be ignored) in guest can get a random number. - "rep insb" instruction to access PIT register port 0x43 can control memcpy() in emulator_pio_in_emulated() to copy max 0x400 bytes but only read 1 bytes, which will disclose the unimportant kernel memory in host but no crash. The similar test program below can reproduce the read out-of-bounds vulnerability: void hexdump(void *mem, unsigned int len) { unsigned int i, j; for(i = 0; i < len + ((len % HEXDUMP_COLS) ? (HEXDUMP_COLS - len % HEXDUMP_COLS) : 0); i++) { /* print offset */ if(i % HEXDUMP_COLS == 0) { printf("0x%06x: ", i); } /* print hex data */ if(i < len) { printf("%02x ", 0xFF & ((char*)mem)[i]); } else /* end of block, just aligning for ASCII dump */ { printf(" "); } /* print ASCII dump */ if(i % HEXDUMP_COLS == (HEXDUMP_COLS - 1)) { for(j = i - (HEXDUMP_COLS - 1); j <= i; j++) { if(j >= len) /* end of block, not really printing */ { putchar(' '); } else if(isprint(((char*)mem)[j])) /* printable char */ { putchar(0xFF & ((char*)mem)[j]); } else /* other char */ { putchar('.'); } } putchar('\n'); } } } int main(void) { int i; if (iopl(3)) { err(1, "set iopl unsuccessfully\n"); return -1; } static char buf[0x40]; /* test ioport 0x40,0x41,0x42,0x43,0x44,0x45 */ memset(buf, 0xab, sizeof(buf)); asm volatile("push %rdi;"); asm volatile("mov %0, %%rdi;"::"q"(buf)); asm volatile ("mov $0x40, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x41, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x42, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x43, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x44, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x45, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("pop %rdi;"); hexdump(buf, 0x40); printf("\n"); /* ins port 0x40 */ memset(buf, 0xab, sizeof(buf)); asm volatile("push %rdi;"); asm volatile("mov %0, %%rdi;"::"q"(buf)); asm volatile ("mov $0x20, %rcx;"); asm volatile ("mov $0x40, %rdx;"); asm volatile ("rep insb;"); asm volatile ("pop %rdi;"); hexdump(buf, 0x40); printf("\n"); /* ins port 0x43 */ memset(buf, 0xab, sizeof(buf)); asm volatile("push %rdi;"); asm volatile("mov %0, %%rdi;"::"q"(buf)); asm volatile ("mov $0x20, %rcx;"); asm volatile ("mov $0x43, %rdx;"); asm volatile ("rep insb;"); asm volatile ("pop %rdi;"); hexdump(buf, 0x40); printf("\n"); return 0; } The vcpu->arch.pio_data buffer is used by both in/out instrutions emulation w/o clear after using which results in some random datas are left over in the buffer. Guest reads port 0x43 will be ignored since it is write only, however, the function kernel_pio() can't distigush this ignore from successfully reads data from device's ioport. There is no new data fill the buffer from port 0x43, however, emulator_pio_in_emulated() will copy the stale data in the buffer to the guest unconditionally. This patch fixes it by clearing the buffer before in instruction emulation to avoid to grant guest the stale data in the buffer. In addition, string I/O is not supported for in kernel device. So there is no iteration to read ioport %RCX times for string I/O. The function kernel_pio() just reads one round, and then copy the io size * %RCX to the guest unconditionally, actually it copies the one round ioport data w/ other random datas which are left over in the vcpu->arch.pio_data buffer to the guest. This patch fixes it by introducing the string I/O support for in kernel device in order to grant the right ioport datas to the guest. Before the patch: 0x000000: fe 38 93 93 ff ff ab ab .8...... 0x000008: ab ab ab ab ab ab ab ab ........ 0x000010: ab ab ab ab ab ab ab ab ........ 0x000018: ab ab ab ab ab ab ab ab ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: f6 00 00 00 00 00 00 00 ........ 0x000008: 00 00 00 00 00 00 00 00 ........ 0x000010: 00 00 00 00 4d 51 30 30 ....MQ00 0x000018: 30 30 20 33 20 20 20 20 00 3 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: f6 00 00 00 00 00 00 00 ........ 0x000008: 00 00 00 00 00 00 00 00 ........ 0x000010: 00 00 00 00 4d 51 30 30 ....MQ00 0x000018: 30 30 20 33 20 20 20 20 00 3 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ After the patch: 0x000000: 1e 02 f8 00 ff ff ab ab ........ 0x000008: ab ab ab ab ab ab ab ab ........ 0x000010: ab ab ab ab ab ab ab ab ........ 0x000018: ab ab ab ab ab ab ab ab ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: d2 e2 d2 df d2 db d2 d7 ........ 0x000008: d2 d3 d2 cf d2 cb d2 c7 ........ 0x000010: d2 c4 d2 c0 d2 bc d2 b8 ........ 0x000018: d2 b4 d2 b0 d2 ac d2 a8 ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: 00 00 00 00 00 00 00 00 ........ 0x000008: 00 00 00 00 00 00 00 00 ........ 0x000010: 00 00 00 00 00 00 00 00 ........ 0x000018: 00 00 00 00 00 00 00 00 ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ Reported-by: Moguofang <moguofang@huawei.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Moguofang <moguofang@huawei.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25KVM: x86: Fix potential preemption when get the current kvmclock timestampWanpeng Li
commit e2c2206a18993bc9f62393d49c7b2066c3845b25 upstream. BUG: using __this_cpu_read() in preemptible [00000000] code: qemu-system-x86/2809 caller is __this_cpu_preempt_check+0x13/0x20 CPU: 2 PID: 2809 Comm: qemu-system-x86 Not tainted 4.11.0+ #13 Call Trace: dump_stack+0x99/0xce check_preemption_disabled+0xf5/0x100 __this_cpu_preempt_check+0x13/0x20 get_kvmclock_ns+0x6f/0x110 [kvm] get_time_ref_counter+0x5d/0x80 [kvm] kvm_hv_process_stimers+0x2a1/0x8a0 [kvm] ? kvm_hv_process_stimers+0x2a1/0x8a0 [kvm] ? kvm_arch_vcpu_ioctl_run+0xac9/0x1ce0 [kvm] kvm_arch_vcpu_ioctl_run+0x5bf/0x1ce0 [kvm] kvm_vcpu_ioctl+0x384/0x7b0 [kvm] ? kvm_vcpu_ioctl+0x384/0x7b0 [kvm] ? __fget+0xf3/0x210 do_vfs_ioctl+0xa4/0x700 ? __fget+0x114/0x210 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x23/0xc2 RIP: 0033:0x7f9d164ed357 ? __this_cpu_preempt_check+0x13/0x20 This can be reproduced by run kvm-unit-tests/hyperv_stimer.flat w/ CONFIG_PREEMPT and CONFIG_DEBUG_PREEMPT enabled. Safe access to per-CPU data requires a couple of constraints, though: the thread working with the data cannot be preempted and it cannot be migrated while it manipulates per-CPU variables. If the thread is preempted, the thread that replaces it could try to work with the same variables; migration to another CPU could also cause confusion. However there is no preemption disable when reads host per-CPU tsc rate to calculate the current kvmclock timestamp. This patch fixes it by utilizing get_cpu/put_cpu pair to guarantee both __this_cpu_read() and rdtsc() are not preempted. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25KVM: x86: Fix load damaged SSEx MXCSR registerWanpeng Li
commit a575813bfe4bc15aba511a5e91e61d242bff8b9d upstream. Reported by syzkaller: BUG: unable to handle kernel paging request at ffffffffc07f6a2e IP: report_bug+0x94/0x120 PGD 348e12067 P4D 348e12067 PUD 348e14067 PMD 3cbd84067 PTE 80000003f7e87161 Oops: 0003 [#1] SMP CPU: 2 PID: 7091 Comm: kvm_load_guest_ Tainted: G OE 4.11.0+ #8 task: ffff92fdfb525400 task.stack: ffffbda6c3d04000 RIP: 0010:report_bug+0x94/0x120 RSP: 0018:ffffbda6c3d07b20 EFLAGS: 00010202 do_trap+0x156/0x170 do_error_trap+0xa3/0x170 ? kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm] ? mark_held_locks+0x79/0xa0 ? retint_kernel+0x10/0x10 ? trace_hardirqs_off_thunk+0x1a/0x1c do_invalid_op+0x20/0x30 invalid_op+0x1e/0x30 RIP: 0010:kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm] ? kvm_load_guest_fpu.part.175+0x1c/0x170 [kvm] kvm_arch_vcpu_ioctl_run+0xed6/0x1b70 [kvm] kvm_vcpu_ioctl+0x384/0x780 [kvm] ? kvm_vcpu_ioctl+0x384/0x780 [kvm] ? sched_clock+0x13/0x20 ? __do_page_fault+0x2a0/0x550 do_vfs_ioctl+0xa4/0x700 ? up_read+0x1f/0x40 ? __do_page_fault+0x2a0/0x550 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x23/0xc2 SDM mentioned that "The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause a general-protection exception(#GP) to be generated". The syzkaller forks' testcase overrides xsave area w/ random values and steps on the reserved bits of MXCSR register. The damaged MXCSR register values of guest will be restored to SSEx MXCSR register before vmentry. This patch fixes it by catching userspace override MXCSR register reserved bits w/ random values and bails out immediately. Reported-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20KVM: x86: fix user triggerable warning in kvm_apic_accept_events()David Hildenbrand
commit 28bf28887976d8881a3a59491896c718fade7355 upstream. If we already entered/are about to enter SMM, don't allow switching to INIT/SIPI_RECEIVED, otherwise the next call to kvm_apic_accept_events() will report a warning. Same applies if we are already in MP state INIT_RECEIVED and SMM is requested to be turned on. Refuse to set the VCPU events in this case. Fixes: cd7764fe9f73 ("KVM: x86: latch INITs while in system management mode") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20perf/x86: Fix Broadwell-EP DRAM RAPL eventsVince Weaver
commit 33b88e708e7dfa58dc896da2a98f5719d2eb315c upstream. It appears as though the Broadwell-EP DRAM units share the special units quirk with Haswell-EP/KNL. Without this patch, you get really high results (a single DRAM using 20W of power). The powercap driver in drivers/powercap/intel_rapl.c already has this change. Signed-off-by: Vince Weaver <vincent.weaver@maine.edu> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@gmail.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20um: Fix PTRACE_POKEUSER on x86_64Richard Weinberger
commit 9abc74a22d85ab29cef9896a2582a530da7e79bf upstream. This is broken since ever but sadly nobody noticed. Recent versions of GDB set DR_CONTROL unconditionally and UML dies due to a heap corruption. It turns out that the PTRACE_POKEUSER was copy&pasted from i386 and assumes that addresses are 4 bytes long. Fix that by using 8 as address size in the calculation. Reported-by: jie cao <cj3054@gmail.com> Signed-off-by: Richard Weinberger <richard@nod.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20x86, pmem: Fix cache flushing for iovec write < 8 bytesBen Hutchings
commit 8376efd31d3d7c44bd05be337adde023cc531fa1 upstream. Commit 11e63f6d920d added cache flushing for unaligned writes from an iovec, covering the first and last cache line of a >= 8 byte write and the first cache line of a < 8 byte write. But an unaligned write of 2-7 bytes can still cover two cache lines, so make sure we flush both in that case. Fixes: 11e63f6d920d ("x86, pmem: fix broken __copy_user_nocache ...") Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20x86/boot: Fix BSS corruption/overwrite bug in early x86 kernel startupAshish Kalra
commit d594aa0277e541bb997aef0bc0a55172d8138340 upstream. The minimum size for a new stack (512 bytes) setup for arch/x86/boot components when the bootloader does not setup/provide a stack for the early boot components is not "enough". The setup code executing as part of early kernel startup code, uses the stack beyond 512 bytes and accidentally overwrites and corrupts part of the BSS section. This is exposed mostly in the early video setup code, where it was corrupting BSS variables like force_x, force_y, which in-turn affected kernel parameters such as screen_info (screen_info.orig_video_cols) and later caused an exception/panic in console_init(). Most recent boot loaders setup the stack for early boot components, so this stack overwriting into BSS section issue has not been exposed. Signed-off-by: Ashish Kalra <ashish@bluestacks.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170419152015.10011-1-ashishkalra@Ashishs-MacBook-Pro.local Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20xen: adjust early dom0 p2m handling to xen hypervisor behaviorJuergen Gross
commit 69861e0a52f8733355ce246f0db15e1b240ad667 upstream. When booted as pv-guest the p2m list presented by the Xen is already mapped to virtual addresses. In dom0 case the hypervisor might make use of 2M- or 1G-pages for this mapping. Unfortunately while being properly aligned in virtual and machine address space, those pages might not be aligned properly in guest physical address space. So when trying to obtain the guest physical address of such a page pud_pfn() and pmd_pfn() must be avoided as those will mask away guest physical address bits not being zero in this special case. Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14xen: Revert commits da72ff5bfcb0 and 72a9b186292dBoris Ostrovsky
commit 84d582d236dc1f9085e741affc72e9ba061a67c2 upstream. Recent discussion (http://marc.info/?l=xen-devel&m=149192184523741) established that commit 72a9b186292d ("xen: Remove event channel notification through Xen PCI platform device") (and thus commit da72ff5bfcb0 ("partially revert "xen: Remove event channel notification through Xen PCI platform device"")) are unnecessary and, in fact, prevent HVM guests from booting on Xen releases prior to 4.0 Therefore we revert both of those commits. The summary of that discussion is below: Here is the brief summary of the current situation: Before the offending commit (72a9b186292): 1) INTx does not work because of the reset_watches path. 2) The reset_watches path is only taken if you have Xen > 4.0 3) The Linux Kernel by default will use vector inject if the hypervisor support. So even INTx does not work no body running the kernel with Xen > 4.0 would notice. Unless he explicitly disabled this feature either in the kernel or in Xen (and this can only be disabled by modifying the code, not user-supported way to do it). After the offending commit (+ partial revert): 1) INTx is no longer support for HVM (only for PV guests). 2) Any HVM guest The kernel will not boot on Xen < 4.0 which does not have vector injection support. Since the only other mode supported is INTx which. So based on this summary, I think before commit (72a9b186292) we were in much better position from a user point of view. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Juergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Julien Grall <julien.grall@arm.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Ross Lagerwall <ross.lagerwall@citrix.com> Cc: xen-devel@lists.xenproject.org Cc: linux-kernel@vger.kernel.org Cc: linux-pci@vger.kernel.org Cc: Anthony Liguori <aliguori@amazon.com> Cc: KarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14KVM: nVMX: do not leak PML full vmexit to L1Ladi Prosek
commit ab007cc94ff9d82f5a8db8363b3becbd946e58cf upstream. The PML feature is not exposed to guests so we should not be forwarding the vmexit either. This commit fixes BSOD 0x20001 (HYPERVISOR_ERROR) when running Hyper-V enabled Windows Server 2016 in L1 on hardware that supports PML. Fixes: 843e4330573c ("KVM: VMX: Add PML support in VMX") Signed-off-by: Ladi Prosek <lprosek@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14KVM: nVMX: initialize PML fields in vmcs02Ladi Prosek
commit 1fb883bb827ee8efc1cc9ea0154f953f8a219d38 upstream. L2 was running with uninitialized PML fields which led to incomplete dirty bitmap logging. This manifested as all kinds of subtle erratic behavior of the nested guest. Fixes: 843e4330573c ("KVM: VMX: Add PML support in VMX") Signed-off-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14Revert "KVM: nested VMX: disable perf cpuid reporting"Jim Mattson
commit 0b4c208d443ba2af82b4c70f99ca8df31e9a0020 upstream. This reverts commit bc6134942dbbf31c25e9bd7c876be5da81c9e1ce. A CPUID instruction executed in VMX non-root mode always causes a VM-exit, regardless of the leaf being queried. Fixes: bc6134942dbb ("KVM: nested VMX: disable perf cpuid reporting") Signed-off-by: Jim Mattson <jmattson@google.com> [The issue solved by bc6134942dbb has been resolved with ff651cb613b4 ("KVM: nVMX: Add nested msr load/restore algorithm").] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14x86/platform/intel-mid: Correct MSI IRQ line for watchdog deviceAndy Shevchenko
commit 80354c29025833acd72ddac1ffa21c6cb50128cd upstream. The interrupt line used for the watchdog is 12, according to the official Intel Edison BSP code. And indeed after fixing it we start getting an interrupt and thus the watchdog starts working again: [ 191.699951] Kernel panic - not syncing: Kernel Watchdog Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: David Cohen <david.a.cohen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 78a3bb9e408b ("x86: intel-mid: add watchdog platform code for Merrifield") Link: http://lkml.kernel.org/r/20170312150744.45493-1-andriy.shevchenko@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14kprobes/x86: Fix kernel panic when certain exception-handling addresses are ↵Masami Hiramatsu
probed commit 75013fb16f8484898eaa8d0b08fed942d790f029 upstream. Fix to the exception table entry check by using probed address instead of the address of copied instruction. This bug may cause unexpected kernel panic if user probe an address where an exception can happen which should be fixup by __ex_table (e.g. copy_from_user.) Unless user puts a kprobe on such address, this doesn't cause any problem. This bug has been introduced years ago, by commit: 464846888d9a ("x86/kprobes: Fix a bug which can modify kernel code permanently"). Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 464846888d9a ("x86/kprobes: Fix a bug which can modify kernel code permanently") Link: http://lkml.kernel.org/r/148829899399.28855.12581062400757221722.stgit@devbox Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14x86/pci-calgary: Fix iommu_free() comparison of unsigned expression >= 0Nikola Pajkovsky
commit 68dee8e2f2cacc54d038394e70d22411dee89da2 upstream. commit 8fd524b355da ("x86: Kill bad_dma_address variable") has killed bad_dma_address variable and used instead of macro DMA_ERROR_CODE which is always zero. Since dma_addr is unsigned, the statement dma_addr >= DMA_ERROR_CODE is always true, and not needed. arch/x86/kernel/pci-calgary_64.c: In function ‘iommu_free’: arch/x86/kernel/pci-calgary_64.c:299:2: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits] if (unlikely((dma_addr >= DMA_ERROR_CODE) && (dma_addr < badend))) { Fixes: 8fd524b355da ("x86: Kill bad_dma_address variable") Signed-off-by: Nikola Pajkovsky <npajkovsky@suse.cz> Cc: iommu@lists.linux-foundation.org Cc: Jon Mason <jdmason@kudzu.us> Cc: Muli Ben-Yehuda <mulix@mulix.org> Link: http://lkml.kernel.org/r/7612c0f9dd7c1290407dbf8e809def922006920b.1479161177.git.npajkovsky@suse.cz Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14x86/ioapic: Restore IO-APIC irq_chip retrigger callbackRuslan Ruslichenko
commit a9b4f08770b415f30f2fb0f8329a370c8f554aa3 upstream. commit d32932d02e18 removed the irq_retrigger callback from the IO-APIC chip and did not add it to the new IO-APIC-IR irq chip. There is no harm because the interrupts are resent in software when the retrigger callback is NULL, but it's less efficient. So restore them. [ tglx: Massaged changelog ] Fixes: d32932d02e18 ("x86/irq: Convert IOAPIC to use hierarchical irqdomain interfaces") Signed-off-by: Ruslan Ruslichenko <rruslich@cisco.com> Cc: xe-linux-external@cisco.com Link: http://lkml.kernel.org/r/1484662432-13580-1-git-send-email-rruslich@cisco.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14perf/x86/intel/pt: Add format strings for PTWRITE and power event tracingAlexander Shishkin
commit 5443624bedd0d23e112d5f2a919435182875bce9 upstream. Commit: 8ee83b2ab3 ("perf/x86/intel/pt: Add support for PTWRITE and power event tracing") forgot to add format strings to the PT driver. So one could enable these features by setting corresponding bits in the event config, but not by their mnemonic names. This patch adds the format strings. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: vince@deater.net Fixes: 8ee83b2ab3 ("perf/x86/intel/pt: Add support for PTWRITE...") Link: http://lkml.kernel.org/r/20170127151644.8585-2-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-03ftrace/x86: Fix triple fault with graph tracing and suspend-to-ramJosh Poimboeuf
commit 34a477e5297cbaa6ecc6e17c042a866e1cbe80d6 upstream. On x86-32, with CONFIG_FIRMWARE and multiple CPUs, if you enable function graph tracing and then suspend to RAM, it will triple fault and reboot when it resumes. The first fault happens when booting a secondary CPU: startup_32_smp() load_ucode_ap() prepare_ftrace_return() ftrace_graph_is_dead() (accesses 'kill_ftrace_graph') The early head_32.S code calls into load_ucode_ap(), which has an an ftrace hook, so it calls prepare_ftrace_return(), which calls ftrace_graph_is_dead(), which tries to access the global 'kill_ftrace_graph' variable with a virtual address, causing a fault because the CPU is still in real mode. The fix is to add a check in prepare_ftrace_return() to make sure it's running in protected mode before continuing. The check makes sure the stack pointer is a virtual kernel address. It's a bit of a hack, but it's not very intrusive and it works well enough. For reference, here are a few other (more difficult) ways this could have potentially been fixed: - Move startup_32_smp()'s call to load_ucode_ap() down to *after* paging is enabled. (No idea what that would break.) - Track down load_ucode_ap()'s entire callee tree and mark all the functions 'notrace'. (Probably not realistic.) - Pause graph tracing in ftrace_suspend_notifier_call() or bringup_cpu() or __cpu_up(), and ensure that the pause facility can be queried from real mode. Reported-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Tested-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: "Rafael J . Wysocki" <rjw@rjwysocki.net> Cc: linux-acpi@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/5c1272269a580660703ed2eccf44308e790c7a98.1492123841.git.jpoimboe@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-27x86/mce: Make the MCE notifier a blocking oneVishal Verma
commit 0dc9c639e6553e39c13b2c0d54c8a1b098cb95e2 upstream. The NFIT MCE handler callback (for handling media errors on NVDIMMs) takes a mutex to add the location of a memory error to a list. But since the notifier call chain for machine checks (x86_mce_decoder_chain) is atomic, we get a lockdep splat like: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:620 in_atomic(): 1, irqs_disabled(): 0, pid: 4, name: kworker/0:0 [..] Call Trace: dump_stack ___might_sleep __might_sleep mutex_lock_nested ? __lock_acquire nfit_handle_mce notifier_call_chain atomic_notifier_call_chain ? atomic_notifier_call_chain mce_gen_pool_process Convert the notifier to a blocking one which gets to run only in process context. Boris: remove the notifier call in atomic context in print_mce(). For now, let's print the MCE on the atomic path so that we can make sure they go out and get logged at least. Fixes: 6839a6d96f4e ("nfit: do an ARS scrub on hitting a latent media error") Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Acked-by: Tony Luck <tony.luck@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20170411224457.24777-1-vishal.l.verma@intel.com Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-27x86/mce/AMD: Give a name to MCA bank 3 when accessed with legacy MSRsYazen Ghannam
commit 29f72ce3e4d18066ec75c79c857bee0618a3504b upstream. MCA bank 3 is reserved on systems pre-Fam17h, so it didn't have a name. However, MCA bank 3 is defined on Fam17h systems and can be accessed using legacy MSRs. Without a name we get a stack trace on Fam17h systems when trying to register sysfs files for bank 3 on kernels that don't recognize Scalable MCA. Call MCA bank 3 "decode_unit" since this is what it represents on Fam17h. This will allow kernels without SMCA support to see this bank on Fam17h+ and prevent the stack trace. This will not affect older systems since this bank is reserved on them, i.e. it'll be ignored. Tested on AMD Fam15h and Fam17h systems. WARNING: CPU: 26 PID: 1 at lib/kobject.c:210 kobject_add_internal kobject: (ffff88085bb256c0): attempted to be registered with empty name! ... Call Trace: kobject_add_internal kobject_add kobject_create_and_add threshold_create_device threshold_init_device Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1490102285-3659-1-git-send-email-Yazen.Ghannam@amd.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-21mm: Tighten x86 /dev/mem with zeroing readsKees Cook
commit a4866aa812518ed1a37d8ea0c881dc946409de94 upstream. Under CONFIG_STRICT_DEVMEM, reading System RAM through /dev/mem is disallowed. However, on x86, the first 1MB was always allowed for BIOS and similar things, regardless of it actually being System RAM. It was possible for heap to end up getting allocated in low 1MB RAM, and then read by things like x86info or dd, which would trip hardened usercopy: usercopy: kernel memory exposure attempt detected from ffff880000090000 (dma-kmalloc-256) (4096 bytes) This changes the x86 exception for the low 1MB by reading back zeros for System RAM areas instead of blindly allowing them. More work is needed to extend this to mmap, but currently mmap doesn't go through usercopy, so hardened usercopy won't Oops the kernel. Reported-by: Tommi Rantala <tommi.t.rantala@nokia.com> Tested-by: Tommi Rantala <tommi.t.rantala@nokia.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Brad Spengler <spender@grsecurity.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>