Age | Commit message (Collapse) | Author |
|
There are few important bug fixes for LogFS
* tag 'for-linus' of git://github.com/prasad-joshi/logfs_upstream:
Logfs: Allow NULL block_isbad() methods
logfs: Grow inode in delete path
logfs: Free areas before calling generic_shutdown_super()
logfs: remove useless BUG_ON
MAINTAINERS: Add Prasad Joshi in LogFS maintiners
logfs: Propagate page parameter to __logfs_write_inode
logfs: set superblock shutdown flag after generic sb shutdown
logfs: take write mutex lock during fsync and sync
logfs: Prevent memory corruption
logfs: update page reference count for pined pages
Fix up conflict in fs/logfs/dev_mtd.c due to semantic change in what
"mtd->block_isbad" means in commit f2933e86ad93: "Logfs: Allow NULL
block_isbad() methods" clashing with the abstraction changes in the
commits 7086c19d0742: "mtd: introduce mtd_block_isbad interface" and
d58b27ed58a3: "logfs: do not use 'mtd->block_isbad' directly".
This resolution takes the semantics from commit f2933e86ad93, and just
makes mtd_block_isbad() return zero (false) if the 'block_isbad'
function is NULL. But that also means that now "mtd_can_have_bb()"
always returns 0.
Now, "mtd_block_markbad()" will obviously return an error if the
low-level driver doesn't support bad blocks, so this is somewhat
non-symmetric, but it actually makes sense if a NULL "block_isbad"
function is considered to mean "I assume that all my blocks are always
good".
|
|
During GC LogFS has to rewrite each valid block to a separate segment.
Rewrite operation reads data from an old segment and writes it to a
newly allocated segment. Since every write operation changes data
block pointers maintained in inode, inode should also be rewritten.
In GC path to avoid AB-BA deadlock LogFS marks a page with
PG_pre_locked in addition to locking the page (PG_locked). The page
lock is ignored iff the page is pre-locked.
LogFS uses a special file called segment file. The segment file
maintains an 8 bytes entry for every segment. It keeps track of erase
count, level etc. for every segment.
Bad things happen with a segment belonging to the segment file is GCed
------------[ cut here ]------------
kernel BUG at /home/prasad/logfs/readwrite.c:297!
invalid opcode: 0000 [#1] SMP
Modules linked in: logfs joydev usbhid hid psmouse e1000 i2c_piix4
serio_raw [last unloaded: logfs]
Pid: 20161, comm: mount Not tainted 3.1.0-rc3+ #3 innotek GmbH
VirtualBox
EIP: 0060:[<f809132a>] EFLAGS: 00010292 CPU: 0
EIP is at logfs_lock_write_page+0x6a/0x70 [logfs]
EAX: 00000027 EBX: f73f5b20 ECX: c16007c8 EDX: 00000094
ESI: 00000000 EDI: e59be6e4 EBP: c7337b28 ESP: c7337b18
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
Process mount (pid: 20161, ti=c7336000 task=eb323f70 task.ti=c7336000)
Stack:
f8099a3d c7337b24 f73f5b20 00001002 c7337b50 f8091f6d f8099a4d f80994e4
00000003 00000000 c7337b68 00000000 c67e4400 00001000 c7337b80 f80935e5
00000000 00000000 00000000 00000000 e1fcf000 0000000f e59be618 c70bf900
Call Trace:
[<f8091f6d>] logfs_get_write_page.clone.16+0xdd/0x100 [logfs]
[<f80935e5>] logfs_mod_segment_entry+0x55/0x110 [logfs]
[<f809460d>] logfs_get_segment_entry+0x1d/0x20 [logfs]
[<f8091060>] ? logfs_cleanup_journal+0x50/0x50 [logfs]
[<f809521b>] ostore_get_erase_count+0x1b/0x40 [logfs]
[<f80965b8>] logfs_open_area+0xc8/0x150 [logfs]
[<c141a7ec>] ? kmemleak_alloc+0x2c/0x60
[<f809668e>] __logfs_segment_write.clone.16+0x4e/0x1b0 [logfs]
[<c10dd563>] ? mempool_kmalloc+0x13/0x20
[<c10dd563>] ? mempool_kmalloc+0x13/0x20
[<f809696f>] logfs_segment_write+0x17f/0x1d0 [logfs]
[<f8092e8c>] logfs_write_i0+0x11c/0x180 [logfs]
[<f8092f35>] logfs_write_direct+0x45/0x90 [logfs]
[<f80934cd>] __logfs_write_buf+0xbd/0xf0 [logfs]
[<c102900e>] ? kmap_atomic_prot+0x4e/0xe0
[<f809424b>] logfs_write_buf+0x3b/0x60 [logfs]
[<f80947a9>] __logfs_write_inode+0xa9/0x110 [logfs]
[<f8094cb0>] logfs_rewrite_block+0xc0/0x110 [logfs]
[<f8095300>] ? get_mapping_page+0x10/0x60 [logfs]
[<f8095aa0>] ? logfs_load_object_aliases+0x2e0/0x2f0 [logfs]
[<f808e57d>] logfs_gc_segment+0x2ad/0x310 [logfs]
[<f808e62a>] __logfs_gc_once+0x4a/0x80 [logfs]
[<f808ed43>] logfs_gc_pass+0x683/0x6a0 [logfs]
[<f8097a89>] logfs_mount+0x5a9/0x680 [logfs]
[<c1126b21>] mount_fs+0x21/0xd0
[<c10f6f6f>] ? __alloc_percpu+0xf/0x20
[<c113da41>] ? alloc_vfsmnt+0xb1/0x130
[<c113db4b>] vfs_kern_mount+0x4b/0xa0
[<c113e06e>] do_kern_mount+0x3e/0xe0
[<c113f60d>] do_mount+0x34d/0x670
[<c10f2749>] ? strndup_user+0x49/0x70
[<c113fcab>] sys_mount+0x6b/0xa0
[<c142d87c>] syscall_call+0x7/0xb
Code: f8 e8 8b 93 39 c9 8b 45 f8 3e 0f ba 28 00 19 d2 85 d2 74 ca eb d0 0f 0b 8d 45 fc 89 44 24 04 c7 04 24 3d 9a 09 f8 e8 09 92 39 c9 <0f> 0b 8d 74 26 00 55 89 e5 3e 8d 74 26 00 8b 10 80 e6 01 74 09
EIP: [<f809132a>] logfs_lock_write_page+0x6a/0x70 [logfs] SS:ESP 0068:c7337b18
---[ end trace 96e67d5b3aa3d6ca ]---
The patch passes locked page to __logfs_write_inode. It calls function
logfs_get_wblocks() to pre-lock the page. This ensures any further
attempts to lock the page are ignored (esp from get_erase_count).
Acked-by: Joern Engel <joern@logfs.org>
Signed-off-by: Prasad Joshi <prasadjoshi.linux@gmail.com>
|
|
LogFS uses super->s_write_mutex while writing data to disk. Taking the
same mutex lock in sync and fsync code path solves the following BUG:
------------[ cut here ]------------
kernel BUG at /home/prasad/logfs/dev_bdev.c:134!
Pid: 2387, comm: flush-253:16 Not tainted 3.0.0+ #4 Bochs Bochs
RIP: 0010:[<ffffffffa007deed>] [<ffffffffa007deed>]
bdev_writeseg+0x25d/0x270 [logfs]
Call Trace:
[<ffffffffa007c381>] logfs_open_area+0x91/0x150 [logfs]
[<ffffffff8128dcb2>] ? find_level.clone.9+0x62/0x100
[<ffffffffa007c49c>] __logfs_segment_write.clone.20+0x5c/0x190 [logfs]
[<ffffffff810ef005>] ? mempool_kmalloc+0x15/0x20
[<ffffffff810ef383>] ? mempool_alloc+0x53/0x130
[<ffffffffa007c7a4>] logfs_segment_write+0x1d4/0x230 [logfs]
[<ffffffffa0078f8e>] logfs_write_i0+0x12e/0x190 [logfs]
[<ffffffffa0079300>] __logfs_write_rec+0x140/0x220 [logfs]
[<ffffffffa0079444>] logfs_write_rec+0x64/0xd0 [logfs]
[<ffffffffa00795b6>] __logfs_write_buf+0x106/0x110 [logfs]
[<ffffffffa007a13e>] logfs_write_buf+0x4e/0x80 [logfs]
[<ffffffffa0073e33>] __logfs_writepage+0x23/0x80 [logfs]
[<ffffffffa007410c>] logfs_writepage+0xdc/0x110 [logfs]
[<ffffffff810f5ba7>] __writepage+0x17/0x40
[<ffffffff810f6208>] write_cache_pages+0x208/0x4f0
[<ffffffff810f5b90>] ? set_page_dirty+0x70/0x70
[<ffffffff810f653a>] generic_writepages+0x4a/0x70
[<ffffffff810f75d1>] do_writepages+0x21/0x40
[<ffffffff8116b9d1>] writeback_single_inode+0x101/0x250
[<ffffffff8116bdbd>] writeback_sb_inodes+0xed/0x1c0
[<ffffffff8116c5fb>] writeback_inodes_wb+0x7b/0x1e0
[<ffffffff8116cc23>] wb_writeback+0x4c3/0x530
[<ffffffff814d984d>] ? sub_preempt_count+0x9d/0xd0
[<ffffffff8116cd6b>] wb_do_writeback+0xdb/0x290
[<ffffffff814d984d>] ? sub_preempt_count+0x9d/0xd0
[<ffffffff814d6208>] ? _raw_spin_unlock_irqrestore+0x18/0x40
[<ffffffff8105aa5a>] ? del_timer+0x8a/0x120
[<ffffffff8116cfac>] bdi_writeback_thread+0x8c/0x2e0
[<ffffffff8116cf20>] ? wb_do_writeback+0x290/0x290
[<ffffffff8106d2e6>] kthread+0x96/0xa0
[<ffffffff814de514>] kernel_thread_helper+0x4/0x10
[<ffffffff8106d250>] ? kthread_worker_fn+0x190/0x190
[<ffffffff814de510>] ? gs_change+0xb/0xb
RIP [<ffffffffa007deed>] bdev_writeseg+0x25d/0x270 [logfs]
---[ end trace 0211ad60a57657c4 ]---
Reviewed-by: Joern Engel <joern@logfs.org>
Signed-off-by: Prasad Joshi <prasadjoshi.linux@gmail.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Seeing that just about every destructor got that INIT_LIST_HEAD() copied into
it, there is no point whatsoever keeping this INIT_LIST_HEAD in inode_init_once();
the cost of taking it into inode_init_always() will be negligible for pipes
and sockets and negative for everything else. Not to mention the removal of
boilerplate code from ->destroy_inode() instances...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Replace direct i_nlink updates with the respective updater function
(inc_nlink, drop_nlink, clear_nlink, inode_dec_link_count).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
|
|
alloc_inode() initializes i_nlink to 1. Remove unnecessary
re-initialization.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: Joern Engel <joern@logfs.org>
CC: Prasad Joshi <prasadjoshi.linux@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Now that inode state changes are protected by the inode->i_lock and
the inode LRU manipulations by the inode_lru_lock, we can remove the
inode_lock from prune_icache and the initial part of iput_final().
instead of using the inode_lock to protect the inode during
iput_final, use the inode->i_lock instead. This protects the inode
against new references being taken while we change the inode state
to I_FREEING, as well as preventing prune_icache from grabbing the
inode while we are manipulating it. Hence we no longer need the
inode_lock in iput_final prior to setting I_FREEING on the inode.
For prune_icache, we no longer need the inode_lock to protect the
LRU list, and the inodes themselves are protected against freeing
races by the inode->i_lock. Hence we can lift the inode_lock from
prune_icache as well.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
|
|
... and let iput_final() do the actual eviction or retention
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
ordering problems at ->kill_sb() time are solved by doing iput()
of these suckers in ->put_super()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Rather self-explanatory.
Signed-off-by: Joern Engel <joern@logfs.org>
|
|
li_refcount was not re-initialized in function logfs_init_inode(), small
patch that will fix the problem
Signed-off-by: Prasad Joshi <prasadjoshi124@gmail.com>
Signed-off-by: Joern Engel <joern@logfs.org>
|
|
logfs_seek_hole() may return the same offset it is passed as argument.
Found by Prasad Joshi <prasadjoshi124@gmail.com>
Signed-off-by: Joern Engel <joern@logfs.org>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs:
[LogFS] Change magic number
[LogFS] Remove h_version field
[LogFS] Check feature flags
[LogFS] Only write journal if dirty
[LogFS] Fix bdev erases
[LogFS] Silence gcc
[LogFS] Prevent 64bit divisions in hash_index
[LogFS] Plug memory leak on error paths
[LogFS] Add MAINTAINERS entry
[LogFS] add new flash file system
Fixed up trivial conflict in lib/Kconfig, and a semantic conflict in
fs/logfs/inode.c introduced by write_inode() being changed to use
writeback_control' by commit a9185b41a4f84971b930c519f0c63bd450c4810d
("pass writeback_control to ->write_inode")
|
|
This is a new flash file system. See
Documentation/filesystems/logfs.txt
Signed-off-by: Joern Engel <joern@logfs.org>
|