Age | Commit message (Collapse) | Author |
|
[ Upstream commit 1034051045d125579ab1e8fcd5a724eeb0e70149 ]
STARTLAN needs to be the first IPA command after MPC initialization
completes.
So move the qeth_send_startlan() call from the layer disciplines
into the core path, right after the MPC handshake.
While at it, replace the magic LAN OFFLINE return code
with the existing enum.
Signed-off-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Reviewed-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Reviewed-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e48b9eaaa29a0a7d5da2df136b07eefa0180d584 ]
qeth devices in layer3 mode need a separate handling of vipa and proxy-arp
addresses. vipa and proxy-arp addresses processed by qeth can be read from
userspace. Introduced with commit 5f78e29ceebf ("qeth: optimize IP handling
in rx_mode callback") the retrieval of vipa and proxy-arp addresses is
broken, if more than one vipa or proxy-arp address are set.
The qeth code used local variable "int i" for 2 different purposes. This
patch now spends 2 separate local variables of type "int".
While touching these functions hash_for_each_safe() is converted to
hash_for_each(), since there is no removal of hash entries.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Reference-ID: RQM 3524
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2202134e48a3b50320aeb9e3dd1186833e9d7e66 ]
Check if the device pointer is valid. Just a sanity check since we already
are in the int handler of the device.
Signed-off-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ab31fd0ce65ec93828b617123792c1bb7c6dcc42 upstream.
v4.10 commit 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race with LUN
recovery") extended accessing parent pointer fields of struct
zfcp_erp_action for tracing. If an erp_action has never been enqueued
before, these parent pointer fields are uninitialized and NULL. Examples
are zfcp objects freshly added to the parent object's children list,
before enqueueing their first recovery subsequently. In
zfcp_erp_try_rport_unblock(), we iterate such list. Accessing erp_action
fields can cause a NULL pointer dereference. Since the kernel can read
from lowcore on s390, it does not immediately cause a kernel page
fault. Instead it can cause hangs on trying to acquire the wrong
erp_action->adapter->dbf->rec_lock in zfcp_dbf_rec_action_lvl()
^bogus^
while holding already other locks with IRQs disabled.
Real life example from attaching lots of LUNs in parallel on many CPUs:
crash> bt 17723
PID: 17723 TASK: ... CPU: 25 COMMAND: "zfcperp0.0.1800"
LOWCORE INFO:
-psw : 0x0404300180000000 0x000000000038e424
-function : _raw_spin_lock_wait_flags at 38e424
...
#0 [fdde8fc90] zfcp_dbf_rec_action_lvl at 3e0004e9862 [zfcp]
#1 [fdde8fce8] zfcp_erp_try_rport_unblock at 3e0004dfddc [zfcp]
#2 [fdde8fd38] zfcp_erp_strategy at 3e0004e0234 [zfcp]
#3 [fdde8fda8] zfcp_erp_thread at 3e0004e0a12 [zfcp]
#4 [fdde8fe60] kthread at 173550
#5 [fdde8feb8] kernel_thread_starter at 10add2
zfcp_adapter
zfcp_port
zfcp_unit <address>, 0x404040d600000000
scsi_device NULL, returning early!
zfcp_scsi_dev.status = 0x40000000
0x40000000 ZFCP_STATUS_COMMON_RUNNING
crash> zfcp_unit <address>
struct zfcp_unit {
erp_action = {
adapter = 0x0,
port = 0x0,
unit = 0x0,
},
}
zfcp_erp_action is always fully embedded into its container object. Such
container object is never moved in its object tree (only add or delete).
Hence, erp_action parent pointers can never change.
To fix the issue, initialize the erp_action parent pointers before
adding the erp_action container to any list and thus before it becomes
accessible from outside of its initializing function.
In order to also close the time window between zfcp_erp_setup_act()
memsetting the entire erp_action to zero and setting the parent pointers
again, drop the memset and instead explicitly initialize individually
all erp_action fields except for parent pointers. To be extra careful
not to introduce any other unintended side effect, even keep zeroing the
erp_action fields for list and timer. Also double-check with
WARN_ON_ONCE that erp_action parent pointers never change, so we get to
know when we would deviate from previous behavior.
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race with LUN recovery")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5d4a3d0a2ff23799b956e5962b886287614e7fad upstream.
Complements debugging aspects of the otherwise functionally complete
v3.17 commit 9cb78c16f5da ("scsi: use 64-bit LUNs").
While I don't have access to a target exporting 3 or 4 level LUNs,
I did test it by explicitly attaching a non-existent fake 4 level LUN
by means of zfcp sysfs attribute "unit_add".
In order to see corresponding trace records of otherwise successful
events, we had to increase the trace level of area SCSI and HBA to 6.
$ echo 6 > /sys/kernel/debug/s390dbf/zfcp_0.0.1880_scsi/level
$ echo 6 > /sys/kernel/debug/s390dbf/zfcp_0.0.1880_hba/level
$ echo 0x4011402240334044 > \
/sys/bus/ccw/drivers/zfcp/0.0.1880/0x50050763031bd327/unit_add
Example output formatted by an updated zfcpdbf from the s390-tools
package interspersed with kernel messages at scsi_logging_level=4605:
Timestamp : ...
Area : REC
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : scsla_1
LUN : 0x4011402240334044
WWPN : 0x50050763031bd327
D_ID : 0x00......
Adapter status : 0x5400050b
Port status : 0x54000001
LUN status : 0x41000000
Ready count : 0x00000001
Running count : 0x00000000
ERP want : 0x01
ERP need : 0x01
scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY pass 1 length 36
scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY successful with code 0x0
Timestamp : ...
Area : HBA
Subarea : 00
Level : 6
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : fs_norm
Request ID : 0x<inquiry2-req-id>
Request status : 0x00000010
FSF cmnd : 0x00000001
FSF sequence no: 0x...
FSF issued : ...
FSF stat : 0x00000000
FSF stat qual : 00000000 00000000 00000000 00000000
Prot stat : 0x00000001
Prot stat qual : ........ ........ 00000000 00000000
Port handle : 0x...
LUN handle : 0x...
|
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 6
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : rsl_nor
Request ID : 0x<inquiry2-req-id>
SCSI ID : 0x00000000
SCSI LUN : 0x40224011
SCSI LUN high : 0x40444033 <=======================
SCSI result : 0x00000000
SCSI retries : 0x00
SCSI allowed : 0x03
SCSI scribble : 0x<inquiry2-req-id>
SCSI opcode : 12000000 a4000000 00000000 00000000
FCP rsp inf cod: 0x00
FCP rsp IU : 00000000 00000000 00000000 00000000
00000000 00000000
scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY pass 2 length 164
scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY successful with code 0x0
scsi 2:0:0:4630896905707208721: scsi scan: peripheral device type of 31, \
no device added
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 9cb78c16f5da ("scsi: use 64-bit LUNs")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Reviewed-by: Jens Remus <jremus@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
response
commit fdb7cee3b9e3c561502e58137a837341f10cbf8b upstream.
At the default trace level, we only trace unsuccessful events including
FSF responses.
zfcp_dbf_hba_fsf_response() only used protocol status and FSF status to
decide on an unsuccessful response. However, this is only one of multiple
possible sources determining a failed struct zfcp_fsf_req.
An FSF request can also "fail" if its response runs into an ERP timeout
or if it gets dismissed because a higher level recovery was triggered
[trace tags "erscf_1" or "erscf_2" in zfcp_erp_strategy_check_fsfreq()].
FSF requests with ERP timeout are:
FSF_QTCB_EXCHANGE_CONFIG_DATA, FSF_QTCB_EXCHANGE_PORT_DATA,
FSF_QTCB_OPEN_PORT_WITH_DID or FSF_QTCB_CLOSE_PORT or
FSF_QTCB_CLOSE_PHYSICAL_PORT for target ports,
FSF_QTCB_OPEN_LUN, FSF_QTCB_CLOSE_LUN.
One example is slow queue processing which can cause follow-on errors,
e.g. FSF_PORT_ALREADY_OPEN after FSF_QTCB_OPEN_PORT_WITH_DID timed out.
In order to see the root cause, we need to see late responses even if the
channel presented them successfully with FSF_PROT_GOOD and FSF_GOOD.
Example trace records formatted with zfcpdbf from the s390-tools package:
Timestamp : ...
Area : REC
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : ...
Record ID : 1
Tag : fcegpf1
LUN : 0xffffffffffffffff
WWPN : 0x<WWPN>
D_ID : 0x00<D_ID>
Adapter status : 0x5400050b
Port status : 0x41200000
LUN status : 0x00000000
Ready count : 0x00000001
Running count : 0x...
ERP want : 0x02 ZFCP_ERP_ACTION_REOPEN_PORT
ERP need : 0x02 ZFCP_ERP_ACTION_REOPEN_PORT
|
Timestamp : ... 30 seconds later
Area : REC
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : ...
Record ID : 2
Tag : erscf_2
LUN : 0xffffffffffffffff
WWPN : 0x<WWPN>
D_ID : 0x00<D_ID>
Adapter status : 0x5400050b
Port status : 0x41200000
LUN status : 0x00000000
Request ID : 0x<request_ID>
ERP status : 0x10000000 ZFCP_STATUS_ERP_TIMEDOUT
ERP step : 0x0800 ZFCP_ERP_STEP_PORT_OPENING
ERP action : 0x02 ZFCP_ERP_ACTION_REOPEN_PORT
ERP count : 0x00
|
Timestamp : ... later than previous record
Area : HBA
Subarea : 00
Level : 5 > default level => 3 <= default level
Exception : -
CPU ID : 00
Caller : ...
Record ID : 1
Tag : fs_qtcb => fs_rerr
Request ID : 0x<request_ID>
Request status : 0x00001010 ZFCP_STATUS_FSFREQ_DISMISSED
| ZFCP_STATUS_FSFREQ_CLEANUP
FSF cmnd : 0x00000005
FSF sequence no: 0x...
FSF issued : ... > 30 seconds ago
FSF stat : 0x00000000 FSF_GOOD
FSF stat qual : 00000000 00000000 00000000 00000000
Prot stat : 0x00000001 FSF_PROT_GOOD
Prot stat qual : 00000000 00000000 00000000 00000000
Port handle : 0x...
LUN handle : 0x00000000
QTCB log length: ...
QTCB log info : ...
In case of problems detecting that new responses are waiting on the input
queue, we sooner or later trigger adapter recovery due to an FSF request
timeout (trace tag "fsrth_1").
FSF requests with FSF request timeout are:
typically FSF_QTCB_ABORT_FCP_CMND; but theoretically also
FSF_QTCB_EXCHANGE_CONFIG_DATA or FSF_QTCB_EXCHANGE_PORT_DATA via sysfs,
FSF_QTCB_OPEN_PORT_WITH_DID or FSF_QTCB_CLOSE_PORT for WKA ports,
FSF_QTCB_FCP_CMND for task management function (LUN / target reset).
One or more pending requests can meanwhile have FSF_PROT_GOOD and FSF_GOOD
because the channel filled in the response via DMA into the request's QTCB.
In a theroretical case, inject code can create an erroneous FSF request
on purpose. If data router is enabled, it uses deferred error reporting.
A READ SCSI command can succeed with FSF_PROT_GOOD, FSF_GOOD, and
SAM_STAT_GOOD. But on writing the read data to host memory via DMA,
it can still fail, e.g. if an intentionally wrong scatter list does not
provide enough space. Rather than getting an unsuccessful response,
we get a QDIO activate check which in turn triggers adapter recovery.
One or more pending requests can meanwhile have FSF_PROT_GOOD and FSF_GOOD
because the channel filled in the response via DMA into the request's QTCB.
Example trace records formatted with zfcpdbf from the s390-tools package:
Timestamp : ...
Area : HBA
Subarea : 00
Level : 6 > default level => 3 <= default level
Exception : -
CPU ID : ..
Caller : ...
Record ID : 1
Tag : fs_norm => fs_rerr
Request ID : 0x<request_ID2>
Request status : 0x00001010 ZFCP_STATUS_FSFREQ_DISMISSED
| ZFCP_STATUS_FSFREQ_CLEANUP
FSF cmnd : 0x00000001
FSF sequence no: 0x...
FSF issued : ...
FSF stat : 0x00000000 FSF_GOOD
FSF stat qual : 00000000 00000000 00000000 00000000
Prot stat : 0x00000001 FSF_PROT_GOOD
Prot stat qual : ........ ........ 00000000 00000000
Port handle : 0x...
LUN handle : 0x...
|
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 3
Exception : -
CPU ID : ..
Caller : ...
Record ID : 1
Tag : rsl_err
Request ID : 0x<request_ID2>
SCSI ID : 0x...
SCSI LUN : 0x...
SCSI result : 0x000e0000 DID_TRANSPORT_DISRUPTED
SCSI retries : 0x00
SCSI allowed : 0x05
SCSI scribble : 0x<request_ID2>
SCSI opcode : 28... Read(10)
FCP rsp inf cod: 0x00
FCP rsp IU : 00000000 00000000 00000000 00000000
^^ SAM_STAT_GOOD
00000000 00000000
Only with luck in both above cases, we could see a follow-on trace record
of an unsuccesful event following a successful but late FSF response with
FSF_PROT_GOOD and FSF_GOOD. Typically this was the case for I/O requests
resulting in a SCSI trace record "rsl_err" with DID_TRANSPORT_DISRUPTED
[On ZFCP_STATUS_FSFREQ_DISMISSED, zfcp_fsf_protstatus_eval() sets
ZFCP_STATUS_FSFREQ_ERROR seen by the request handler functions as failure].
However, the reason for this follow-on trace was invisible because the
corresponding HBA trace record was missing at the default trace level
(by default hidden records with tags "fs_norm", "fs_qtcb", or "fs_open").
On adapter recovery, after we had shut down the QDIO queues, we perform
unsuccessful pseudo completions with flag ZFCP_STATUS_FSFREQ_DISMISSED
for each pending FSF request in zfcp_fsf_req_dismiss_all().
In order to find the root cause, we need to see all pseudo responses even
if the channel presented them successfully with FSF_PROT_GOOD and FSF_GOOD.
Therefore, check zfcp_fsf_req.status for ZFCP_STATUS_FSFREQ_DISMISSED
or ZFCP_STATUS_FSFREQ_ERROR and trace with a new tag "fs_rerr".
It does not matter that there are numerous places which set
ZFCP_STATUS_FSFREQ_ERROR after the location where we trace an FSF response
early. These cases are based on protocol status != FSF_PROT_GOOD or
== FSF_PROT_FSF_STATUS_PRESENTED and are thus already traced by default
as trace tag "fs_perr" or "fs_ferr" respectively.
NB: The trace record with tag "fssrh_1" for status read buffers on dismiss
all remains. zfcp_fsf_req_complete() handles this and returns early.
All other FSF request types are handled separately and as described above.
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 8a36e4532ea1 ("[SCSI] zfcp: enhancement of zfcp debug features")
Fixes: 2e261af84cdb ("[SCSI] zfcp: Only collect FSF/HBA debug data for matching trace levels")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 12c3e5754c8022a4f2fd1e9f00d19e99ee0d3cc1 upstream.
If the FCP_RSP UI has optional parts (FCP_SNS_INFO or FCP_RSP_INFO) and
thus does not fit into the fsp_rsp field built into a SCSI trace record,
trace the full FCP_RSP UI with all optional parts as payload record
instead of just FCP_SNS_INFO as payload and
a 1 byte RSP_INFO_CODE part of FCP_RSP_INFO built into the SCSI record.
That way we would also get the full FCP_SNS_INFO in case a
target would ever send more than
min(SCSI_SENSE_BUFFERSIZE==96, ZFCP_DBF_PAY_MAX_REC==256)==96.
The mandatory part of FCP_RSP IU is only 24 bytes.
PAYload costs at least one full PAY record of 256 bytes anyway.
We cap to the hardware response size which is only FSF_FCP_RSP_SIZE==128.
So we can just put the whole FCP_RSP IU with any optional parts into
PAYload similarly as we do for SAN PAY since v4.9 commit aceeffbb59bb
("zfcp: trace full payload of all SAN records (req,resp,iels)").
This does not cause any additional trace records wasting memory.
Decoded trace records were confusing because they showed a hard-coded
sense data length of 96 even if the FCP_RSP_IU field FCP_SNS_LEN showed
actually less.
Since the same commit, we set pl_len for SAN traces to the full length of a
request/response even if we cap the corresponding trace.
In contrast, here for SCSI traces we set pl_len to the pre-computed
length of FCP_RSP IU considering SNS_LEN or RSP_LEN if valid.
Nonetheless we trace a hardcoded payload of length FSF_FCP_RSP_SIZE==128
if there were optional parts.
This makes it easier for the zfcpdbf tool to format only the relevant
part of the long FCP_RSP UI buffer. And any trailing information is still
available in the payload trace record just in case.
Rename the payload record tag from "fcp_sns" to "fcp_riu" to make the new
content explicit to zfcpdbf which can then pick a suitable field name such
as "FCP rsp IU all:" instead of "Sense info :"
Also, the same zfcpdbf can still be backwards compatible with "fcp_sns".
Old example trace record before this fix, formatted with the tool zfcpdbf
from s390-tools:
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 3
Exception : -
CPU id : ..
Caller : 0x...
Record id : 1
Tag : rsl_err
Request id : 0x<request_id>
SCSI ID : 0x...
SCSI LUN : 0x...
SCSI result : 0x00000002
SCSI retries : 0x00
SCSI allowed : 0x05
SCSI scribble : 0x<request_id>
SCSI opcode : 00000000 00000000 00000000 00000000
FCP rsp inf cod: 0x00
FCP rsp IU : 00000000 00000000 00000202 00000000
^^==FCP_SNS_LEN_VALID
00000020 00000000
^^^^^^^^==FCP_SNS_LEN==32
Sense len : 96 <==min(SCSI_SENSE_BUFFERSIZE,ZFCP_DBF_PAY_MAX_REC)
Sense info : 70000600 00000018 00000000 29000000
00000400 00000000 00000000 00000000
00000000 00000000 00000000 00000000<==superfluous
00000000 00000000 00000000 00000000<==superfluous
00000000 00000000 00000000 00000000<==superfluous
00000000 00000000 00000000 00000000<==superfluous
New example trace records with this fix:
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 3
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : rsl_err
Request ID : 0x<request_id>
SCSI ID : 0x...
SCSI LUN : 0x...
SCSI result : 0x00000002
SCSI retries : 0x00
SCSI allowed : 0x03
SCSI scribble : 0x<request_id>
SCSI opcode : a30c0112 00000000 02000000 00000000
FCP rsp inf cod: 0x00
FCP rsp IU : 00000000 00000000 00000a02 00000200
00000020 00000000
FCP rsp IU len : 56
FCP rsp IU all : 00000000 00000000 00000a02 00000200
^^=FCP_RESID_UNDER|FCP_SNS_LEN_VALID
00000020 00000000 70000500 00000018
^^^^^^^^==FCP_SNS_LEN
^^^^^^^^^^^^^^^^^
00000000 240000cb 00011100 00000000
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
00000000 00000000
^^^^^^^^^^^^^^^^^==FCP_SNS_INFO
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : lr_okay
Request ID : 0x<request_id>
SCSI ID : 0x...
SCSI LUN : 0x...
SCSI result : 0x00000000
SCSI retries : 0x00
SCSI allowed : 0x05
SCSI scribble : 0x<request_id>
SCSI opcode : <CDB of unrelated SCSI command passed to eh handler>
FCP rsp inf cod: 0x00
FCP rsp IU : 00000000 00000000 00000100 00000000
00000000 00000008
FCP rsp IU len : 32
FCP rsp IU all : 00000000 00000000 00000100 00000000
^^==FCP_RSP_LEN_VALID
00000000 00000008 00000000 00000000
^^^^^^^^==FCP_RSP_LEN
^^^^^^^^^^^^^^^^^==FCP_RSP_INFO
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 250a1352b95e ("[SCSI] zfcp: Redesign of the debug tracing for SCSI records.")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1a5d999ebfc7bfe28deb48931bb57faa8e4102b6 upstream.
For problem determination we need to see that we were in scsi_eh
as well as whether and why we were successful or not.
The following commits introduced new early returns without adding
a trace record:
v2.6.35 commit a1dbfddd02d2
("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh")
on fc_block_scsi_eh() returning != 0 which is FAST_IO_FAIL,
v2.6.30 commit 63caf367e1c9
("[SCSI] zfcp: Improve reliability of SCSI eh handlers in zfcp")
on not having gotten an FSF request after the maximum number of retry
attempts and thus could not issue a TMF and has to return FAILED.
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh")
Fixes: 63caf367e1c9 ("[SCSI] zfcp: Improve reliability of SCSI eh handlers in zfcp")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9fe5d2b2fd30aa8c7827ec62cbbe6d30df4fe3e3 upstream.
Without this fix we get SCSI trace records on task management functions
which cannot be correlated to HBA trace records because all fields
related to the FSF request are empty (zero).
Also, the FCP_RSP_IU is missing as well as any sense data if available.
This was caused by v2.6.14 commit 8a36e4532ea1 ("[SCSI] zfcp: enhancement
of zfcp debug features") introducing trace records for TMFs but
hard coding NULL for a possibly existing TMF FSF request.
The scsi_cmnd scribble is also zero or unrelated for the TMF request
so it also could not lookup a suitable FSF request from there.
A broken example trace record formatted with zfcpdbf from the s390-tools
package:
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : lr_fail
Request ID : 0x0000000000000000
^^^^^^^^^^^^^^^^ no correlation to HBA record
SCSI ID : 0x<scsitarget>
SCSI LUN : 0x<scsilun>
SCSI result : 0x000e0000
SCSI retries : 0x00
SCSI allowed : 0x05
SCSI scribble : 0x0000000000000000
SCSI opcode : 2a000017 3bb80000 08000000 00000000
FCP rsp inf cod: 0x00
^^ no TMF response
FCP rsp IU : 00000000 00000000 00000000 00000000
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
00000000 00000000
^^^^^^^^^^^^^^^^^ no interesting FCP_RSP_IU
Sense len : ...
^^^^^^^^^^^^^^^^^^^^ no sense data length
Sense info : ...
^^^^^^^^^^^^^^^^^^^^ no sense data content, even if present
There are some true cases where we really do not have an FSF request:
"rsl_fai" from zfcp_dbf_scsi_fail_send() called for early
returns / completions in zfcp_scsi_queuecommand(),
"abrt_or", "abrt_bl", "abrt_ru", "abrt_ar" from
zfcp_scsi_eh_abort_handler() where we did not get as far,
"lr_nres", "tr_nres" from zfcp_task_mgmt_function() where we're
successful and do not need to do anything because adapter stopped.
For these cases it's correct to pass NULL for fsf_req to _zfcp_dbf_scsi().
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 8a36e4532ea1 ("[SCSI] zfcp: enhancement of zfcp debug features")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 975171b4461be296a35e83ebd748946b81cf0635 upstream.
v4.9 commit aceeffbb59bb ("zfcp: trace full payload of all SAN records
(req,resp,iels)") fixed trace data loss of 2.6.38 commit 2c55b750a884
("[SCSI] zfcp: Redesign of the debug tracing for SAN records.")
necessary for problem determination, e.g. to see the
currently active zone set during automatic port scan.
While it already saves space by not dumping any empty residual entries
of the large successful GPN_FT response (4 pages), there are seldom cases
where the GPN_FT response is unsuccessful and likely does not have
FC_NS_FID_LAST set in fp_flags so we did not cap the trace record.
We typically see such case for an initiator WWPN, which is not in any zone.
Cap unsuccessful responses to at least the actual basic CT_IU response
plus whatever fits the SAN trace record built-in "payload" buffer
just in case there's trailing information
of which we would at least see the existence and its beginning.
In order not to erroneously cap successful responses, we need to swap
calling the trace function and setting the CT / ELS status to success (0).
Example trace record pair formatted with zfcpdbf:
Timestamp : ...
Area : SAN
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : fssct_1
Request ID : 0x<request_id>
Destination ID : 0x00fffffc
SAN req short : 01000000 fc020000 01720ffc 00000000
00000008
SAN req length : 20
|
Timestamp : ...
Area : SAN
Subarea : 00
Level : 1
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 2
Tag : fsscth2
Request ID : 0x<request_id>
Destination ID : 0x00fffffc
SAN resp short : 01000000 fc020000 80010000 00090700
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
SAN resp length: 16384
San resp info : 01000000 fc020000 80010000 00090700
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
00000000 00000000 00000000 00000000 [trailing info]
The fix saves all but one of the previously associated 64 PAYload trace
record chunks of size 256 bytes each.
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: aceeffbb59bb ("zfcp: trace full payload of all SAN records (req,resp,iels)")
Fixes: 2c55b750a884 ("[SCSI] zfcp: Redesign of the debug tracing for SAN records.")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a099b7b1fc1f0418ab8d79ecf98153e1e134656e upstream.
Up until now zfcp would just ignore the FCP_RESID_OVER flag in the FCP
response IU. When this flag is set, it is possible, in regards to the
FCP standard, that the storage-server processes the command normally, up
to the point where data is missing and simply ignores those.
In this case no CHECK CONDITION would be set, and because we ignored the
FCP_RESID_OVER flag we resulted in at least a data loss or even
-corruption as a follow-up error, depending on how the
applications/layers on top behave. To prevent this, we now set the
host-byte of the corresponding scsi_cmnd to DID_ERROR.
Other storage-behaviors, where the same condition results in a CHECK
CONDITION set in the answer, don't need to be changed as they are
handled in the mid-layer already.
Following is an example trace record decoded with zfcpdbf from the
s390-tools package. We forcefully injected a fc_dl which is one byte too
small:
Timestamp : ...
Area : SCSI
Subarea : 00
Level : 3
Exception : -
CPU ID : ..
Caller : 0x...
Record ID : 1
Tag : rsl_err
Request ID : 0x...
SCSI ID : 0x...
SCSI LUN : 0x...
SCSI result : 0x00070000
^^DID_ERROR
SCSI retries : 0x..
SCSI allowed : 0x..
SCSI scribble : 0x...
SCSI opcode : 2a000000 00000000 08000000 00000000
FCP rsp inf cod: 0x00
FCP rsp IU : 00000000 00000000 00000400 00000001
^^fr_flags==FCP_RESID_OVER
^^fr_status==SAM_STAT_GOOD
^^^^^^^^fr_resid
00000000 00000000
As of now, we don't actively handle to possibility that a response IU
has both flags - FCP_RESID_OVER and FCP_RESID_UNDER - set at once.
Reported-by: Luke M. Hopkins <lmhopkin@us.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 553448f6c483 ("[SCSI] zfcp: Message cleanup")
Fixes: ea127f975424 ("[PATCH] s390 (7/7): zfcp host adapter.") (tglx/history.git)
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 71b8e45da51a7b64a23378221c0a5868bd79da4f upstream.
Since commit db007fc5e20c ("[SCSI] Command protection operation"),
scsi_eh_prep_cmnd() saves scmd->prot_op and temporarily resets it to
SCSI_PROT_NORMAL.
Other FCP LLDDs such as qla2xxx and lpfc shield their queuecommand()
to only access any of scsi_prot_sg...() if
(scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL).
Do the same thing for zfcp, which introduced DIX support with
commit ef3eb71d8ba4 ("[SCSI] zfcp: Introduce experimental support for
DIF/DIX").
Otherwise, TUR SCSI commands as part of scsi_eh likely fail in zfcp,
because the regular SCSI command with DIX protection data, that scsi_eh
re-uses in scsi_send_eh_cmnd(), of course still has
(scsi_prot_sg_count() != 0) and so zfcp sends down bogus requests to the
FCP channel hardware.
This causes scsi_eh_test_devices() to have (finish_cmds == 0)
[not SCSI device is online or not scsi_eh_tur() failed]
so regular SCSI commands, that caused / were affected by scsi_eh,
are moved to work_q and scsi_eh_test_devices() itself returns false.
In turn, it unnecessarily escalates in our case in scsi_eh_ready_devs()
beyond host reset to finally scsi_eh_offline_sdevs()
which sets affected SCSI devices offline with the following kernel message:
"kernel: sd H:0:T:L: Device offlined - not ready after error recovery"
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: ef3eb71d8ba4 ("[SCSI] zfcp: Introduce experimental support for DIF/DIX")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ebccc7397e4a49ff64c8f44a54895de9d32fe742 ]
commit 5f78e29ceebf ("qeth: optimize IP handling in rx_mode callback")
added new hash tables, but missed to initialize them.
Fixes: 5f78e29ceebf ("qeth: optimize IP handling in rx_mode callback")
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Signed-off-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 25e2c341e7818a394da9abc403716278ee646014 ]
Access card->dev only after checking whether's its valid.
Signed-off-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Reviewed-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2d2ebb3ed0c6acfb014f98e427298673a5d07b82 ]
commit b4d72c08b358 ("qeth: bridgeport support - basic control")
broke the support for OSM and OSN devices as follows:
As OSM and OSN are L2 only, qeth_core_probe_device() does an early
setup by loading the l2 discipline and calling qeth_l2_probe_device().
In this context, adding the l2-specific bridgeport sysfs attributes
via qeth_l2_create_device_attributes() hits a BUG_ON in fs/sysfs/group.c,
since the basic sysfs infrastructure for the device hasn't been
established yet.
Note that OSN actually has its own unique sysfs attributes
(qeth_osn_devtype), so the additional attributes shouldn't be created
at all.
For OSM, add a new qeth_l2_devtype that contains all the common
and l2-specific sysfs attributes.
When qeth_core_probe_device() does early setup for OSM or OSN, assign
the corresponding devtype so that the ccwgroup probe code creates the
full set of sysfs attributes.
This allows us to skip qeth_l2_create_device_attributes() in case
of an early setup.
Any device that can't do early setup will initially have only the
generic sysfs attributes, and when it's probed later
qeth_l2_probe_device() adds the l2-specific attributes.
If an early-setup device is removed (by calling ccwgroup_ungroup()),
device_unregister() will - using the devtype - delete the
l2-specific attributes before qeth_l2_remove_device() is called.
So make sure to not remove them twice.
What complicates the issue is that qeth_l2_probe_device() and
qeth_l2_remove_device() is also called on a device when its
layer2 attribute changes (ie. its layer mode is switched).
For early-setup devices this wouldn't work properly - we wouldn't
remove the l2-specific attributes when switching to L3.
But switching the layer mode doesn't actually make any sense;
we already decided that the device can only operate in L2!
So just refuse to switch the layer mode on such devices. Note that
OSN doesn't have a layer2 attribute, so we only need to special-case
OSM.
Based on an initial patch by Ursula Braun.
Fixes: b4d72c08b358 ("qeth: bridgeport support - basic control")
Signed-off-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9111e7880ccf419548c7b0887df020b08eadb075 ]
When setting up the device from within the layer discipline's
probe routine, creating the layer-specific sysfs attributes can fail.
Report this error back to the caller, and handle it by
releasing the layer discipline.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
[jwi: updated commit msg, moved an OSN change to a subsequent patch]
Signed-off-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit b3e8652bcbfa04807e44708d4d0c8cdad39c9215 ]
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 77759137248f34864a8f7a58bbcebfcf1047504a upstream.
Prevent kernel crashes due to unhandled exceptions raised by the CHSC
instruction which may for example be triggered by invalid ioctl data.
Fixes: 64150adf89df ("s390/cio: Introduce generic synchronous CHSC IOCTL")
Signed-off-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Reviewed-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a63f53e34db8b49675448d03ae324f6c5bc04fe6 upstream.
Since commit dd22f551 "block: Change direct_access calling convention",
the device size calculation in dcssblk_direct_access() is off-by-one.
This results in bdev_direct_access() always returning -ENXIO because the
returned value is not page aligned.
Fix this by adding 1 to the dev_sz calculation.
Fixes: dd22f551 ("block: Change direct_access calling convention")
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1e4a382fdc0ba8d1a85b758c0811de3a3631085e upstream.
For devices with multiple input queues, tiqdio_call_inq_handlers()
iterates over all input queues and clears the device's DSCI
during each iteration. If the DSCI is re-armed during one
of the later iterations, we therefore do not scan the previous
queues again.
The re-arming also raises a new adapter interrupt. But its
handler does not trigger a rescan for the device, as the DSCI
has already been erroneously cleared.
This can result in queue stalls on devices with multiple
input queues.
Fix it by clearing the DSCI just once, prior to scanning the queues.
As the code is moved in front of the loop, we also need to access
the DSCI directly (ie irq->dsci) instead of going via each queue's
parent pointer to the same irq. This is not a functional change,
and a follow-up patch will clean up the other users.
In practice, this bug only affects CQ-enabled HiperSockets devices,
ie. devices with sysfs-attribute "hsuid" set. Setting a hsuid is
needed for AF_IUCV socket applications that use HiperSockets
communication.
Fixes: 104ea556ee7f ("qdio: support asynchronous delivery of storage blocks")
Reviewed-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2dfa6688aafdc3f74efeb1cf05fb871465d67f79 upstream.
Dan Carpenter kindly reported:
<quote>
The patch d27a7cb91960: "zfcp: trace on request for open and close of
WKA port" from Aug 10, 2016, leads to the following static checker
warning:
drivers/s390/scsi/zfcp_fsf.c:1615 zfcp_fsf_open_wka_port()
warn: 'req' was already freed.
drivers/s390/scsi/zfcp_fsf.c
1609 zfcp_fsf_start_timer(req, ZFCP_FSF_REQUEST_TIMEOUT);
1610 retval = zfcp_fsf_req_send(req);
1611 if (retval)
1612 zfcp_fsf_req_free(req);
^^^
Freed.
1613 out:
1614 spin_unlock_irq(&qdio->req_q_lock);
1615 if (req && !IS_ERR(req))
1616 zfcp_dbf_rec_run_wka("fsowp_1", wka_port, req->req_id);
^^^^^^^^^^^
Use after free.
1617 return retval;
1618 }
Same thing for zfcp_fsf_close_wka_port() as well.
</quote>
Rather than relying on req being NULL (or ERR_PTR) for all cases where
we don't want to trace or should not trace,
simply check retval which is unconditionally initialized with -EIO != 0
and it can only become 0 on successful retval = zfcp_fsf_req_send(req).
With that we can also remove the then again unnecessary unconditional
initialization of req which was introduced with that earlier commit.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: d27a7cb91960 ("zfcp: trace on request for open and close of WKA port")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Reviewed-by: Jens Remus <jremus@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5457e03de918f7a3e294eb9d26a608ab8a579976 upstream.
The buffer for iucv_message_receive() needs to be below 2 GB. In
__iucv_message_receive(), the buffer address is casted to an u32, which
would result in either memory corruption or an addressing exception when
using addresses >= 2 GB.
Fix this by using GFP_DMA for the buffer allocation.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6f2ce1c6af37191640ee3ff6e8fc39ea10352f4c upstream.
It is unavoidable that zfcp_scsi_queuecommand() has to finish requests
with DID_IMM_RETRY (like fc_remote_port_chkready()) during the time
window when zfcp detected an unavailable rport but
fc_remote_port_delete(), which is asynchronous via
zfcp_scsi_schedule_rport_block(), has not yet blocked the rport.
However, for the case when the rport becomes available again, we should
prevent unblocking the rport too early. In contrast to other FCP LLDDs,
zfcp has to open each LUN with the FCP channel hardware before it can
send I/O to a LUN. So if a port already has LUNs attached and we
unblock the rport just after port recovery, recoveries of LUNs behind
this port can still be pending which in turn force
zfcp_scsi_queuecommand() to unnecessarily finish requests with
DID_IMM_RETRY.
This also opens a time window with unblocked rport (until the followup
LUN reopen recovery has finished). If a scsi_cmnd timeout occurs during
this time window fc_timed_out() cannot work as desired and such command
would indeed time out and trigger scsi_eh. This prevents a clean and
timely path failover. This should not happen if the path issue can be
recovered on FC transport layer such as path issues involving RSCNs.
Fix this by only calling zfcp_scsi_schedule_rport_register(), to
asynchronously trigger fc_remote_port_add(), after all LUN recoveries as
children of the rport have finished and no new recoveries of equal or
higher order were triggered meanwhile. Finished intentionally includes
any recovery result no matter if successful or failed (still unblock
rport so other successful LUNs work). For simplicity, we check after
each finished LUN recovery if there is another LUN recovery pending on
the same port and then do nothing. We handle the special case of a
successful recovery of a port without LUN children the same way without
changing this case's semantics.
For debugging we introduce 2 new trace records written if the rport
unblock attempt was aborted due to still unfinished or freshly triggered
recovery. The records are only written above the default trace level.
Benjamin noticed the important special case of new recovery that can be
triggered between having given up the erp_lock and before calling
zfcp_erp_action_cleanup() within zfcp_erp_strategy(). We must avoid the
following sequence:
ERP thread rport_work other context
------------------------- -------------- --------------------------------
port is unblocked, rport still blocked,
due to pending/running ERP action,
so ((port->status & ...UNBLOCK) != 0)
and (port->rport == NULL)
unlock ERP
zfcp_erp_action_cleanup()
case ZFCP_ERP_ACTION_REOPEN_LUN:
zfcp_erp_try_rport_unblock()
((status & ...UNBLOCK) != 0) [OLD!]
zfcp_erp_port_reopen()
lock ERP
zfcp_erp_port_block()
port->status clear ...UNBLOCK
unlock ERP
zfcp_scsi_schedule_rport_block()
port->rport_task = RPORT_DEL
queue_work(rport_work)
zfcp_scsi_rport_work()
(port->rport_task != RPORT_ADD)
port->rport_task = RPORT_NONE
zfcp_scsi_rport_block()
if (!port->rport) return
zfcp_scsi_schedule_rport_register()
port->rport_task = RPORT_ADD
queue_work(rport_work)
zfcp_scsi_rport_work()
(port->rport_task == RPORT_ADD)
port->rport_task = RPORT_NONE
zfcp_scsi_rport_register()
(port->rport == NULL)
rport = fc_remote_port_add()
port->rport = rport;
Now the rport was erroneously unblocked while the zfcp_port is blocked.
This is another situation we want to avoid due to scsi_eh
potential. This state would at least remain until the new recovery from
the other context finished successfully, or potentially forever if it
failed. In order to close this race, we take the erp_lock inside
zfcp_erp_try_rport_unblock() when checking the status of zfcp_port or
LUN. With that, the possible corresponding rport state sequences would
be: (unblock[ERP thread],block[other context]) if the ERP thread gets
erp_lock first and still sees ((port->status & ...UNBLOCK) != 0),
(block[other context],NOP[ERP thread]) if the ERP thread gets erp_lock
after the other context has already cleard ...UNBLOCK from port->status.
Since checking fields of struct erp_action is unsafe because they could
have been overwritten (re-used for new recovery) meanwhile, we only
check status of zfcp_port and LUN since these are only changed under
erp_lock elsewhere. Regarding the check of the proper status flags (port
or port_forced are similar to the shown adapter recovery):
[zfcp_erp_adapter_shutdown()]
zfcp_erp_adapter_reopen()
zfcp_erp_adapter_block()
* clear UNBLOCK ---------------------------------------+
zfcp_scsi_schedule_rports_block() |
write_lock_irqsave(&adapter->erp_lock, flags);-------+ |
zfcp_erp_action_enqueue() | |
zfcp_erp_setup_act() | |
* set ERP_INUSE -----------------------------------|--|--+
write_unlock_irqrestore(&adapter->erp_lock, flags);--+ | |
.context-switch. | |
zfcp_erp_thread() | |
zfcp_erp_strategy() | |
write_lock_irqsave(&adapter->erp_lock, flags);------+ | |
... | | |
zfcp_erp_strategy_check_target() | | |
zfcp_erp_strategy_check_adapter() | | |
zfcp_erp_adapter_unblock() | | |
* set UNBLOCK -----------------------------------|--+ |
zfcp_erp_action_dequeue() | |
* clear ERP_INUSE ---------------------------------|-----+
... |
write_unlock_irqrestore(&adapter->erp_lock, flags);-+
Hence, we should check for both UNBLOCK and ERP_INUSE because they are
interleaved. Also we need to explicitly check ERP_FAILED for the link
down case which currently does not clear the UNBLOCK flag in
zfcp_fsf_link_down_info_eval().
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 8830271c4819 ("[SCSI] zfcp: Dont fail SCSI commands when transitioning to blocked fc_rport")
Fixes: a2fa0aede07c ("[SCSI] zfcp: Block FC transport rports early on errors")
Fixes: 5f852be9e11d ("[SCSI] zfcp: Fix deadlock between zfcp ERP and SCSI")
Fixes: 338151e06608 ("[SCSI] zfcp: make use of fc_remote_port_delete when target port is unavailable")
Fixes: 3859f6a248cb ("[PATCH] zfcp: add rports to enable scsi_add_device to work again")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 56d23ed7adf3974f10e91b643bd230e9c65b5f79 upstream.
Since quite a while, Linux issues enough SCSI commands per scsi_device
which successfully return with FCP_RESID_UNDER, FSF_FCP_RSP_AVAILABLE,
and SAM_STAT_GOOD. This floods the HBA trace area and we cannot see
other and important HBA trace records long enough.
Therefore, do not trace HBA response errors for pure benign residual
under counts at the default trace level.
This excludes benign residual under count combined with other validity
bits set in FCP_RSP_IU, such as FCP_SNS_LEN_VAL. For all those other
cases, we still do want to see both the HBA record and the corresponding
SCSI record by default.
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: a54ca0f62f95 ("[SCSI] zfcp: Redesign of the debug tracing for HBA records.")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dac37e15b7d511e026a9313c8c46794c144103cd upstream.
When SCSI EH invokes zFCP's callbacks for eh_device_reset_handler() and
eh_target_reset_handler(), it expects us to relent the ownership over
the given scsi_cmnd and all other scsi_cmnds within the same scope - LUN
or target - when returning with SUCCESS from the callback ('release'
them). SCSI EH can then reuse those commands.
We did not follow this rule to release commands upon SUCCESS; and if
later a reply arrived for one of those supposed to be released commands,
we would still make use of the scsi_cmnd in our ingress tasklet. This
will at least result in undefined behavior or a kernel panic because of
a wrong kernel pointer dereference.
To fix this, we NULLify all pointers to scsi_cmnds (struct zfcp_fsf_req
*)->data in the matching scope if a TMF was successful. This is done
under the locks (struct zfcp_adapter *)->abort_lock and (struct
zfcp_reqlist *)->lock to prevent the requests from being removed from
the request-hashtable, and the ingress tasklet from making use of the
scsi_cmnd-pointer in zfcp_fsf_fcp_cmnd_handler().
For cases where a reply arrives during SCSI EH, but before we get a
chance to NULLify the pointer - but before we return from the callback
-, we assume that the code is protected from races via the CAS operation
in blk_complete_request() that is called in scsi_done().
The following stacktrace shows an example for a crash resulting from the
previous behavior:
Unable to handle kernel pointer dereference at virtual kernel address fffffee17a672000
Oops: 0038 [#1] SMP
CPU: 2 PID: 0 Comm: swapper/2 Not tainted
task: 00000003f7ff5be0 ti: 00000003f3d38000 task.ti: 00000003f3d38000
Krnl PSW : 0404d00180000000 00000000001156b0 (smp_vcpu_scheduled+0x18/0x40)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 EA:3
Krnl GPRS: 000000200000007e 0000000000000000 fffffee17a671fd8 0000000300000015
ffffffff80000000 00000000005dfde8 07000003f7f80e00 000000004fa4e800
000000036ce8d8f8 000000036ce8d9c0 00000003ece8fe00 ffffffff969c9e93
00000003fffffffd 000000036ce8da10 00000000003bf134 00000003f3b07918
Krnl Code: 00000000001156a2: a7190000 lghi %r1,0
00000000001156a6: a7380015 lhi %r3,21
#00000000001156aa: e32050000008 ag %r2,0(%r5)
>00000000001156b0: 482022b0 lh %r2,688(%r2)
00000000001156b4: ae123000 sigp %r1,%r2,0(%r3)
00000000001156b8: b2220020 ipm %r2
00000000001156bc: 8820001c srl %r2,28
00000000001156c0: c02700000001 xilf %r2,1
Call Trace:
([<0000000000000000>] 0x0)
[<000003ff807bdb8e>] zfcp_fsf_fcp_cmnd_handler+0x3de/0x490 [zfcp]
[<000003ff807be30a>] zfcp_fsf_req_complete+0x252/0x800 [zfcp]
[<000003ff807c0a48>] zfcp_fsf_reqid_check+0xe8/0x190 [zfcp]
[<000003ff807c194e>] zfcp_qdio_int_resp+0x66/0x188 [zfcp]
[<000003ff80440c64>] qdio_kick_handler+0xdc/0x310 [qdio]
[<000003ff804463d0>] __tiqdio_inbound_processing+0xf8/0xcd8 [qdio]
[<0000000000141fd4>] tasklet_action+0x9c/0x170
[<0000000000141550>] __do_softirq+0xe8/0x258
[<000000000010ce0a>] do_softirq+0xba/0xc0
[<000000000014187c>] irq_exit+0xc4/0xe8
[<000000000046b526>] do_IRQ+0x146/0x1d8
[<00000000005d6a3c>] io_return+0x0/0x8
[<00000000005d6422>] vtime_stop_cpu+0x4a/0xa0
([<0000000000000000>] 0x0)
[<0000000000103d8a>] arch_cpu_idle+0xa2/0xb0
[<0000000000197f94>] cpu_startup_entry+0x13c/0x1f8
[<0000000000114782>] smp_start_secondary+0xda/0xe8
[<00000000005d6efe>] restart_int_handler+0x56/0x6c
[<0000000000000000>] 0x0
Last Breaking-Event-Address:
[<00000000003bf12e>] arch_spin_lock_wait+0x56/0xb0
Suggested-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Fixes: ea127f9754 ("[PATCH] s390 (7/7): zfcp host adapter.") (tglx/history.git)
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Martin Schwidefsky:
"A few more s390 patches for 4.9:
- a fix for an overflow in the dasd driver reported by UBSAN
- fix a regression and add hotplug memory to the zone movable again
- add ignore defines for the pkey system calls
- fix the ouput of the merged stack tracer
- replace printk with pr_cont in arch/s390 where appropriate
- remove the arch specific return_address function again
- ignore reserved channel paths at boot time
- add a missing hugetlb_bad_size call to the arch backend"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/mm: fix zone calculation in arch_add_memory()
s390/dumpstack: use pr_cont within show_stack and die
s390/dumpstack: get rid of return_address again
s390/disassambler: use pr_cont where appropriate
s390/dumpstack: use pr_cont where appropriate
s390/dumpstack: restore reliable indicator for call traces
s390/mm: use hugetlb_bad_size()
s390/cio: don't register chpids in reserved state
s390: ignore pkey system calls
s390/dasd: avoid undefined behaviour
|
|
During IPL we register all chpids that are not in the unrecognized
state. This includes chpids that are not usable and chpids for which
the state could not be obtained.
Change that to only register chpids in the configured (usable) or
standby (usable after a configure operation) state. All other chpids
could only be made available by external control for which we would
receive machine checks.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
the mdc value can be quite big (like 65535), so we are in undefined
territory when doing the multiplication with the (also signed)
FCX_MAX_DATA_FACTOR as outlined by UBSAN:
UBSAN: Undefined behaviour in drivers/s390/block/dasd_eckd.c:1678:14
signed integer overflow:
65535 * 65536 cannot be represented in type 'int'
CPU: 5 PID: 183 Comm: kworker/u512:1 Not tainted 4.7.0+ #150
Workqueue: events_unbound async_run_entry_fn
000000fb8b59f900 000000fb8b59f990 0000000000000002 0000000000000000
000000fb8b59fa30 000000fb8b59f9a8 000000fb8b59f9a8 000000000011732e
00000000000000a4 0000000000a309e2 0000000000a4c072 000000000000000b
000000fb8b59f9f0 000000fb8b59f990 0000000000000000 0000000000000000
0400000000d83238 000000000011732e 000000fb8b59f990 000000fb8b59f9f0
Call Trace:
([<0000000000117260>] show_trace+0x98/0xa8)
([<00000000001172e0>] show_stack+0x70/0xf0)
([<000000000053ac96>] dump_stack+0x86/0xb8)
([<000000000057f5f8>] ubsan_epilogue+0x28/0x70)
([<000000000057fe9e>] handle_overflow+0xde/0xf0)
([<00000000006c322a>] dasd_eckd_check_characteristics+0x50a/0x550)
([<00000000006b42ca>] dasd_generic_set_online+0xba/0x380)
([<0000000000693d82>] ccw_device_set_online+0x192/0x550)
([<00000000006ac1ae>] dasd_generic_auto_online+0x2e/0x70)
([<0000000000172130>] async_run_entry_fn+0x70/0x270)
([<0000000000165a72>] process_one_work+0x26a/0x638)
([<0000000000165e8a>] worker_thread+0x4a/0x658)
([<000000000016dd9c>] kthread+0x10c/0x110)
([<00000000008963ae>] kernel_thread_starter+0x6/0xc)
([<00000000008963a8>] kernel_thread_starter+0x0/0xc)
As this is a runtime value there is actually no risk of any sane
compiler to detect and (ab)use this undefinedness, but let's make
the multiplication defined by making mdc unsigned.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
We accidentally overwrite the original saved value of "flags" so that we
can't re-enable IRQs at the end of the function. Presumably this
function is mostly called with IRQs disabled or it would be obvious in
testing.
Fixes: aceeffbb59bb ("zfcp: trace full payload of all SAN records (req,resp,iels)")
Cc: <stable@vger.kernel.org> #2.6.38+
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Pull SCSI updates from James Bottomley:
"This update includes the usual round of major driver updates (hpsa,
be2iscsi, hisi_sas, zfcp, cxlflash). There's a new incarnation of hpsa
called smartpqi for which a driver is added, there's some cleanup work
of the ibm vscsi target and updates to libfc, plus a whole host of
minor fixes and updates and finally the removal of several ISA drivers
which seem not to have been used for years"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (173 commits)
scsi: mvsas: Mark symbols static where possible
scsi: pm8001: Mark symbols static where possible
scsi: arcmsr: Simplify user_len checking
scsi: fcoe: fix off by one in eth2fc_speed()
scsi: dtc: remove from tree
scsi: t128: remove from tree
scsi: pas16: remove from tree
scsi: u14-34f: remove from tree
scsi: ultrastor: remove from tree
scsi: in2000: remove from tree
scsi: wd7000: remove from tree
scsi: scsi_dh_alua: Fix memory leak in alua_rtpg()
scsi: lpfc: Mark symbols static where possible
scsi: hpsa: correct call to hpsa_do_reset
scsi: ufs: Get a TM service response from the correct offset
scsi: ibmvfc: Fix I/O hang when port is not mapped
scsi: megaraid_sas: clean function declarations in megaraid_sas_base.c up
scsi: ipr: Remove redundant messages at adapter init time
scsi: ipr: Don't log unnecessary 9084 error details
scsi: smartpqi: raid bypass lba calculation fix
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
"The new features and main improvements in this merge for v4.9
- Support for the UBSAN sanitizer
- Set HAVE_EFFICIENT_UNALIGNED_ACCESS, it improves the code in some
places
- Improvements for the in-kernel fpu code, in particular the overhead
for multiple consecutive in kernel fpu users is recuded
- Add a SIMD implementation for the RAID6 gen and xor operations
- Add RAID6 recovery based on the XC instruction
- The PCI DMA flush logic has been improved to increase the speed of
the map / unmap operations
- The time synchronization code has seen some updates
And bug fixes all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (48 commits)
s390/con3270: fix insufficient space padding
s390/con3270: fix use of uninitialised data
MAINTAINERS: update DASD maintainer
s390/cio: fix accidental interrupt enabling during resume
s390/dasd: add missing \n to end of dev_err messages
s390/config: Enable config options for Docker
s390/dasd: make query host access interruptible
s390/dasd: fix panic during offline processing
s390/dasd: fix hanging offline processing
s390/pci_dma: improve lazy flush for unmap
s390/pci_dma: split dma_update_trans
s390/pci_dma: improve map_sg
s390/pci_dma: simplify dma address calculation
s390/pci_dma: remove dma address range check
iommu/s390: simplify registration of I/O address translation parameters
s390: migrate exception table users off module.h and onto extable.h
s390: export header for CLP ioctl
s390/vmur: fix irq pointer dereference in int handler
s390/dasd: add missing KOBJ_CHANGE event for unformatted devices
s390: enable UBSAN
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here's the "big" char and misc driver update for 4.9-rc1.
Lots of little things here, all over the driver tree for subsystems
that flow through me. Nothing major that I can discern, full details
are in the shortlog.
All have been in the linux-next tree with no reported issues"
* tag 'char-misc-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (144 commits)
drivers/misc/hpilo: Changes to support new security states in iLO5 FW
at25: fix debug and error messaging
misc/genwqe: ensure zero initialization
vme: fake: remove unexpected unlock in fake_master_set()
vme: fake: mark symbols static where possible
spmi: pmic-arb: Return an error code if sanity check fails
Drivers: hv: get rid of id in struct vmbus_channel
Drivers: hv: make VMBus bus ids persistent
mcb: Add a dma_device to mcb_device
mcb: Enable PCI bus mastering by default
mei: stop the stall timer worker if not needed
clk: probe common clock drivers earlier
vme: fake: fix build for 64-bit dma_addr_t
ttyprintk: Neaten and simplify printing
mei: me: add kaby point device ids
coresight: tmc: mark symbols static where possible
coresight: perf: deal with error condition properly
Drivers: hv: hv_util: Avoid dynamic allocation in time synch
fpga manager: Add hardware dependency to Zynq driver
Drivers: hv: utils: Support TimeSync version 4.0 protocol samples.
...
|
|
con3270 contains an optimisation that reduces the amount of data to be
transmitted to the 3270 terminal by putting a Repeat to Address (RA)
order into the data stream. The RA order itself takes up space, so
con3270 only uses it if there's enough space left in the line
buffer. Otherwise it just pads out the line manually.
For lines that were _just_ short enough that the RA order still fit in
the line buffer, the line was instead padded with an insufficient
amount of spaces. This was caused by examining the size of the
allocated line buffer rather than the length of the string to be
displayed.
For con3270_cline_end(), we just compare against the line length. For
con3270_update_string() however that isn't available anymore, so we
check whether the Repeat to Address order is present.
Fixes: f51320a5 ("[PATCH] s390: new 3270 driver.") (tglx/history.git)
Tested-by: Jing Liu <liujbjl@linux.vnet.ibm.com>
Tested-by: Yang Chen <bjcyang@linux.vnet.ibm.com>
Signed-off-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
con3270 contains an optimisation that reduces the amount of data to be
transmitted to the 3270 terminal by putting a Repeat to Address (RA)
order into the data stream. The RA order itself takes up space, so
con3270 only uses it if there's enough space left in the line
buffer. Otherwise it just pads out the line manually.
For lines too long to include the RA order, one byte was left
uninitialised. This was caused by an off-by-one bug in the loop that
pads out the line. Since the buffer is allocated from a common pool,
the single byte left uninitialised contained some previous buffer
content. Usually this was just a space or some character (which can
result in clutter but is otherwise harmless). Sometimes, however, it
was a Repeat to Address order, messing up the entire screen layout and
causing the display to send the entire buffer content on every
keystroke.
Fixes: f51320a5 ("[PATCH] s390: new 3270 driver.") (tglx/history.git)
Reported-by: Liu Jing <liujbjl@linux.vnet.ibm.com>
Tested-by: Jing Liu <liujbjl@linux.vnet.ibm.com>
Tested-by: Yang Chen <bjcyang@linux.vnet.ibm.com>
Signed-off-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Since commit 9f3d6d7 chsc_get_channel_measurement_chars is called with
interrupts disabled during resume from hibernate. Since this function
used spin_unlock_irq, interrupts have been enabled accidentally. Fix
this by using the irqsave variant.
Since we can't guarantee the IRQ-enablement state for all (future/
external) callers, change the locking in related functions to prevent
similar bugs in the future.
Fixes: 9f3d6d7 ("s390/cio: update measurement characteristics")
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Trival fix, dev_err messages are missing a \n, so add it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
If the DASD device gets blocked for any reason, e.g. because it is reserved
somewhere, the host_access_count sysfs entry or the host_access_list
debugfs entry may sleep forever. Make it interruptible so that userspace
can use ^C to abort the operation.
Signed-off-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
A DASD device consists of the device itself and a discipline with a
corresponding private structure. These fields are set up during online
processing right after the device is created and before it is processed by
the state machine and made available for I/O.
During offline processing the discipline pointer and the private data gets
freed within the state machine and without protection of the existing
reference count. This might lead to a kernel panic because a function might
have taken a device reference and accesses the discipline pointer and/or
private data of the device while this is already freed.
Fix by freeing the discipline pointer and the private data after ensuring
that there is no reference to the device left.
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Internal I/O is processed by the _sleep_on_function which might wait for a
device to get operational. During offline processing this will never happen
and therefore the refcount of the device will not drop to zero and the
offline processing blocks as well.
Fix by letting requests fail in the _sleep_on function during offline
processing. No further handling of the requests is necessary since this is
internal I/O and the device is thrown away afterwards.
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
"irq" in vmur's int handler can be an error pointer. Don't dereference
this pointer in that case.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
The DASD device driver throws change events for the DASD blockdevice
after the online processing is done so that udev rules can take
actions after it.
The change event was missing for unformatted devices.
Signed-off-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
commit 5f78e29ceebf ("qeth: optimize IP handling in rx_mode callback")
restructured the internal address handling.
This work broke setting a virtual IP address.
The command
echo 10.1.1.1 > /sys/bus/ccwgroup/devices/<device>/vipa/add4
fails with file exist error even if the IP address has not
been set before.
It turned out that the search result for the IP address
search is handled incorrectly in the VIPA case.
This patch fixes the setting of an virtual IP address.
Signed-off-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
According to recent performance measurements, turning on net_device
feature NETIF_F_SG only behaves well, but turning on feature
NETIF_F_GSO shows bad results. Since the kernel activates NETIF_F_GSO
automatically as soon as the driver configures feature NETIF_F_SG, qeth
should not activate feature NETIF_F_SG per default, until the qeth
problems with NETIF_F_GSO are solved.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
To reduce the need of skb_linearize() calls, gso_max_segs of qeth
net_devices had been limited according to the maximum number of qdio SBAL
elements. But a gso segment cannot be larger than the mtu-size, while an
SBAL element can contain up to 4096 bytes. The gso_max_segs limitation
limits the maximum packet size given to the qeth driver. Performance
measurements with tso-enabled qeth network interfaces and mtu-size 1500
showed, that the disadvantage of smaller packets is much more severe than
the advantage of fewer skb_linearize() calls.
This patch gets rid of the gso_max_segs limitations in the qeth driver.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
af_iucv socket programs with HiperSockets as transport make use of the qdio
completion queue. Running such an af_iucv socket program may result in a
crash:
[90341.677709] Oops: 0038 ilc:2 [#1] SMP
[90341.677743] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.6.0-20160720.0.0e86ec7.5e62689.fc23.s390xperformance #1
[90341.677744] Hardware name: IBM 2964 N96 703 (LPAR)
[90341.677746] task: 00000000edb79f00 ti: 00000000edb84000 task.ti: 00000000edb84000
[90341.677748] Krnl PSW : 0704d00180000000 000000000075bc50 (qeth_qdio_input_handler+0x258/0x4e0)
[90341.677756] R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 000003d10391e900 0000000000000001 00000000e61e6000 0000000000000005
[90341.677759] 0000000000a9e6ec 5420040001a77400 0000000000000001 000000000000006f
[90341.677761] 00000000e0d83f00 0000000000000003 0000000000000010 5420040001a77400
[90341.677784] 000000007ba8b000 0000000000943fd0 000000000075bc4e 00000000ed3b3c10
[90341.677793] Krnl Code: 000000000075bc42: e320cc180004 lg %r2,3096(%r12)
000000000075bc48: c0e5ffffc5cc brasl %r14,7547e0
#000000000075bc4e: 1816 lr %r1,%r6
>000000000075bc50: ba19b008 cs %r1,%r9,8(%r11)
000000000075bc54: ec180041017e cij %r1,1,8,75bcd6
000000000075bc5a: 5810b008 l %r1,8(%r11)
000000000075bc5e: ec16005c027e cij %r1,2,6,75bd16
000000000075bc64: 5090b008 st %r9,8(%r11)
[90341.677807] Call Trace:
[90341.677810] ([<000000000075bbc0>] qeth_qdio_input_handler+0x1c8/0x4e0)
[90341.677812] ([<000000000070efbc>] qdio_kick_handler+0x124/0x2a8)
[90341.677814] ([<0000000000713570>] __tiqdio_inbound_processing+0xf0/0xcd0)
[90341.677818] ([<0000000000143312>] tasklet_action+0x92/0x120)
[90341.677823] ([<00000000008b6e72>] __do_softirq+0x112/0x308)
[90341.677824] ([<0000000000142bce>] irq_exit+0xd6/0xf8)
[90341.677829] ([<000000000010b1d2>] do_IRQ+0x6a/0x88)
[90341.677830] ([<00000000008b6322>] io_int_handler+0x112/0x220)
[90341.677832] ([<0000000000102b2e>] enabled_wait+0x56/0xa8)
[90341.677833] ([<0000000000000000>] (null))
[90341.677835] ([<0000000000102e32>] arch_cpu_idle+0x32/0x48)
[90341.677838] ([<000000000018a126>] cpu_startup_entry+0x266/0x2b0)
[90341.677841] ([<0000000000113b38>] smp_start_secondary+0x100/0x110)
[90341.677843] ([<00000000008b68a6>] restart_int_handler+0x62/0x78)
[90341.677845] ([<00000000008b6588>] psw_idle+0x3c/0x40)
[90341.677846] Last Breaking-Event-Address:
[90341.677848] [<00000000007547ec>] qeth_dbf_longtext+0xc/0xc0
[90341.677849]
[90341.677850] Kernel panic - not syncing: Fatal exception in interrupt
qeth_qdio_cq_handler() analyzes SBALs on this completion queue, but does
not observe the limit of 16 SBAL elements per SBAL. This patch adds the
additional check to process not more than 16 SBAL elements.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The qeth IP address mapping logic has been reworked recently. It
causes now problems to specify qeth sysfs attribute "hsuid" in DOWN
state, which is allowed. Postpone registering or deregistering of
IP-addresses in this case.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
qeth_l3_dev_hsuid_store() changes the ip hash table, which
requires the ip_lock.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
After device recovery, only a basic set of network device features is
enabled on the device. If features like checksum offloading or TSO were
enabled by the user before the recovery, this results in a mismatch
between the network device features, that the kernel assumes to be
enabled on the device, and the features actually enabled on the device.
This patch tries to restore previously set features, that require
changes on the device, after the recovery of a device. In case of an
error, the network device's features are changed to contain only the
features that are actually turned on.
Signed-off-by: Hans Wippel <hwippel@linux.vnet.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The workqueue "appldata_wq" has been replaced with an ordered dedicated
workqueue.
WQ_MEM_RECLAIM has not been set since the workqueue is not being used on
a memory reclaim path.
The adapter->work_queue queues multiple work items viz
&adapter->scan_work, &port->rport_work, &adapter->ns_up_work,
&adapter->stat_work, adapter->work_queue, &adapter->events.work,
&port->gid_pn_work, &port->test_link_work. Hence, an ordered
dedicated workqueue has been used.
WQ_MEM_RECLAIM has been set to ensure forward progress under memory
pressure.
Signed-off-by: Bhaktipriya Shridhar <bhaktipriya96@gmail.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
We want the fixes in here for merging and testing.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|