summaryrefslogtreecommitdiff
path: root/fs/9p/cache.c
AgeCommit message (Collapse)Author
2016-01-09fs/9p: use fscache mutex rather than spinlockSasha Levin
We may sleep inside a the lock, so use a mutex rather than spinlock. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-11-239p: remove unused 'p9_fid' struct pointerGeyslan G. Bem
Get rid of the useless '*fid' variable. Signed-off-by: Geyslan G. Bem <geyslan@gmail.com> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2013-09-27FS-Cache: Provide the ability to enable/disable cookiesDavid Howells
Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2012-01-059p: Reduce object size with CONFIG_NET_9P_DEBUGJoe Perches
Reduce object size by deduplicating formats. Use vsprintf extension %pV. Rename P9_DPRINTK uses to p9_debug, align arguments. Add function for _p9_debug and macro to add __func__. Add missing "\n"s to p9_debug uses. Remove embedded function names as p9_debug adds it. Remove P9_EPRINTK macro and convert use to pr_<level>. Add and use pr_fmt and pr_<level>. $ size fs/9p/built-in.o* text data bss dec hex filename 62133 984 16000 79117 1350d fs/9p/built-in.o.new 67342 984 16928 85254 14d06 fs/9p/built-in.o.old $ size net/9p/built-in.o* text data bss dec hex filename 88792 4148 22024 114964 1c114 net/9p/built-in.o.new 94072 4148 23232 121452 1da6c net/9p/built-in.o.old Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2011-07-23fs/9p: When doing inode lookup compare qid details and inode mode bits.Aneesh Kumar K.V
This make sure we don't use wrong inode from the inode hash. The inode number of the file deleted is reused by the next file system object created and if we only use inode number for inode hash lookup we could end up with wrong struct inode. Also compare inode generation number. Not all Linux file system provide st_gen in userspace. So it could be 0; Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2011-03-15fs/9p: Add v9fs_inodeAneesh Kumar K.V
Switch to the fscache code to v9fs_inode. We will later use v9fs_inode in cache=loose mode to track the inode cache validity timeout. Ie if we find an inode in cache older that a specific jiffie range we will consider it stale Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Venkateswararao Jujjuri <jvrao@linux.vnet.ibm.com> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2011-03-15fs/9p: [fscache] wait for page write in cached modeAneesh Kumar K.V
We need to call fscache_wait_on_page_write in launder_page for fscache Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Venkateswararao Jujjuri <jvrao@linux.vnet.ibm.com> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2009-12-019p: fix build breakage introduced by FS-CacheDavid Howells
While building 2.6.32-rc8-git2 for Fedora I noticed the following thinko in commit 201a15428bd54f83eccec8b7c64a04b8f9431204 ("FS-Cache: Handle pages pending storage that get evicted under OOM conditions"): fs/9p/cache.c: In function '__v9fs_fscache_release_page': fs/9p/cache.c:346: error: 'vnode' undeclared (first use in this function) fs/9p/cache.c:346: error: (Each undeclared identifier is reported only once fs/9p/cache.c:346: error: for each function it appears in.) make[2]: *** [fs/9p/cache.o] Error 1 Fix the 9P filesystem to correctly construct the argument to fscache_maybe_release_page(). Signed-off-by: Kyle McMartin <kyle@redhat.com> Signed-off-by: Xiaotian Feng <dfeng@redhat.com> [from identical patch] Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> [from identical patch] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-11-19FS-Cache: Handle pages pending storage that get evicted under OOM conditionsDavid Howells
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache under OOM conditions, but that are waiting for write to the cache. Under these conditions, vmscan calls the releasepage() function of the netfs, asking if a page can be discarded. The problem is typified by the following trace of a stuck process: kslowd005 D 0000000000000000 0 4253 2 0x00000080 ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007 0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8 000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8 Call Trace: [<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache] [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34 [<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache] [<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs] [<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs] [<ffffffff810885d3>] try_to_release_page+0x32/0x3b [<ffffffff81093203>] shrink_page_list+0x316/0x4ac [<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c [<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b [<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130 [<ffffffff8135330e>] ? mutex_unlock+0x9/0xb [<ffffffff81093aa2>] shrink_list+0x8d/0x8f [<ffffffff81093d1c>] shrink_zone+0x278/0x33c [<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba [<ffffffff81094b13>] try_to_free_pages+0x22e/0x392 [<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212 [<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf [<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa [<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb [<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c [<ffffffff8103cb69>] ? current_fs_time+0x22/0x29 [<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385 [<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae [<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae [<ffffffff810b2e82>] do_sync_write+0xe3/0x120 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34 [<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8 [<ffffffff810b1a76>] ? dentry_open+0x82/0x89 [<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles] [<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache] [<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache] [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308 [<ffffffff8104be91>] kthread+0x7a/0x82 [<ffffffff8100beda>] child_rip+0xa/0x20 [<ffffffff8100b87c>] ? restore_args+0x0/0x30 [<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227 [<ffffffff8104be17>] ? kthread+0x0/0x82 [<ffffffff8100bed0>] ? child_rip+0x0/0x20 In the above backtrace, the following is happening: (1) A page storage operation is being executed by a slow-work thread (fscache_write_op()). (2) FS-Cache farms the operation out to the cache to perform (cachefiles_write_page()). (3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's standard write (do_sync_write()) under KERNEL_DS directly from the netfs page. (4) However, for Ext3 to perform the write, it must allocate some memory, in particular, it must allocate at least one page cache page into which it can copy the data from the netfs page. (5) Under OOM conditions, the memory allocator can't immediately come up with a page, so it uses vmscan to find something to discard (try_to_free_pages()). (6) vmscan finds a clean netfs page it might be able to discard (possibly the one it's trying to write out). (7) The netfs is called to throw the page away (nfs_release_page()) - but it's called with __GFP_WAIT, so the netfs decides to wait for the store to complete (__fscache_wait_on_page_write()). (8) This blocks a slow-work processing thread - possibly against itself. The system ends up stuck because it can't write out any netfs pages to the cache without allocating more memory. To avoid this, we make FS-Cache cancel some writes that aren't in the middle of actually being performed. This means that some data won't make it into the cache this time. To support this, a new FS-Cache function is added fscache_maybe_release_page() that replaces what the netfs releasepage() functions used to do with respect to the cache. The decisions fscache_maybe_release_page() makes are counted and displayed through /proc/fs/fscache/stats on a line labelled "VmScan". There are four counters provided: "nos=N" - pages that weren't pending storage; "gon=N" - pages that were pending storage when we first looked, but weren't by the time we got the object lock; "bsy=N" - pages that we ignored as they were actively being written when we looked; and "can=N" - pages that we cancelled the storage of. What I'd really like to do is alter the behaviour of the cancellation heuristics, depending on how necessary it is to expel pages. If there are plenty of other pages that aren't waiting to be written to the cache that could be ejected first, then it would be nice to hold up on immediate cancellation of cache writes - but I don't see a way of doing that. Signed-off-by: David Howells <dhowells@redhat.com>
2009-09-239p: Add fscache support to 9pAbhishek Kulkarni
This patch adds a persistent, read-only caching facility for 9p clients using the FS-Cache caching backend. When the fscache facility is enabled, each inode is associated with a corresponding vcookie which is an index into the FS-Cache indexing tree. The FS-Cache indexing tree is indexed at 3 levels: - session object associated with each mount. - inode/vcookie - actual data (pages) A cache tag is chosen randomly for each session. These tags can be read off /sys/fs/9p/caches and can be passed as a mount-time parameter to re-attach to the specified caching session. Signed-off-by: Abhishek Kulkarni <adkulkar@umail.iu.edu> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>