Age | Commit message (Collapse) | Author |
|
No code change. Only added kernel doc style comments for structures.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When user sets performance policy using cpufreq interface, it is possible
that because of policy->max limits, the actual performance is still
limited. But the current implementation will silently switch the
policy to powersave and start using powersave limits. If user modifies
any limits using intel_pstate sysfs, this is actually changing powersave
limits.
The current implementation tracks limits under powersave and performance
policy using two different variables. When policy->max is less than
policy->cpuinfo.max_freq, only powersave limit variable is used.
This fix causes the performance limits variable to be used always when
the policy is performance.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The initialization of intel_pstate for a given CPU involves populating
the fields of its struct cpudata that represent the previous sample,
but currently that is done in a problematic way.
Namely, intel_pstate_init_cpu() makes an extra call to
intel_pstate_sample() so it reads the current register values that
will be used to populate the "previous sample" record during the
next invocation of intel_pstate_sample(). However, after commit
a4675fbc4a7a (cpufreq: intel_pstate: Replace timers with utilization
update callbacks) that doesn't work for last_sample_time, because
the time value is passed to intel_pstate_sample() as an argument now.
Passing 0 to it from intel_pstate_init_cpu() is problematic, because
that causes cpu->last_sample_time == 0 to be visible in
get_target_pstate_use_performance() (and hence the extra
cpu->last_sample_time > 0 check in there) and effectively allows
the first invocation of intel_pstate_sample() from
intel_pstate_update_util() to happen immediately after the
initialization which may lead to a significant "turn on"
effect in the governor algorithm.
To mitigate that issue, rework the initialization to avoid the
extra intel_pstate_sample() call from intel_pstate_init_cpu().
Instead, make intel_pstate_sample() return false if it has been
called with cpu->sample.time equal to zero, which will make
intel_pstate_update_util() skip the sample in that case, and
reset cpu->sample.time from intel_pstate_set_update_util_hook()
to make the algorithm start properly every time the hook is set.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The utilization update hook in the intel_pstate driver is set too
early, as it only should be set after the policy has been fully
initialized by the core. That may cause intel_pstate_update_util()
to use incorrect data and put the CPUs into incorrect P-states as
a result.
To prevent that from happening, make intel_pstate_set_policy() set
the utilization update hook instead of intel_pstate_init_cpu() so
intel_pstate_update_util() only runs when all things have been
initialized as appropriate.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
After commit a4675fbc4a7a (cpufreq: intel_pstate: Replace timers with
utilization update callbacks) wrmsrl_on_cpu() cannot be called in the
intel_pstate_adjust_busy_pstate() path as that is executed with
disabled interrupts. However, atom_set_pstate() called from there
via intel_pstate_set_pstate() uses wrmsrl_on_cpu() to update the
IA32_PERF_CTL MSR which triggers the WARN_ON_ONCE() in
smp_call_function_single().
The reason why wrmsrl_on_cpu() is used by atom_set_pstate() is
because intel_pstate_set_pstate() calling it is also invoked during
the initialization and cleanup of the driver and in those cases it is
not guaranteed to be run on the CPU that is being updated. However,
in the case when intel_pstate_set_pstate() is called by
intel_pstate_adjust_busy_pstate(), wrmsrl() can be used to update
the register safely. Moreover, intel_pstate_set_pstate() already
contains code that only is executed if the function is called by
intel_pstate_adjust_busy_pstate() and there is a special argument
passed to it because of that.
To fix the problem at hand, rearrange the code taking the above
observations into account.
First, replace the ->set() callback in struct pstate_funcs with a
->get_val() one that will return the value to be written to the
IA32_PERF_CTL MSR without updating the register.
Second, split intel_pstate_set_pstate() into two functions,
intel_pstate_update_pstate() to be called by
intel_pstate_adjust_busy_pstate() that will contain all of the
intel_pstate_set_pstate() code which only needs to be executed in
that case and will use wrmsrl() to update the MSR (after obtaining
the value to write to it from the ->get_val() callback), and
intel_pstate_set_min_pstate() to be invoked during the
initialization and cleanup that will set the P-state to the
minimum one and will update the MSR using wrmsrl_on_cpu().
Finally, move the code shared between intel_pstate_update_pstate()
and intel_pstate_set_min_pstate() to a new static inline function
intel_pstate_record_pstate() and make them both call it.
Of course, that unifies the handling of the IA32_PERF_CTL MSR writes
between Atom and Core.
Fixes: a4675fbc4a7a (cpufreq: intel_pstate: Replace timers with utilization update callbacks)
Reported-and-tested-by: Josh Boyer <jwboyer@fedoraproject.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If the current value of MPERF or the current value of TSC is the
same as the previous one, respectively, intel_pstate_sample() bails
out early and skips the sample.
However, intel_pstate_adjust_busy_pstate() is still called in that
case which is not correct, so modify intel_pstate_sample() to
return a bool value indicating whether or not the sample has been
taken and use it to decide whether or not to call
intel_pstate_adjust_busy_pstate().
While at it, remove redundant parentheses from the MPERF/TSC
check in intel_pstate_sample().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
Use a helper function to compute the average pstate and call it only
where it is needed (only when tracing or in intel_pstate_get).
Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
get_target_pstate_use_performance()
The cpu_load algorithm doesn't need to invoke intel_pstate_calc_busy(),
so move that call from intel_pstate_sample() to
get_target_pstate_use_performance().
Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
mul_fp(int_tofp(A), B) expands to:
((A << FRAC_BITS) * B) >> FRAC_BITS, so the same result can be obtained
via simple multiplication A * B. Apply this observation to
max_perf * limits->max_perf and max_perf * limits->min_perf in
intel_pstate_get_min_max()."
Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
pid->setpoint and pid->deadband can be initialized in fixed point, so we
can avoid the int_tofp in pid_calc.
Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
Use the observation that cpufreq_update_util() is only called
by the scheduler with rq->lock held, so the callers of
cpufreq_set_update_util_data() can use synchronize_sched()
instead of synchronize_rcu() to wait for cpufreq_update_util()
to complete. Moreover, if they are updated to do that,
rcu_read_(un)lock() calls in cpufreq_update_util() might be
replaced with rcu_read_(un)lock_sched(), respectively, but
those aren't really necessary, because the scheduler calls
that function from RCU-sched read-side critical sections
already.
In addition to that, if cpufreq_set_update_util_data() checks
the func field in the struct update_util_data before setting
the per-CPU pointer to it, the data->func check may be dropped
from cpufreq_update_util() as well.
Make the above changes to reduce the overhead from
cpufreq_update_util() in the scheduler paths invoking it
and to make the cleanup after removing its callbacks less
heavy-weight somewhat.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Instead of using a per-CPU deferrable timer for utilization sampling
and P-states adjustments, register a utilization update callback that
will be invoked from the scheduler on utilization changes.
The sampling rate is still the same as what was used for the deferrable
timers, so the functional impact of this patch should not be significant.
Based on an earlier patch from Srinivas Pandruvada.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
Disable HWP Interrupt notification before enabling HWP. Since we don't
have HWP interrupt handling for possible performance interrupts, there
is not much use of enabling HWP interrupts.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If the processor supports HWP, enable it by default without checking
for the cpu model. This will allow to enable HWP in all supported
processors without driver change.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The intel-pstate driver is using intel_pstate_hwp_set() from two
separate paths, i.e. ->set_policy() callback and sysfs update path for
the files present in /sys/devices/system/cpu/intel_pstate/ directory.
While an update to the sysfs path applies to all the CPUs being managed
by the driver (which essentially means all the online CPUs), the update
via the ->set_policy() callback applies to a smaller group of CPUs
managed by the policy for which ->set_policy() is called.
And so, intel_pstate_hwp_set() should update frequencies of only the
CPUs that are part of policy->cpus mask, while it is called from
->set_policy() callback.
In order to do that, add a parameter (cpumask) to intel_pstate_hwp_set()
and apply the frequency changes only to the concerned CPUs.
For ->set_policy() path, we are only concerned about policy->cpus, and
so policy->rwsem lock taken by the core prior to calling ->set_policy()
is enough to take care of any races. The larger lock acquired by
get_online_cpus() is required only for the updates to sysfs files.
Add another routine, intel_pstate_hwp_set_online_cpus(), and call it
from the sysfs update paths.
This also fixes a lockdep reported recently, where policy->rwsem and
get_online_cpus() could have been acquired in any order causing an ABBA
deadlock. The sequence of events leading to that was:
intel_pstate_init(...)
...cpufreq_online(...)
down_write(&policy->rwsem); // Locks policy->rwsem
...
cpufreq_init_policy(policy);
...intel_pstate_hwp_set();
get_online_cpus(); // Temporarily locks cpu_hotplug.lock
...
up_write(&policy->rwsem);
pm_suspend(...)
...disable_nonboot_cpus()
_cpu_down()
cpu_hotplug_begin(); // Locks cpu_hotplug.lock
__cpu_notify(CPU_DOWN_PREPARE, ...);
...cpufreq_offline_prepare();
down_write(&policy->rwsem); // Locks policy->rwsem
Reported-and-tested-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
785ee27 ("cpufreq: intel_pstate: Fix limits->max_perf rounding error")
hardcodes the value of FRAC_BITS. This patch fixes that minor issue.
Fixes: 785ee2788141 (cpufreq: intel_pstate: Fix limits->max_perf rounding error)
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
In cases where we have many IOs, the global load becomes low and the
load algorithm will decrease the requested P-State. Because of that,
the IOs overheads will increase and impact the IO performances.
To improve IO bound work, we can count the io-wait time as busy time
in calculating CPU busy.
This change uses get_cpu_iowait_time_us() to obtain the IO wait time value
and converts time into number of cycles spent waiting on IO at the TSC
rate. At the moment, this trick is only used for Atom.
Signed-off-by: Philippe Longepe <philippe.longepe@intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The current function to calculate cpu utilization uses the average P-state
ratio (APerf/Mperf) scaled by the ratio of the current P-state to the
max available non-turbo one. This leads to an overestimation of
utilization which causes higher-performance P-states to be selected more
often and that leads to increased energy consumption.
This is a problem for low-power systems, so it is better to use a
different utilization calculation algorithm for them.
Namely, the Percent Busy value (or load) can be estimated as the ratio of the
MPERF counter that runs at a constant rate only during active periods (C0) to
the time stamp counter (TSC) that also runs (at the same rate) during idle.
That is:
Percent Busy = 100 * (delta_mperf / delta_tsc)
Use this algorithm for platforms with SoCs based on the Airmont and Silvermont
Atom cores.
Signed-off-by: Philippe Longepe <philippe.longepe@intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Target systems using different cpus have different power and performance
requirements. They may use different algorithms to get the next P-state
based on their power or performance preference.
For example, power-constrained systems may not want to use
high-performance P-states as aggressively as a full-size desktop or a
server platform. A server platform may want to run close to the max to
achieve better performance, while laptop-like systems may prefer
sacrificing performance for longer battery lifes.
For the above reasons, modify intel_pstate to allow the target P-state
selection algorithm to be depend on the CPU ID.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Philippe Longepe <philippe.longepe@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If hardware-driven P-state selection (HWP) is enabled, the
"performance" mode of intel_pstate should only allow the processor
to use the highest-performance P-state available. That is not
the case currently, so make it actually happen.
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Alexandra Yates <alexandra.yates@linux.intel.com>
[ rjw: Subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
A rounding error was found in the calculation of limits->max_perf
in intel_pstate_set_policy(), which is used to calculate the max and min
pstate values in intel_pstate_get_min_max(). In that code,
limits->max_perf is truncated to 2 hex digits such that, for example,
0x169 was incorrectly calculated to 0x16 instead of 0x17. This resulted in
the pstate being set one level too low. This patch rounds the value of
limits->max_perf up instead of down so that the correct max pstate can
be reached.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
I have a Intel (6,63) processor with a "marketing" frequency (from
/proc/cpuinfo) of 2100MHz, and a max turbo frequency of 2600MHz. I
can execute
cpupower frequency-set -g powersave --min 1200MHz --max 2100MHz
and the max_freq_pct is set to 80. When adding load to the system I noticed
that the cpu frequency only reached 2000MHZ and not 2100MHz as expected.
This is because limits->max_policy_pct is calculated as 2100 * 100 /2600 = 80.7
and is rounded down to 80 when it should be rounded up to 81. This patch
adds a DIV_ROUND_UP() which will return the correct value.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
There are two flavors of Atom cores to be supported by intel_pstate,
Silvermont and Airmont, so make the driver distinguish between them by
adding separate frequency tables.
Separate the CPU defaults params for each of them and match the CPU IDs
against them as appropriate.
Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Rename symbol and function names starting with "BYT" or "byt" to
start with "ATOM" or "atom", respectively, so as to make it clear
that they may apply to Atom in general and not just to Baytrail
(the goal is to support several Atoms architectures eventually).
This should not lead to any functional changes.
Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
Signed-off-by: Stephane Gasparini <stephane.gasparini@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw : Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Revert commit 37afb0003242 (cpufreq: intel_pstate: Use ACPI perf
configuration) that is reported to cause a regression to happen
on a system where invalid data are returned by the ACPI _PSS object.
Since that commit makes assumptions regarding the _PSS output
correctness that may turn out to be overly optimistic in general,
there is a concern that it may introduce regression on more
systems, so it's better to revert it now and we'll revisit the
underlying issue in the next cycle with a more robust solution.
Conflicts:
drivers/cpufreq/intel_pstate.c
Fixes: 37afb0003242 (cpufreq: intel_pstate: Use ACPI perf configuration)
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Revert commit 4ef451487019 (cpufreq: intel_pstate: Avoid calculation for
max/min) as it depends on commit 37afb0003242 (cpufreq: intel_pstate: Use
ACPI perf configuration) that causes problems to happen and needs to be
reverted.
Conflicts:
drivers/cpufreq/intel_pstate.c
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When booting an HWP enabled system the kernel displays one "HWP enabled"
message for each cpu. The messages are superfluous since HWP is globally
enabled across all CPUs. This patch also adds an informational message
when HWP is disabled via intel_pstate=no_hwp.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
On systems that initialize the intel_pstate driver with the performance
governor, and then switch to the powersave governor will not transition to
lower cpu frequencies until /sys/devices/system/cpu/intel_pstate/min_perf_pct
is set to a low value.
The behavior of governor switching changed after commit a04759924e25
("[cpufreq] intel_pstate: honor user space min_perf_pct override on
resume"). The commit introduced tracking of performance percentage
changes via sysfs in order to restore userspace changes during
suspend/resume. The problem occurs because the global values of the newly
introduced max_sysfs_pct and min_sysfs_pct are not lowered on the governor
change and this causes the powersave governor to inherit the performance
governor's settings.
A simple change would have been to reset max_sysfs_pct to 100 and
min_sysfs_pct to 0 on a governor change, which fixes the problem with
governor switching. However, since we cannot break userspace[1] the fix
is now to give each governor its own limits storage area so that governor
specific changes are tracked.
I successfully tested this by booting with both the performance governor
and the powersave governor by default, and switching between the two
governors (while monitoring /sys/devices/system/cpu/intel_pstate/ values,
and looking at the output of cpupower frequency-info). Suspend/Resume
testing was performed by Doug Smythies.
[1] Systems which suspend/resume using the unmaintained pm-utils package
will always transition to the performance governor before the suspend and
after the resume. This means a system using the powersave governor will
go from powersave to performance, then suspend/resume, performance to
powersave. The simple change during governor changes would have been
overwritten when the governor changed before and after the suspend/resume.
I have submitted https://bugzilla.redhat.com/show_bug.cgi?id=1271225
against Fedora to remove the 94cpufreq file that causes the problem. It
should be noted that pm-utils is obsoleted with newer versions of systemd.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
This is a workaround for KNL platform, where in some cases MPERF counter
will not have updated value before next read of MSR_IA32_MPERF. In this
case divide by zero will occur. This change ignores current sample for
busy calculation in this case.
Fixes: b34ef932d79a (intel_pstate: Knights Landing support)
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Cc: 4.1+ <stable@vger.kernel.org> # 4.1+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When requested from cpufreq to set policy, look into _pss and get
control values, instead of using max/min perf calculations. These
calculation misses next control state in boundary conditions.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Use ACPI _PSS to limit the Intel P State turbo, max and min ratios.
This driver uses acpi processor perf lib calls to register performance.
The following logic is used to adjust Intel P state driver limits:
- If there is no turbo entry in _PSS, then disable Intel P state turbo
and limit to non turbo max
- If the non turbo max ratio is more than _PSS max non turbo value, then
set the max non turbo ratio to _PSS non turbo max
- If the min ratio is less than _PSS min then change the min ratio
matching _PSS min
- Scale the _PSS turbo frequency to max turbo frequency based on control
value.
This feature can be disabled by using kernel parameters:
intel_pstate=no_acpi
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Systems with configurable TDP have multiple max non turbo p state. Intel
P state uses max non turbo P state for scaling. But using the real max
non turbo p state causes underestimation of next P state. So using
the physical max non turbo P state as before for scaling.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
After Ivybridge, the max non turbo ratio obtained from platform info msr
is not always guaranteed P1 on client platforms. The max non turbo
activation ratio (TAR), determines the max for the current level of TDP.
The ratio in platform info is physical max. The TAR MSR can be locked,
so updating this value is not possible on all platforms.
This change gets this ratio from MSR TURBO_ACTIVATION_RATIO if
available,
but also do some sanity checking to make sure that this value is
correct.
The sanity check involves reading the TDP ratio for the current tdp
control value when platform has configurable TDP present and matching
TAC
with this.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
* pm-cpufreq:
intel_pstate: fix PCT_TO_HWP macro
intel_pstate: Fix user input of min/max to legal policy region
cpufreq-dt: add suspend frequency support
cpufreq: allow cpufreq_generic_suspend() to work without suspend frequency
cpufreq: Use __func__ to print function's name
cpufreq: staticize cpufreq_cpu_get_raw()
cpufreq: Add ARM_MT8173_CPUFREQ dependency on THERMAL
cpufreq: dt: Tolerance applies on both sides of target voltage
cpufreq: dt: Print error on failing to mark OPPs as shared
cpufreq: dt: Check OPP count before marking them shared
|
|
PCT_TO_HWP does not take the actual range of pstates exported
by HWP_CAPABILITIES in account, and is broken on most platforms.
Remove the macro and set the min and max pstate for hwp by
determining the range and adjusting by the min and max percent
limits values.
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
In current code, max_perf_pct might be smaller than min_perf_pct
by improper user input:
$ grep . /sys/devices/system/cpu/intel_pstate/m*_perf_pct
/sys/devices/system/cpu/intel_pstate/max_perf_pct:100
/sys/devices/system/cpu/intel_pstate/min_perf_pct:100
$ echo 80 > /sys/devices/system/cpu/intel_pstate/max_perf_pct
$ grep . /sys/devices/system/cpu/intel_pstate/m*_perf_pct
/sys/devices/system/cpu/intel_pstate/max_perf_pct:80
/sys/devices/system/cpu/intel_pstate/min_perf_pct:100
Fix this problem by 2 steps:
1. Normalize the user input to [min_policy, max_policy].
2. Make sure max_perf_pct>=min_perf_pct, suggested by Seiichi Ikarashi.
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"From the number of commits perspective, the biggest items are ACPICA
and cpufreq changes with the latter taking the lead (over 50 commits).
On the cpufreq front, there are many cleanups and minor fixes in the
core and governors, driver updates etc. We also have a new cpufreq
driver for Mediatek MT8173 chips.
ACPICA mostly updates its debug infrastructure and adds a number of
fixes and cleanups for a good measure.
The Operating Performance Points (OPP) framework is updated with new
DT bindings and support for them among other things.
We have a few updates of the generic power domains framework and a
reorganization of the ACPI device enumeration code and bus type
operations.
And a lot of fixes and cleanups all over.
Included is one branch from the MFD tree as it contains some
PM-related driver core and ACPI PM changes a few other commits are
based on.
Specifics:
- ACPICA update to upstream revision 20150818 including method
tracing extensions to allow more in-depth AML debugging in the
kernel and a number of assorted fixes and cleanups (Bob Moore, Lv
Zheng, Markus Elfring).
- ACPI sysfs code updates and a documentation update related to AML
method tracing (Lv Zheng).
- ACPI EC driver fix related to serialized evaluations of _Qxx
methods and ACPI tools updates allowing the EC userspace tool to be
built from the kernel source (Lv Zheng).
- ACPI processor driver updates preparing it for future introduction
of CPPC support and ACPI PCC mailbox driver updates (Ashwin
Chaugule).
- ACPI interrupts enumeration fix for a regression related to the
handling of IRQ attribute conflicts between MADT and the ACPI
namespace (Jiang Liu).
- Fixes related to ACPI device PM (Mika Westerberg, Srinidhi
Kasagar).
- ACPI device registration code reorganization to separate the
sysfs-related code and bus type operations from the rest (Rafael J
Wysocki).
- Assorted cleanups in the ACPI core (Jarkko Nikula, Mathias Krause,
Andy Shevchenko, Rafael J Wysocki, Nicolas Iooss).
- ACPI cpufreq driver and ia64 cpufreq driver fixes and cleanups (Pan
Xinhui, Rafael J Wysocki).
- cpufreq core cleanups on top of the previous changes allowing it to
preseve its sysfs directories over system suspend/resume (Viresh
Kumar, Rafael J Wysocki, Sebastian Andrzej Siewior).
- cpufreq fixes and cleanups related to governors (Viresh Kumar).
- cpufreq updates (core and the cpufreq-dt driver) related to the
turbo/boost mode support (Viresh Kumar, Bartlomiej Zolnierkiewicz).
- New DT bindings for Operating Performance Points (OPP), support for
them in the OPP framework and in the cpufreq-dt driver plus related
OPP framework fixes and cleanups (Viresh Kumar).
- cpufreq powernv driver updates (Shilpasri G Bhat).
- New cpufreq driver for Mediatek MT8173 (Pi-Cheng Chen).
- Assorted cpufreq driver (speedstep-lib, sfi, integrator) cleanups
and fixes (Abhilash Jindal, Andrzej Hajda, Cristian Ardelean).
- intel_pstate driver updates including Skylake-S support, support
for enabling HW P-states per CPU and an additional vendor bypass
list entry (Kristen Carlson Accardi, Chen Yu, Ethan Zhao).
- cpuidle core fixes related to the handling of coupled idle states
(Xunlei Pang).
- intel_idle driver updates including Skylake Client support and
support for freeze-mode-specific idle states (Len Brown).
- Driver core updates related to power management (Andy Shevchenko,
Rafael J Wysocki).
- Generic power domains framework fixes and cleanups (Jon Hunter,
Geert Uytterhoeven, Rajendra Nayak, Ulf Hansson).
- Device PM QoS framework update to allow the latency tolerance
setting to be exposed to user space via sysfs (Mika Westerberg).
- devfreq support for PPMUv2 in Exynos5433 and a fix for an incorrect
exynos-ppmu DT binding (Chanwoo Choi, Javier Martinez Canillas).
- System sleep support updates (Alan Stern, Len Brown, SungEun Kim).
- rockchip-io AVS support updates (Heiko Stuebner).
- PM core clocks support fixup (Colin Ian King).
- Power capping RAPL driver update including support for Skylake H/S
and Broadwell-H (Radivoje Jovanovic, Seiichi Ikarashi).
- Generic device properties framework fixes related to the handling
of static (driver-provided) property sets (Andy Shevchenko).
- turbostat and cpupower updates (Len Brown, Shilpasri G Bhat,
Shreyas B Prabhu)"
* tag 'pm+acpi-4.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (180 commits)
cpufreq: speedstep-lib: Use monotonic clock
cpufreq: powernv: Increase the verbosity of OCC console messages
cpufreq: sfi: use kmemdup rather than duplicating its implementation
cpufreq: drop !cpufreq_driver check from cpufreq_parse_governor()
cpufreq: rename cpufreq_real_policy as cpufreq_user_policy
cpufreq: remove redundant 'policy' field from user_policy
cpufreq: remove redundant 'governor' field from user_policy
cpufreq: update user_policy.* on success
cpufreq: use memcpy() to copy policy
cpufreq: remove redundant CPUFREQ_INCOMPATIBLE notifier event
cpufreq: mediatek: Add MT8173 cpufreq driver
dt-bindings: mediatek: Add MT8173 CPU DVFS clock bindings
PM / Domains: Fix typo in description of genpd_dev_pm_detach()
PM / Domains: Remove unusable governor dummies
PM / Domains: Make pm_genpd_init() available to modules
PM / domains: Align column headers and data in pm_genpd_summary output
powercap / RAPL: disable the 2nd power limit properly
tools: cpupower: Fix error when running cpupower monitor
PM / OPP: Drop unlikely before IS_ERR(_OR_NULL)
PM / OPP: Fix static checker warning (broken 64bit big endian systems)
...
|
|
Conflicts:
arch/x86/entry/entry_64_compat.S
arch/x86/math-emu/get_address.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Append more Oracle X86 servers that have their own power management,
SUN FIRE X4275 M3
SUN FIRE X4170 M3
and
SUN FIRE X6-2
Signed-off-by: Ethan Zhao <ethan.zhao@oracle.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Whitelist the SKL-S processor
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Coverity scanning performed on intel_pstate.c shows possible
overflow when doing left shifting:
val = pstate << 8;
since pstate is of type integer, while val is of u64, left shifting
pstate might lead to potential loss of upper bits. Say, if pstate equals
0x4000 0000, after pstate << 8 we will get zero assigned to val.
Although pstate will not likely be that big, this patch cast the left
operand to u64 before performing the left shift, to avoid complaining
from Coverity.
Reported-by: Coquard, Christophe <christophe.coquard@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
Scaling for Knights Landing is same as the default scaling (100000).
When Knigts Landing support was added to the pstate driver, this
parameter was omitted resulting in a kernel panic during boot.
Fixes: b34ef932d79a (intel_pstate: Knights Landing support)
Reported-by: Yasuaki Ishimatsu <yishimat@redhat.com>
Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com>
Signed-off-by: Lukasz Anaczkowski <lukasz.anaczkowski@intel.com>
Acked-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Cc: 4.1+ <stable@vger.kernel.org> # 4.1+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
HWP previously was only enabled at driver load time, on the boot
CPU, however, HWP must be enabled per package. Move the code to
enable HWP to the cpufreq driver init path so that it will be
called per CPU.
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Tested-by: David Zhuang <david.zhuang@oracle.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Now that there is no paravirt TSC, the "native" is
inappropriate. The function does RDTSC, so give it the obvious
name: rdtsc().
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/fd43e16281991f096c1e4d21574d9e1402c62d39.1434501121.git.luto@kernel.org
[ Ported it to v4.2-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"The rework of backlight interface selection API from Hans de Goede
stands out from the number of commits and the number of affected
places perspective. The cpufreq core fixes from Viresh Kumar are
quite significant too as far as the number of commits goes and because
they should reduce CPU online/offline overhead quite a bit in the
majority of cases.
From the new featues point of view, the ACPICA update (to upstream
revision 20150515) adding support for new ACPI 6 material to ACPICA is
the one that matters the most as some new significant features will be
based on it going forward. Also included is an update of the ACPI
device power management core to follow ACPI 6 (which in turn reflects
the Windows' device PM implementation), a PM core extension to support
wakeup interrupts in a more generic way and support for the ACPI _CCA
device configuration object.
The rest is mostly fixes and cleanups all over and some documentation
updates, including new DT bindings for Operating Performance Points.
There is one fix for a regression introduced in the 4.1 cycle, but it
adds quite a number of lines of code, it wasn't really ready before
Thursday and you were on vacation, so I refrained from pushing it on
the last minute for 4.1.
Specifics:
- ACPICA update to upstream revision 20150515 including basic support
for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO,
XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM,
FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI,
_MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore,
Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation in
Windows (Rafael J Wysocki).
- rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling of
DMI quirks that may be involved in that and to make the code
generally more straightforward (Hans de Goede).
- fixes for the ACPI Embedded Controller (EC) driver related to the
handling of EC transactions (Lv Zheng).
- fix for a regression related to the ACPI resources management and
resulting from a recent change of ACPI initialization code ordering
(Rafael J Wysocki).
- fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the code
that switches the platform over to the ACPI mode too early in the
initialization sequence (Rafael J Wysocki).
- support for the ACPI _CCA device configuration object related to
DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- assorted cleanups related to ACPI (Dominik Brodowski, Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- fix for a long-standing issue causing General Protection Faults to
be generated occasionally on return to user space after resume from
ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- fix to make the suspend core code return -EBUSY consistently in all
cases when system suspend is aborted due to wakeup detection (Ruchi
Kandoi).
- support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- new tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- wakeup sources framework enhancements (Jin Qian).
- new macro for noirq system PM callbacks (Grygorii Strashko).
- assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should reduce
the overhead of these operations quite a bit, unless the CPU in
question is physically going away (Viresh Kumar, Saravana Kannan).
- serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- new Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- updates for the common clock operations support code in the PM core
(Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski)"
* tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (194 commits)
cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state
x86: Load __USER_DS into DS/ES after resume
PM / OPP: Add binding for 'opp-suspend'
PM / OPP: Allow multiple OPP tables to be passed via DT
PM / OPP: Add new bindings to address shortcomings of existing bindings
ACPI: Constify ACPI device IDs in documentation
ACPI / enumeration: Document the rules regarding the PRP0001 device ID
ACPI / video: Make acpi_video_unregister_backlight() private
acpi-video-detect: Remove old API
toshiba-acpi: Port to new backlight interface selection API
thinkpad-acpi: Port to new backlight interface selection API
sony-laptop: Port to new backlight interface selection API
samsung-laptop: Port to new backlight interface selection API
msi-wmi: Port to new backlight interface selection API
msi-laptop: Port to new backlight interface selection API
intel-oaktrail: Port to new backlight interface selection API
ideapad-laptop: Port to new backlight interface selection API
fujitsu-laptop: Port to new backlight interface selection API
eeepc-laptop: Port to new backlight interface selection API
dell-wmi: Port to new backlight interface selection API
...
|
|
The kernel may delay interrupts for a long time which can result in timers
being delayed. If this occurs the intel_pstate driver will crash with a
divide by zero error:
divide error: 0000 [#1] SMP
Modules linked in: btrfs zlib_deflate raid6_pq xor msdos ext4 mbcache jbd2 binfmt_misc arc4 md4 nls_utf8 cifs dns_resolver tcp_lp bnep bluetooth rfkill fuse dm_service_time iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi nf_conntrack_netbios_ns nf_conntrack_broadcast nf_conntrack_ftp ip6t_rpfilter ip6t_REJECT ipt_REJECT xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter ip_tables intel_powerclamp coretemp vfat fat kvm_intel iTCO_wdt iTCO_vendor_support ipmi_devintf sr_mod kvm crct10dif_pclmul
crc32_pclmul crc32c_intel ghash_clmulni_intel aesni_intel cdc_ether lrw usbnet cdrom mii gf128mul glue_helper ablk_helper cryptd lpc_ich mfd_core pcspkr sb_edac edac_core ipmi_si ipmi_msghandler ioatdma wmi shpchp acpi_pad nfsd auth_rpcgss nfs_acl lockd uinput dm_multipath sunrpc xfs libcrc32c usb_storage sd_mod crc_t10dif crct10dif_common ixgbe mgag200 syscopyarea sysfillrect sysimgblt mdio drm_kms_helper ttm igb drm ptp pps_core dca i2c_algo_bit megaraid_sas i2c_core dm_mirror dm_region_hash dm_log dm_mod
CPU: 113 PID: 0 Comm: swapper/113 Tainted: G W -------------- 3.10.0-229.1.2.el7.x86_64 #1
Hardware name: IBM x3950 X6 -[3837AC2]-/00FN827, BIOS -[A8E112BUS-1.00]- 08/27/2014
task: ffff880fe8abe660 ti: ffff880fe8ae4000 task.ti: ffff880fe8ae4000
RIP: 0010:[<ffffffff814a9279>] [<ffffffff814a9279>] intel_pstate_timer_func+0x179/0x3d0
RSP: 0018:ffff883fff4e3db8 EFLAGS: 00010206
RAX: 0000000027100000 RBX: ffff883fe6965100 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000010 RDI: 000000002e53632d
RBP: ffff883fff4e3e20 R08: 000e6f69a5a125c0 R09: ffff883fe84ec001
R10: 0000000000000002 R11: 0000000000000005 R12: 00000000000049f5
R13: 0000000000271000 R14: 00000000000049f5 R15: 0000000000000246
FS: 0000000000000000(0000) GS:ffff883fff4e0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7668601000 CR3: 000000000190a000 CR4: 00000000001407e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
ffff883fff4e3e58 ffffffff81099dc1 0000000000000086 0000000000000071
ffff883fff4f3680 0000000000000071 fbdc8a965e33afee ffffffff810b69dd
ffff883fe84ec000 ffff883fe6965108 0000000000000100 ffffffff814a9100
Call Trace:
<IRQ>
[<ffffffff81099dc1>] ? run_posix_cpu_timers+0x51/0x840
[<ffffffff810b69dd>] ? trigger_load_balance+0x5d/0x200
[<ffffffff814a9100>] ? pid_param_set+0x130/0x130
[<ffffffff8107df56>] call_timer_fn+0x36/0x110
[<ffffffff814a9100>] ? pid_param_set+0x130/0x130
[<ffffffff8107fdcf>] run_timer_softirq+0x21f/0x320
[<ffffffff81077b2f>] __do_softirq+0xef/0x280
[<ffffffff816156dc>] call_softirq+0x1c/0x30
[<ffffffff81015d95>] do_softirq+0x65/0xa0
[<ffffffff81077ec5>] irq_exit+0x115/0x120
[<ffffffff81616355>] smp_apic_timer_interrupt+0x45/0x60
[<ffffffff81614a1d>] apic_timer_interrupt+0x6d/0x80
<EOI>
[<ffffffff814a9c32>] ? cpuidle_enter_state+0x52/0xc0
[<ffffffff814a9c28>] ? cpuidle_enter_state+0x48/0xc0
[<ffffffff814a9d65>] cpuidle_idle_call+0xc5/0x200
[<ffffffff8101d14e>] arch_cpu_idle+0xe/0x30
[<ffffffff810c67c1>] cpu_startup_entry+0xf1/0x290
[<ffffffff8104228a>] start_secondary+0x1ba/0x230
Code: 42 0f 00 45 89 e6 48 01 c2 43 8d 44 6d 00 39 d0 73 26 49 c1 e5 08 89 d2 4d 63 f4 49 63 c5 48 c1 e2 08 48 c1 e0 08 48 63 ca 48 99 <48> f7 f9 48 98 4c 0f af f0 49 c1 ee 08 8b 43 78 c1 e0 08 44 29
RIP [<ffffffff814a9279>] intel_pstate_timer_func+0x179/0x3d0
RSP <ffff883fff4e3db8>
The kernel values for cpudata for CPU 113 were:
struct cpudata {
cpu = 113,
timer = {
entry = {
next = 0x0,
prev = 0xdead000000200200
},
expires = 8357799745,
base = 0xffff883fe84ec001,
function = 0xffffffff814a9100 <intel_pstate_timer_func>,
data = 18446612406765768960,
<snip>
i_gain = 0,
d_gain = 0,
deadband = 0,
last_err = 22489
},
last_sample_time = {
tv64 = 4063132438017305
},
prev_aperf = 287326796397463,
prev_mperf = 251427432090198,
sample = {
core_pct_busy = 23081,
aperf = 2937407,
mperf = 3257884,
freq = 2524484,
time = {
tv64 = 4063149215234118
}
}
}
which results in the time between samples = last_sample_time - sample.time
= 4063149215234118 - 4063132438017305 = 16777216813 which is 16.777 seconds.
The duration between reads of the APERF and MPERF registers overflowed a s32
sized integer in intel_pstate_get_scaled_busy()'s call to div_fp(). The result
is that int_tofp(duration_us) == 0, and the kernel attempts to divide by 0.
While the kernel shouldn't be delaying for a long time, it can and does
happen and the intel_pstate driver should not panic in this situation. This
patch changes the div_fp() function to use div64_s64() to allow for "long"
division. This will avoid the overflow condition on long delays.
[v2]: use div64_s64() in div_fp()
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|