summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2017-06-24configfs: Fix race between create_link and configfs_rmdirNicholas Bellinger
commit ba80aa909c99802c428682c352b0ee0baac0acd3 upstream. This patch closes a long standing race in configfs between the creation of a new symlink in create_link(), while the symlink target's config_item is being concurrently removed via configfs_rmdir(). This can happen because the symlink target's reference is obtained by config_item_get() in create_link() before the CONFIGFS_USET_DROPPING bit set by configfs_detach_prep() during configfs_rmdir() shutdown is actually checked.. This originally manifested itself on ppc64 on v4.8.y under heavy load using ibmvscsi target ports with Novalink API: [ 7877.289863] rpadlpar_io: slot U8247.22L.212A91A-V1-C8 added [ 7879.893760] ------------[ cut here ]------------ [ 7879.893768] WARNING: CPU: 15 PID: 17585 at ./include/linux/kref.h:46 config_item_get+0x7c/0x90 [configfs] [ 7879.893811] CPU: 15 PID: 17585 Comm: targetcli Tainted: G O 4.8.17-customv2.22 #12 [ 7879.893812] task: c00000018a0d3400 task.stack: c0000001f3b40000 [ 7879.893813] NIP: d000000002c664ec LR: d000000002c60980 CTR: c000000000b70870 [ 7879.893814] REGS: c0000001f3b43810 TRAP: 0700 Tainted: G O (4.8.17-customv2.22) [ 7879.893815] MSR: 8000000000029033 <SF,EE,ME,IR,DR,RI,LE> CR: 28222242 XER: 00000000 [ 7879.893820] CFAR: d000000002c664bc SOFTE: 1 GPR00: d000000002c60980 c0000001f3b43a90 d000000002c70908 c0000000fbc06820 GPR04: c0000001ef1bd900 0000000000000004 0000000000000001 0000000000000000 GPR08: 0000000000000000 0000000000000001 d000000002c69560 d000000002c66d80 GPR12: c000000000b70870 c00000000e798700 c0000001f3b43ca0 c0000001d4949d40 GPR16: c00000014637e1c0 0000000000000000 0000000000000000 c0000000f2392940 GPR20: c0000001f3b43b98 0000000000000041 0000000000600000 0000000000000000 GPR24: fffffffffffff000 0000000000000000 d000000002c60be0 c0000001f1dac490 GPR28: 0000000000000004 0000000000000000 c0000001ef1bd900 c0000000f2392940 [ 7879.893839] NIP [d000000002c664ec] config_item_get+0x7c/0x90 [configfs] [ 7879.893841] LR [d000000002c60980] check_perm+0x80/0x2e0 [configfs] [ 7879.893842] Call Trace: [ 7879.893844] [c0000001f3b43ac0] [d000000002c60980] check_perm+0x80/0x2e0 [configfs] [ 7879.893847] [c0000001f3b43b10] [c000000000329770] do_dentry_open+0x2c0/0x460 [ 7879.893849] [c0000001f3b43b70] [c000000000344480] path_openat+0x210/0x1490 [ 7879.893851] [c0000001f3b43c80] [c00000000034708c] do_filp_open+0xfc/0x170 [ 7879.893853] [c0000001f3b43db0] [c00000000032b5bc] do_sys_open+0x1cc/0x390 [ 7879.893856] [c0000001f3b43e30] [c000000000009584] system_call+0x38/0xec [ 7879.893856] Instruction dump: [ 7879.893858] 409d0014 38210030 e8010010 7c0803a6 4e800020 3d220000 e94981e0 892a0000 [ 7879.893861] 2f890000 409effe0 39200001 992a0000 <0fe00000> 4bffffd0 60000000 60000000 [ 7879.893866] ---[ end trace 14078f0b3b5ad0aa ]--- To close this race, go ahead and obtain the symlink's target config_item reference only after the existing CONFIGFS_USET_DROPPING check succeeds. This way, if configfs_rmdir() wins create_link() will return -ENONET, and if create_link() wins configfs_rmdir() will return -EBUSY. Reported-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com> Tested-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-24fs: pass on flags in compat_writevChristoph Hellwig
commit 20223f0f39ea9d31ece08f04ac79f8c4e8d98246 upstream. Fixes: 793b80ef14af ("vfs: pass a flags argument to vfs_readv/vfs_writev") Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17userfaultfd: fix SIGBUS resulting from false rwsem wakeupsAndrea Arcangeli
[ Upstream commit 15a77c6fe494f4b1757d30cd137fe66ab06a38c3 ] With >=32 CPUs the userfaultfd selftest triggered a graceful but unexpected SIGBUS because VM_FAULT_RETRY was returned by handle_userfault() despite the UFFDIO_COPY wasn't completed. This seems caused by rwsem waking the thread blocked in handle_userfault() and we can't run up_read() before the wait_event sequence is complete. Keeping the wait_even sequence identical to the first one, would require running userfaultfd_must_wait() again to know if the loop should be repeated, and it would also require retaking the rwsem and revalidating the whole vma status. It seems simpler to wait the targeted wakeup so that if false wakeups materialize we still wait for our specific wakeup event, unless of course there are signals or the uffd was released. Debug code collecting the stack trace of the wakeup showed this: $ ./userfaultfd 100 99999 nr_pages: 25600, nr_pages_per_cpu: 800 bounces: 99998, mode: racing ver poll, userfaults: 32 35 90 232 30 138 69 82 34 30 139 40 40 31 20 19 43 13 15 28 27 38 21 43 56 22 1 17 31 8 4 2 bounces: 99997, mode: rnd ver poll, Bus error (core dumped) save_stack_trace+0x2b/0x50 try_to_wake_up+0x2a6/0x580 wake_up_q+0x32/0x70 rwsem_wake+0xe0/0x120 call_rwsem_wake+0x1b/0x30 up_write+0x3b/0x40 vm_mmap_pgoff+0x9c/0xc0 SyS_mmap_pgoff+0x1a9/0x240 SyS_mmap+0x22/0x30 entry_SYSCALL_64_fastpath+0x1f/0xbd 0xffffffffffffffff FAULT_FLAG_ALLOW_RETRY missing 70 CPU: 24 PID: 1054 Comm: userfaultfd Tainted: G W 4.8.0+ #30 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.3-0-ge2fc41e-prebuilt.qemu-project.org 04/01/2014 Call Trace: dump_stack+0xb8/0x112 handle_userfault+0x572/0x650 handle_mm_fault+0x12cb/0x1520 __do_page_fault+0x175/0x500 trace_do_page_fault+0x61/0x270 do_async_page_fault+0x19/0x90 async_page_fault+0x25/0x30 This always happens when the main userfault selftest thread is running clone() while glibc runs either mprotect or mmap (both taking mmap_sem down_write()) to allocate the thread stack of the background threads, while locking/userfault threads already run at full throttle and are susceptible to false wakeups that may cause handle_userfault() to return before than expected (which results in graceful SIGBUS at the next attempt). This was reproduced only with >=32 CPUs because the loop to start the thread where clone() is too quick with fewer CPUs, while with 32 CPUs there's already significant activity on ~32 locking and userfault threads when the last background threads are started with clone(). This >=32 CPUs SMP race condition is likely reproducible only with the selftest because of the much heavier userfault load it generates if compared to real apps. We'll have to allow "one more" VM_FAULT_RETRY for the WP support and a patch floating around that provides it also hidden this problem but in reality only is successfully at hiding the problem. False wakeups could still happen again the second time handle_userfault() is invoked, even if it's a so rare race condition that getting false wakeups twice in a row is impossible to reproduce. This full fix is needed for correctness, the only alternative would be to allow VM_FAULT_RETRY to be returned infinitely. With this fix the WP support can stick to a strict "one more" VM_FAULT_RETRY logic (no need of returning it infinite times to avoid the SIGBUS). Link: http://lkml.kernel.org/r/20170111005535.13832-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Shubham Kumar Sharma <shubham.kumar.sharma@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17proc: add a schedule point in proc_pid_readdir()Eric Dumazet
[ Upstream commit 3ba4bceef23206349d4130ddf140819b365de7c8 ] We have seen proc_pid_readdir() invocations holding cpu for more than 50 ms. Add a cond_resched() to be gentle with other tasks. [akpm@linux-foundation.org: coding style fix] Link: http://lkml.kernel.org/r/1484238380.15816.42.camel@edumazet-glaptop3.roam.corp.google.com Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17romfs: use different way to generate fsid for BLOCK or MTDColy Li
[ Upstream commit f598f82e204ec0b17797caaf1b0311c52d43fb9a ] Commit 8a59f5d25265 ("fs/romfs: return f_fsid for statfs(2)") generates a 64bit id from sb->s_bdev->bd_dev. This is only correct when romfs is defined with CONFIG_ROMFS_ON_BLOCK. If romfs is only defined with CONFIG_ROMFS_ON_MTD, sb->s_bdev is NULL, referencing sb->s_bdev->bd_dev will triger an oops. Richard Weinberger points out that when CONFIG_ROMFS_BACKED_BY_BOTH=y, both CONFIG_ROMFS_ON_BLOCK and CONFIG_ROMFS_ON_MTD are defined. Therefore when calling huge_encode_dev() to generate a 64bit id, I use the follow order to choose parameter, - CONFIG_ROMFS_ON_BLOCK defined use sb->s_bdev->bd_dev - CONFIG_ROMFS_ON_BLOCK undefined and CONFIG_ROMFS_ON_MTD defined use sb->s_dev when, - both CONFIG_ROMFS_ON_BLOCK and CONFIG_ROMFS_ON_MTD undefined leave id as 0 When CONFIG_ROMFS_ON_MTD is defined and sb->s_mtd is not NULL, sb->s_dev is set to a device ID generated by MTD_BLOCK_MAJOR and mtd index, otherwise sb->s_dev is 0. This is a try-best effort to generate a uniq file system ID, if all the above conditions are not meet, f_fsid of this romfs instance will be 0. Generally only one romfs can be built on single MTD block device, this method is enough to identify multiple romfs instances in a computer. Link: http://lkml.kernel.org/r/1482928596-115155-1-git-send-email-colyli@suse.de Signed-off-by: Coly Li <colyli@suse.de> Reported-by: Nong Li <nongli1031@gmail.com> Tested-by: Nong Li <nongli1031@gmail.com> Cc: Richard Weinberger <richard.weinberger@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17nfs: Fix "Don't increment lock sequence ID after NFS4ERR_MOVED"Chuck Lever
[ Upstream commit 406dab8450ec76eca88a1af2fc15d18a2b36ca49 ] Lock sequence IDs are bumped in decode_lock by calling nfs_increment_seqid(). nfs_increment_sequid() does not use the seqid_mutating_err() function fixed in commit 059aa7348241 ("Don't increment lock sequence ID after NFS4ERR_MOVED"). Fixes: 059aa7348241 ("Don't increment lock sequence ID after ...") Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Tested-by: Xuan Qi <xuan.qi@oracle.com> Cc: stable@vger.kernel.org # v3.7+ Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17FS-Cache: Initialise stores_lock in netfs cookieDavid Howells
[ Upstream commit 62deb8187d116581c88c69a2dd9b5c16588545d4 ] Initialise the stores_lock in fscache netfs cookies. Technically, it shouldn't be necessary, since the netfs cookie is an index and stores no data, but initialising it anyway adds insignificant overhead. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17fscache: Clear outstanding writes when disabling a cookieDavid Howells
[ Upstream commit 6bdded59c8933940ac7e5b416448276ac89d1144 ] fscache_disable_cookie() needs to clear the outstanding writes on the cookie it's disabling because they cannot be completed after. Without this, fscache_nfs_open_file() gets stuck because it disables the cookie when the file is opened for writing but can't uncache the pages till afterwards - otherwise there's a race between the open routine and anyone who already has it open R/O and is still reading from it. Looking in /proc/pid/stack of the offending process shows: [<ffffffffa0142883>] __fscache_wait_on_page_write+0x82/0x9b [fscache] [<ffffffffa014336e>] __fscache_uncache_all_inode_pages+0x91/0xe1 [fscache] [<ffffffffa01740fa>] nfs_fscache_open_file+0x59/0x9e [nfs] [<ffffffffa01ccf41>] nfs4_file_open+0x17f/0x1b8 [nfsv4] [<ffffffff8117350e>] do_dentry_open+0x16d/0x2b7 [<ffffffff811743ac>] vfs_open+0x5c/0x65 [<ffffffff81184185>] path_openat+0x785/0x8fb [<ffffffff81184343>] do_filp_open+0x48/0x9e [<ffffffff81174710>] do_sys_open+0x13b/0x1cb [<ffffffff811747b9>] SyS_open+0x19/0x1b [<ffffffff81001c44>] do_syscall_64+0x80/0x17a [<ffffffff8165c2da>] return_from_SYSCALL_64+0x0/0x7a [<ffffffffffffffff>] 0xffffffffffffffff Reported-by: Jianhong Yin <jiyin@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17fscache: Fix dead object requeueDavid Howells
[ Upstream commit e26bfebdfc0d212d366de9990a096665d5c0209a ] Under some circumstances, an fscache object can become queued such that it fscache_object_work_func() can be called once the object is in the OBJECT_DEAD state. This results in the kernel oopsing when it tries to invoke the handler for the state (which is hard coded to 0x2). The way this comes about is something like the following: (1) The object dispatcher is processing a work state for an object. This is done in workqueue context. (2) An out-of-band event comes in that isn't masked, causing the object to be queued, say EV_KILL. (3) The object dispatcher finishes processing the current work state on that object and then sees there's another event to process, so, without returning to the workqueue core, it processes that event too. It then follows the chain of events that initiates until we reach OBJECT_DEAD without going through a wait state (such as WAIT_FOR_CLEARANCE). At this point, object->events may be 0, object->event_mask will be 0 and oob_event_mask will be 0. (4) The object dispatcher returns to the workqueue processor, and in due course, this sees that the object's work item is still queued and invokes it again. (5) The current state is a work state (OBJECT_DEAD), so the dispatcher jumps to it - resulting in an OOPS. When I'm seeing this, the work state in (1) appears to have been either LOOK_UP_OBJECT or CREATE_OBJECT (object->oob_table is fscache_osm_lookup_oob). The window for (2) is very small: (A) object->event_mask is cleared whilst the event dispatch process is underway - though there's no memory barrier to force this to the top of the function. The window, therefore is from the time the object was selected by the workqueue processor and made requeueable to the time the mask was cleared. (B) fscache_raise_event() will only queue the object if it manages to set the event bit and the corresponding event_mask bit was set. The enqueuement is then deferred slightly whilst we get a ref on the object and get the per-CPU variable for workqueue congestion. This slight deferral slightly increases the probability by allowing extra time for the workqueue to make the item requeueable. Handle this by giving the dead state a processor function and checking the for the dead state address rather than seeing if the processor function is address 0x2. The dead state processor function can then set a flag to indicate that it's occurred and give a warning if it occurs more than once per object. If this race occurs, an oops similar to the following is seen (note the RIP value): BUG: unable to handle kernel NULL pointer dereference at 0000000000000002 IP: [<0000000000000002>] 0x1 PGD 0 Oops: 0010 [#1] SMP Modules linked in: ... CPU: 17 PID: 16077 Comm: kworker/u48:9 Not tainted 3.10.0-327.18.2.el7.x86_64 #1 Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 12/27/2015 Workqueue: fscache_object fscache_object_work_func [fscache] task: ffff880302b63980 ti: ffff880717544000 task.ti: ffff880717544000 RIP: 0010:[<0000000000000002>] [<0000000000000002>] 0x1 RSP: 0018:ffff880717547df8 EFLAGS: 00010202 RAX: ffffffffa0368640 RBX: ffff880edf7a4480 RCX: dead000000200200 RDX: 0000000000000002 RSI: 00000000ffffffff RDI: ffff880edf7a4480 RBP: ffff880717547e18 R08: 0000000000000000 R09: dfc40a25cb3a4510 R10: dfc40a25cb3a4510 R11: 0000000000000400 R12: 0000000000000000 R13: ffff880edf7a4510 R14: ffff8817f6153400 R15: 0000000000000600 FS: 0000000000000000(0000) GS:ffff88181f420000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000002 CR3: 000000000194a000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: ffffffffa0363695 ffff880edf7a4510 ffff88093f16f900 ffff8817faa4ec00 ffff880717547e60 ffffffff8109d5db 00000000faa4ec18 0000000000000000 ffff8817faa4ec18 ffff88093f16f930 ffff880302b63980 ffff88093f16f900 Call Trace: [<ffffffffa0363695>] ? fscache_object_work_func+0xa5/0x200 [fscache] [<ffffffff8109d5db>] process_one_work+0x17b/0x470 [<ffffffff8109e4ac>] worker_thread+0x21c/0x400 [<ffffffff8109e290>] ? rescuer_thread+0x400/0x400 [<ffffffff810a5acf>] kthread+0xcf/0xe0 [<ffffffff810a5a00>] ? kthread_create_on_node+0x140/0x140 [<ffffffff816460d8>] ret_from_fork+0x58/0x90 [<ffffffff810a5a00>] ? kthread_create_on_node+0x140/0x140 Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeremy McNicoll <jeremymc@redhat.com> Tested-by: Frank Sorenson <sorenson@redhat.com> Tested-by: Benjamin Coddington <bcodding@redhat.com> Reviewed-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-17gfs2: Use rhashtable walk interface in glock_hash_walkHerbert Xu
[ Upstream commit 6a25478077d987edc5e2f880590a2bc5fcab4441 ] The function glock_hash_walk walks the rhashtable by hand. This is broken because if it catches the hash table in the middle of a rehash, then it will miss entries. This patch replaces the manual walk by using the rhashtable walk interface. Fixes: 88ffbf3e037e ("GFS2: Use resizable hash table for glocks") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14btrfs: fix memory leak in update_space_info failure pathJeff Mahoney
commit 896533a7da929136d0432713f02a3edffece2826 upstream. If we fail to add the space_info kobject, we'll leak the memory for the percpu counter. Fixes: 6ab0a2029c (btrfs: publish allocation data in sysfs) Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14btrfs: use correct types for page indices in btrfs_page_exists_in_rangeDavid Sterba
commit cc2b702c52094b637a351d7491ac5200331d0445 upstream. Variables start_idx and end_idx are supposed to hold a page index derived from the file offsets. The int type is not the right one though, offsets larger than 1 << 44 will get silently trimmed off the high bits. (1 << 44 is 16TiB) What can go wrong, if start is below the boundary and end gets trimmed: - if there's a page after start, we'll find it (radix_tree_gang_lookup_slot) - the final check "if (page->index <= end_idx)" will unexpectedly fail The function will return false, ie. "there's no page in the range", although there is at least one. btrfs_page_exists_in_range is used to prevent races in: * in hole punching, where we make sure there are not pages in the truncated range, otherwise we'll wait for them to finish and redo truncation, but we're going to replace the pages with holes anyway so the only problem is the intermediate state * lock_extent_direct: we want to make sure there are no pages before we lock and start DIO, to prevent stale data reads For practical occurence of the bug, there are several constaints. The file must be quite large, the affected range must cross the 16TiB boundary and the internal state of the file pages and pending operations must match. Also, we must not have started any ordered data in the range, otherwise we don't even reach the buggy function check. DIO locking tries hard in several places to avoid deadlocks with buffered IO and avoids waiting for ranges. The worst consequence seems to be stale data read. CC: Liu Bo <bo.li.liu@oracle.com> Fixes: fc4adbff823f7 ("btrfs: Drop EXTENT_UPTODATE check in hole punching and direct locking") Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ufs_getfrag_block(): we only grab ->truncate_mutex on block creation pathAl Viro
commit 006351ac8ead0d4a67dd3845e3ceffe650a23212 upstream. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ufs_extend_tail(): fix the braino in calling conventions of ufs_new_fragments()Al Viro
commit 940ef1a0ed939c2ca029fca715e25e7778ce1e34 upstream. ... and it really needs splitting into "new" and "extend" cases, but that's for later Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ufs: set correct ->s_maxsizeAl Viro
commit 6b0d144fa758869bdd652c50aa41aaf601232550 upstream. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ufs: restore maintaining ->i_blocksAl Viro
commit eb315d2ae614493fd1ebb026c75a80573d84f7ad upstream. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14fix ufs_isblockset()Al Viro
commit 414cf7186dbec29bd946c138d6b5c09da5955a08 upstream. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ufs: restore proper tail allocationAl Viro
commit 8785d84d002c2ce0f68fbcd6c2c86be859802c7e upstream. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14fs: add i_blocksize()Fabian Frederick
commit 93407472a21b82f39c955ea7787e5bc7da100642 upstream. Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs branch. This patch also fixes multiple checkpatch warnings: WARNING: Prefer 'unsigned int' to bare use of 'unsigned' Thanks to Andrew Morton for suggesting more appropriate function instead of macro. [geliangtang@gmail.com: truncate: use i_blocksize()] Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.be Signed-off-by: Fabian Frederick <fabf@skynet.be> Signed-off-by: Geliang Tang <geliangtang@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ext4: fix fdatasync(2) after extent manipulation operationsJan Kara
commit 67a7d5f561f469ad2fa5154d2888258ab8e6df7c upstream. Currently, extent manipulation operations such as hole punch, range zeroing, or extent shifting do not record the fact that file data has changed and thus fdatasync(2) has a work to do. As a result if we crash e.g. after a punch hole and fdatasync, user can still possibly see the punched out data after journal replay. Test generic/392 fails due to these problems. Fix the problem by properly marking that file data has changed in these operations. Fixes: a4bb6b64e39abc0e41ca077725f2a72c868e7622 Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ext4: fix data corruption with EXT4_GET_BLOCKS_ZEROJan Kara
commit 4f8caa60a5a13a78f26198618f21774bd6aa6498 upstream. When ext4_map_blocks() is called with EXT4_GET_BLOCKS_ZERO to zero-out allocated blocks and these blocks are actually converted from unwritten extent the following race can happen: CPU0 CPU1 page fault page fault ... ... ext4_map_blocks() ext4_ext_map_blocks() ext4_ext_handle_unwritten_extents() ext4_ext_convert_to_initialized() - zero out converted extent ext4_zeroout_es() - inserts extent as initialized in status tree ext4_map_blocks() ext4_es_lookup_extent() - finds initialized extent write data ext4_issue_zeroout() - zeroes out new extent overwriting data This problem can be reproduced by generic/340 for the fallocated case for the last block in the file. Fix the problem by avoiding zeroing out the area we are mapping with ext4_map_blocks() in ext4_ext_convert_to_initialized(). It is pointless to zero out this area in the first place as the caller asked us to convert the area to initialized because he is just going to write data there before the transaction finishes. To achieve this we delete the special case of zeroing out full extent as that will be handled by the cases below zeroing only the part of the extent that needs it. We also instruct ext4_split_extent() that the middle of extent being split contains data so that ext4_split_extent_at() cannot zero out full extent in case of ENOSPC. Fixes: 12735f881952c32b31bc4e433768f18489f79ec9 Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ext4: keep existing extra fields when inode expandsKonstantin Khlebnikov
commit 887a9730614727c4fff7cb756711b190593fc1df upstream. ext4_expand_extra_isize() should clear only space between old and new size. Fixes: 6dd4ee7cab7e # v2.6.23 Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14ext4: fix SEEK_HOLEJan Kara
commit 7d95eddf313c88b24f99d4ca9c2411a4b82fef33 upstream. Currently, SEEK_HOLE implementation in ext4 may both return that there's a hole at some offset although that offset already has data and skip some holes during a search for the next hole. The first problem is demostrated by: xfs_io -c "falloc 0 256k" -c "pwrite 0 56k" -c "seek -h 0" file wrote 57344/57344 bytes at offset 0 56 KiB, 14 ops; 0.0000 sec (2.054 GiB/sec and 538461.5385 ops/sec) Whence Result HOLE 0 Where we can see that SEEK_HOLE wrongly returned offset 0 as containing a hole although we have written data there. The second problem can be demonstrated by: xfs_io -c "falloc 0 256k" -c "pwrite 0 56k" -c "pwrite 128k 8k" -c "seek -h 0" file wrote 57344/57344 bytes at offset 0 56 KiB, 14 ops; 0.0000 sec (1.978 GiB/sec and 518518.5185 ops/sec) wrote 8192/8192 bytes at offset 131072 8 KiB, 2 ops; 0.0000 sec (2 GiB/sec and 500000.0000 ops/sec) Whence Result HOLE 139264 Where we can see that hole at offsets 56k..128k has been ignored by the SEEK_HOLE call. The underlying problem is in the ext4_find_unwritten_pgoff() which is just buggy. In some cases it fails to update returned offset when it finds a hole (when no pages are found or when the first found page has higher index than expected), in some cases conditions for detecting hole are just missing (we fail to detect a situation where indices of returned pages are not contiguous). Fix ext4_find_unwritten_pgoff() to properly detect non-contiguous page indices and also handle all cases where we got less pages then expected in one place and handle it properly there. Fixes: c8c0df241cc2719b1262e627f999638411934f60 CC: Zheng Liu <wenqing.lz@taobao.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14nfsd: Fix up the "supattr_exclcreat" attributesTrond Myklebust
commit b26b78cb726007533d81fdf90a62e915002ef5c8 upstream. If an NFSv4 client asks us for the supattr_exclcreat, then we must not return attributes that are unsupported by this minor version. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Fixes: 75976de6556f ("NFSD: Return word2 bitmask if setting security..,") Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14nfsd4: fix null dereference on replayJ. Bruce Fields
commit 9a307403d374b993061f5992a6e260c944920d0b upstream. if we receive a compound such that: - the sessionid, slot, and sequence number in the SEQUENCE op match a cached succesful reply with N ops, and - the Nth operation of the compound is a PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH, then nfsd4_sequence will return 0 and set cstate->status to nfserr_replay_cache. The current filehandle will not be set. This will cause us to call check_nfsd_access with first argument NULL. To nfsd4_compound it looks like we just succesfully executed an operation that set a filehandle, but the current filehandle is not set. Fix this by moving the nfserr_replay_cache earlier. There was never any reason to have it after the encode_op label, since the only case where he hit that is when opdesc->op_func sets it. Note that there are two ways we could hit this case: - a client is resending a previously sent compound that ended with one of the four PUTFH-like operations, or - a client is sending a *new* compound that (incorrectly) shares sessionid, slot, and sequence number with a previously sent compound, and the length of the previously sent compound happens to match the position of a PUTFH-like operation in the new compound. The second is obviously incorrect client behavior. The first is also very strange--the only purpose of a PUTFH-like operation is to set the current filehandle to be used by the following operation, so there's no point in having it as the last in a compound. So it's likely this requires a buggy or malicious client to reproduce. Reported-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: Fix off-by-in in loop termination in xfs_find_get_desired_pgoff()Jan Kara
commit d7fd24257aa60316bf81093f7f909dc9475ae974 upstream. There is an off-by-one error in loop termination conditions in xfs_find_get_desired_pgoff() since 'end' may index a page beyond end of desired range if 'endoff' is page aligned. It doesn't have any visible effects but still it is good to fix it. Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix unaligned access in xfs_btree_visit_blocksEric Sandeen
commit a4d768e702de224cc85e0c8eac9311763403b368 upstream. This structure copy was throwing unaligned access warnings on sparc64: Kernel unaligned access at TPC[1043c088] xfs_btree_visit_blocks+0x88/0xe0 [xfs] xfs_btree_copy_ptrs does a memcpy, which avoids it. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: avoid mount-time deadlock in CoW extent recoveryDarrick J. Wong
commit 3ecb3ac7b950ff8f6c6a61e8b7b0d6e3546429a0 upstream. If a malicious user corrupts the refcount btree to cause a cycle between different levels of the tree, the next mount attempt will deadlock in the CoW recovery routine while grabbing buffer locks. We can use the ability to re-grab a buffer that was previous locked to a transaction to avoid deadlocks, so do that here. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: xfs_trans_alloc_emptyChristoph Hellwig
This is a partial cherry-pick of commit e89c041338 ("xfs: implement the GETFSMAP ioctl"), which also adds this helper, and a great example of why feature patches should be properly split into their parts. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> [hch: split from the larger patch for -stable] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-06-07xfs: bad assertion for delalloc an extent that start at i_sizeZorro Lang
commit 892d2a5f705723b2cb488bfb38bcbdcf83273184 upstream. By run fsstress long enough time enough in RHEL-7, I find an assertion failure (harder to reproduce on linux-4.11, but problem is still there): XFS: Assertion failed: (iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c The assertion is in xfs_getbmap() funciton: if (map[i].br_startblock == DELAYSTARTBLOCK && --> map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) ASSERT((iflags & BMV_IF_DELALLOC) != 0); When map[i].br_startoff == XFS_B_TO_FSB(mp, XFS_ISIZE(ip)), the startoff is just at EOF. But we only need to make sure delalloc extents that are within EOF, not include EOF. Signed-off-by: Zorro Lang <zlang@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: BMAPX shouldn't barf on inline-format directoriesDarrick J. Wong
commit 6eadbf4c8ba816c10d1c97bed9aa861d9fd17809 upstream. When we're fulfilling a BMAPX request, jump out early if the data fork is in local format. This prevents us from hitting a debugging check in bmapi_read and barfing errors back to userspace. The on-disk extent count check later isn't sufficient for IF_DELALLOC mode because da extents are in memory and not on disk. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix indlen accounting error on partial delalloc conversionBrian Foster
commit 0daaecacb83bc6b656a56393ab77a31c28139bc7 upstream. The delalloc -> real block conversion path uses an incorrect calculation in the case where the middle part of a delalloc extent is being converted. This is documented as a rare situation because XFS generally attempts to maximize contiguity by converting as much of a delalloc extent as possible. If this situation does occur, the indlen reservation for the two new delalloc extents left behind by the conversion of the middle range is calculated and compared with the original reservation. If more blocks are required, the delta is allocated from the global block pool. This delta value can be characterized as the difference between the new total requirement (temp + temp2) and the currently available reservation minus those blocks that have already been allocated (startblockval(PREV.br_startblock) - allocated). The problem is that the current code does not account for previously allocated blocks correctly. It subtracts the current allocation count from the (new - old) delta rather than the old indlen reservation. This means that more indlen blocks than have been allocated end up stashed in the remaining extents and free space accounting is broken as a result. Fix up the calculation to subtract the allocated block count from the original extent indlen and thus correctly allocate the reservation delta based on the difference between the new total requirement and the unused blocks from the original reservation. Also remove a bogus assert that contradicts the fact that the new indlen reservation can be larger than the original indlen reservation. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix use-after-free in xfs_finish_page_writebackEryu Guan
commit 161f55efba5ddccc690139fae9373cafc3447a97 upstream. Commit 28b783e47ad7 ("xfs: bufferhead chains are invalid after end_page_writeback") fixed one use-after-free issue by pre-calculating the loop conditionals before calling bh->b_end_io() in the end_io processing loop, but it assigned 'next' pointer before checking end offset boundary & breaking the loop, at which point the bh might be freed already, and caused use-after-free. This is caught by KASAN when running fstests generic/127 on sub-page block size XFS. [ 2517.244502] run fstests generic/127 at 2017-04-27 07:30:50 [ 2747.868840] ================================================================== [ 2747.876949] BUG: KASAN: use-after-free in xfs_destroy_ioend+0x3d3/0x4e0 [xfs] at addr ffff8801395ae698 ... [ 2747.918245] Call Trace: [ 2747.920975] dump_stack+0x63/0x84 [ 2747.924673] kasan_object_err+0x21/0x70 [ 2747.928950] kasan_report+0x271/0x530 [ 2747.933064] ? xfs_destroy_ioend+0x3d3/0x4e0 [xfs] [ 2747.938409] ? end_page_writeback+0xce/0x110 [ 2747.943171] __asan_report_load8_noabort+0x19/0x20 [ 2747.948545] xfs_destroy_ioend+0x3d3/0x4e0 [xfs] [ 2747.953724] xfs_end_io+0x1af/0x2b0 [xfs] [ 2747.958197] process_one_work+0x5ff/0x1000 [ 2747.962766] worker_thread+0xe4/0x10e0 [ 2747.966946] kthread+0x2d3/0x3d0 [ 2747.970546] ? process_one_work+0x1000/0x1000 [ 2747.975405] ? kthread_create_on_node+0xc0/0xc0 [ 2747.980457] ? syscall_return_slowpath+0xe6/0x140 [ 2747.985706] ? do_page_fault+0x30/0x80 [ 2747.989887] ret_from_fork+0x2c/0x40 [ 2747.993874] Object at ffff8801395ae690, in cache buffer_head size: 104 [ 2748.001155] Allocated: [ 2748.003782] PID = 8327 [ 2748.006411] save_stack_trace+0x1b/0x20 [ 2748.010688] save_stack+0x46/0xd0 [ 2748.014383] kasan_kmalloc+0xad/0xe0 [ 2748.018370] kasan_slab_alloc+0x12/0x20 [ 2748.022648] kmem_cache_alloc+0xb8/0x1b0 [ 2748.027024] alloc_buffer_head+0x22/0xc0 [ 2748.031399] alloc_page_buffers+0xd1/0x250 [ 2748.035968] create_empty_buffers+0x30/0x410 [ 2748.040730] create_page_buffers+0x120/0x1b0 [ 2748.045493] __block_write_begin_int+0x17a/0x1800 [ 2748.050740] iomap_write_begin+0x100/0x2f0 [ 2748.055308] iomap_zero_range_actor+0x253/0x5c0 [ 2748.060362] iomap_apply+0x157/0x270 [ 2748.064347] iomap_zero_range+0x5a/0x80 [ 2748.068624] iomap_truncate_page+0x6b/0xa0 [ 2748.073227] xfs_setattr_size+0x1f7/0xa10 [xfs] [ 2748.078312] xfs_vn_setattr_size+0x68/0x140 [xfs] [ 2748.083589] xfs_file_fallocate+0x4ac/0x820 [xfs] [ 2748.088838] vfs_fallocate+0x2cf/0x780 [ 2748.093021] SyS_fallocate+0x48/0x80 [ 2748.097006] do_syscall_64+0x18a/0x430 [ 2748.101186] return_from_SYSCALL_64+0x0/0x6a [ 2748.105948] Freed: [ 2748.108189] PID = 8327 [ 2748.110816] save_stack_trace+0x1b/0x20 [ 2748.115093] save_stack+0x46/0xd0 [ 2748.118788] kasan_slab_free+0x73/0xc0 [ 2748.122969] kmem_cache_free+0x7a/0x200 [ 2748.127247] free_buffer_head+0x41/0x80 [ 2748.131524] try_to_free_buffers+0x178/0x250 [ 2748.136316] xfs_vm_releasepage+0x2e9/0x3d0 [xfs] [ 2748.141563] try_to_release_page+0x100/0x180 [ 2748.146325] invalidate_inode_pages2_range+0x7da/0xcf0 [ 2748.152087] xfs_shift_file_space+0x37d/0x6e0 [xfs] [ 2748.157557] xfs_collapse_file_space+0x49/0x120 [xfs] [ 2748.163223] xfs_file_fallocate+0x2a7/0x820 [xfs] [ 2748.168462] vfs_fallocate+0x2cf/0x780 [ 2748.172642] SyS_fallocate+0x48/0x80 [ 2748.176629] do_syscall_64+0x18a/0x430 [ 2748.180810] return_from_SYSCALL_64+0x0/0x6a Fixed it by checking on offset against end & breaking out first, dereference bh only if there're still bufferheads to process. Signed-off-by: Eryu Guan <eguan@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: reserve enough blocks to handle btree splits when remappingDarrick J. Wong
commit fe0be23e68200573de027de9b8cc2b27e7fce35e upstream. In xfs_reflink_end_cow, we erroneously reserve only enough blocks to handle adding 1 extent. This is problematic if we fragment free space, have to do CoW, and then have to perform multiple bmap btree expansions. Furthermore, the BUI recovery routine doesn't reserve /any/ blocks to handle btree splits, so log recovery fails after our first error causes the filesystem to go down. Therefore, refactor the transaction block reservation macros until we have a macro that works for our deferred (re)mapping activities, and fix both problems by using that macro. With 1k blocks we can hit this fairly often in g/187 if the scratch fs is big enough. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: wait on new inodes during quotaoff dquot releaseBrian Foster
commit e20c8a517f259cb4d258e10b0cd5d4b30d4167a0 upstream. The quotaoff operation has a race with inode allocation that results in a livelock. An inode allocation that occurs before the quota status flags are updated acquires the appropriate dquots for the inode via xfs_qm_vop_dqalloc(). It then inserts the XFS_INEW inode into the perag radix tree, sometime later attaches the dquots to the inode and finally clears the XFS_INEW flag. Quotaoff expects to release the dquots from all inodes in the filesystem via xfs_qm_dqrele_all_inodes(). This invokes the AG inode iterator, which skips inodes in the XFS_INEW state because they are not fully constructed. If the scan occurs after dquots have been attached to an inode, but before XFS_INEW is cleared, the newly allocated inode will continue to hold a reference to the applicable dquots. When quotaoff invokes xfs_qm_dqpurge_all(), the reference count of those dquot(s) remain elevated and the dqpurge scan spins indefinitely. To address this problem, update the xfs_qm_dqrele_all_inodes() scan to wait on inodes marked on the XFS_INEW state. We wait on the inodes explicitly rather than skip and retry to avoid continuous retry loops due to a parallel inode allocation workload. Since quotaoff updates the quota state flags and uses a synchronous transaction before the dqrele scan, and dquots are attached to inodes after radix tree insertion iff quota is enabled, one INEW waiting pass through the AG guarantees that the scan has processed all inodes that could possibly hold dquot references. Reported-by: Eryu Guan <eguan@redhat.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: update ag iterator to support wait on new inodesBrian Foster
commit ae2c4ac2dd39b23a87ddb14ceddc3f2872c6aef5 upstream. The AG inode iterator currently skips new inodes as such inodes are inserted into the inode radix tree before they are fully constructed. Certain contexts require the ability to wait on the construction of new inodes, however. The fs-wide dquot release from the quotaoff sequence is an example of this. Update the AG inode iterator to support the ability to wait on inodes flagged with XFS_INEW upon request. Create a new xfs_inode_ag_iterator_flags() interface and support a set of iteration flags to modify the iteration behavior. When the XFS_AGITER_INEW_WAIT flag is set, include XFS_INEW flags in the radix tree inode lookup and wait on them before the callback is executed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: support ability to wait on new inodesBrian Foster
commit 756baca27fff3ecaeab9dbc7a5ee35a1d7bc0c7f upstream. Inodes that are inserted into the perag tree but still under construction are flagged with the XFS_INEW bit. Most contexts either skip such inodes when they are encountered or have the ability to handle them. The runtime quotaoff sequence introduces a context that must wait for construction of such inodes to correctly ensure that all dquots in the fs are released. In anticipation of this, support the ability to wait on new inodes. Wake the appropriate bit when XFS_INEW is cleared. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix up quotacheck buffer list error handlingBrian Foster
commit 20e8a063786050083fe05b4f45be338c60b49126 upstream. The quotacheck error handling of the delwri buffer list assumes the resident buffers are locked and doesn't clear the _XBF_DELWRI_Q flag on the buffers that are dequeued. This can lead to assert failures on buffer release and possibly other locking problems. Move this code to a delwri queue cancel helper function to encapsulate the logic required to properly release buffers from a delwri queue. Update the helper to clear the delwri queue flag and call it from quotacheck. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: prevent multi-fsb dir readahead from reading random blocksBrian Foster
commit cb52ee334a45ae6c78a3999e4b473c43ddc528f4 upstream. Directory block readahead uses a complex iteration mechanism to map between high-level directory blocks and underlying physical extents. This mechanism attempts to traverse the higher-level dir blocks in a manner that handles multi-fsb directory blocks and simultaneously maintains a reference to the corresponding physical blocks. This logic doesn't handle certain (discontiguous) physical extent layouts correctly with multi-fsb directory blocks. For example, consider the case of a 4k FSB filesystem with a 2 FSB (8k) directory block size and a directory with the following extent layout: EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL 0: [0..7]: 88..95 0 (88..95) 8 1: [8..15]: 80..87 0 (80..87) 8 2: [16..39]: 168..191 0 (168..191) 24 3: [40..63]: 5242952..5242975 1 (72..95) 24 Directory block 0 spans physical extents 0 and 1, dirblk 1 lies entirely within extent 2 and dirblk 2 spans extents 2 and 3. Because extent 2 is larger than the directory block size, the readahead code erroneously assumes the block is contiguous and issues a readahead based on the physical mapping of the first fsb of the dirblk. This results in read verifier failure and a spurious corruption or crc failure, depending on the filesystem format. Further, the subsequent readahead code responsible for walking through the physical table doesn't correctly advance the physical block reference for dirblk 2. Instead of advancing two physical filesystem blocks, the first iteration of the loop advances 1 block (correctly), but the subsequent iteration advances 2 more physical blocks because the next physical extent (extent 3, above) happens to cover more than dirblk 2. At this point, the higher-level directory block walking is completely off the rails of the actual physical layout of the directory for the respective mapping table. Update the contiguous dirblock logic to consider the current offset in the physical extent to avoid issuing directory readahead to unrelated blocks. Also, update the mapping table advancing code to consider the current offset within the current dirblock to avoid advancing the mapping reference too far beyond the dirblock. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: handle array index overrun in xfs_dir2_leaf_readbuf()Eric Sandeen
commit 023cc840b40fad95c6fe26fff1d380a8c9d45939 upstream. Carlos had a case where "find" seemed to start spinning forever and never return. This was on a filesystem with non-default multi-fsb (8k) directory blocks, and a fragmented directory with extents like this: 0:[0,133646,2,0] 1:[2,195888,1,0] 2:[3,195890,1,0] 3:[4,195892,1,0] 4:[5,195894,1,0] 5:[6,195896,1,0] 6:[7,195898,1,0] 7:[8,195900,1,0] 8:[9,195902,1,0] 9:[10,195908,1,0] 10:[11,195910,1,0] 11:[12,195912,1,0] 12:[13,195914,1,0] ... i.e. the first extent is a contiguous 2-fsb dir block, but after that it is fragmented into 1 block extents. At the top of the readdir path, we allocate a mapping array which (for this filesystem geometry) can hold 10 extents; see the assignment to map_info->map_size. During readdir, we are therefore able to map extents 0 through 9 above into the array for readahead purposes. If we count by 2, we see that the last mapped index (9) is the first block of a 2-fsb directory block. At the end of xfs_dir2_leaf_readbuf() we have 2 loops to fill more readahead; the outer loop assumes one full dir block is processed each loop iteration, and an inner loop that ensures that this is so by advancing to the next extent until a full directory block is mapped. The problem is that this inner loop may step past the last extent in the mapping array as it tries to reach the end of the directory block. This will read garbage for the extent length, and as a result the loop control variable 'j' may become corrupted and never fail the loop conditional. The number of valid mappings we have in our array is stored in map->map_valid, so stop this inner loop based on that limit. There is an ASSERT at the top of the outer loop for this same condition, but we never made it out of the inner loop, so the ASSERT never fired. Huge appreciation for Carlos for debugging and isolating the problem. Debugged-and-analyzed-by: Carlos Maiolino <cmaiolino@redhat.com> Signed-off-by: Eric Sandeen <sandeen@redhat.com> Tested-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix integer truncation in xfs_bmap_remap_allocChristoph Hellwig
commit 52813fb13ff90bd9c39a93446cbf1103c290b6e9 upstream. bno should be a xfs_fsblock_t, which is 64-bit wides instead of a xfs_aglock_t, which truncates the value to 32 bits. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: drop iolock from reclaim context to appease lockdepBrian Foster
commit 3b4683c294095b5f777c03307ef8c60f47320e12 upstream. Lockdep complains about use of the iolock in inode reclaim context because it doesn't understand that reclaim has the last reference to the inode, and thus an iolock->reclaim->iolock deadlock is not possible. The iolock is technically not necessary in xfs_inactive() and was only added to appease an assert in xfs_free_eofblocks(), which can be called from other non-reclaim contexts. Therefore, just kill the assert and drop the use of the iolock from reclaim context to quiet lockdep. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: actually report xattr extents via iomapDarrick J. Wong
commit 84358536dc355a9c8978ee425f87e116186bed16 upstream. Apparently FIEMAP for xattrs has been broken since we switched to the iomap backend because of an incorrect check for xattr presence. Also fix the broken locking. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix over-copying of getbmap parameters from userspaceDarrick J. Wong
commit be6324c00c4d1e0e665f03ed1fc18863a88da119 upstream. In xfs_ioc_getbmap, we should only copy the fields of struct getbmap from userspace, or else we end up copying random stack contents into the kernel. struct getbmap is a strict subset of getbmapx, so a partial structure copy should work fine. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: use dedicated log worker wq to avoid deadlock with cil wqBrian Foster
commit 696a562072e3c14bcd13ae5acc19cdf27679e865 upstream. The log covering background task used to be part of the xfssyncd workqueue. That workqueue was removed as of commit 5889608df ("xfs: syncd workqueue is no more") and the associated work item scheduled to the xfs-log wq. The latter is used for log buffer I/O completion. Since xfs_log_worker() can invoke a log flush, a deadlock is possible between the xfs-log and xfs-cil workqueues. Consider the following codepath from xfs_log_worker(): xfs_log_worker() xfs_log_force() _xfs_log_force() xlog_cil_force() xlog_cil_force_lsn() xlog_cil_push_now() flush_work() The above is in xfs-log wq context and blocked waiting on the completion of an xfs-cil work item. Concurrently, the cil push in progress can end up blocked here: xlog_cil_push_work() xlog_cil_push() xlog_write() xlog_state_get_iclog_space() xlog_wait(&log->l_flush_wait, ...) The above is in xfs-cil context waiting on log buffer I/O completion, which executes in xfs-log wq context. In this scenario both workqueues are deadlocked waiting on eachother. Add a new workqueue specifically for the high level log covering and ail pushing worker, as was the case prior to commit 5889608df. Diagnosed-by: David Jeffery <djeffery@redhat.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix kernel memory exposure problemsDarrick J. Wong
commit bf9216f922612d2db7666aae01e65064da2ffb3a upstream. Fix a memory exposure problems in inumbers where we allocate an array of structures with holes, fail to zero the holes, then blindly copy the kernel memory contents (junk and all) into userspace. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: rework the inline directory verifiersDarrick J. Wong
commit 78420281a9d74014af7616958806c3aba056319e upstream. The inline directory verifiers should be called on the inode fork data, which means after iformat_local on the read side, and prior to ifork_flush on the write side. This makes the fork verifier more consistent with the way buffer verifiers work -- i.e. they will operate on the memory buffer that the code will be reading and writing directly. Furthermore, revise the verifier function to return -EFSCORRUPTED so that we don't flood the logs with corruption messages and assert notices. This has been a particular problem with xfs/348, which triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do that, at least not in a verifier. Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: verify inline directory data forksDarrick J. Wong
commit 630a04e79dd41ff746b545d4fc052e0abb836120 upstream. When we're reading or writing the data fork of an inline directory, check the contents to make sure we're not overflowing buffers or eating garbage data. xfs/348 corrupts an inline symlink into an inline directory, triggering a buffer overflow bug. v2: add more checks consistent with _dir2_sf_check and make the verifier usable from anywhere. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: fix off-by-one on max nr_pages in xfs_find_get_desired_pgoff()Eryu Guan
commit 8affebe16d79ebefb1d9d6d56a46dc89716f9453 upstream. xfs_find_get_desired_pgoff() is used to search for offset of hole or data in page range [index, end] (both inclusive), and the max number of pages to search should be at least one, if end == index. Otherwise the only page is missed and no hole or data is found, which is not correct. When block size is smaller than page size, this can be demonstrated by preallocating a file with size smaller than page size and writing data to the last block. E.g. run this xfs_io command on a 1k block size XFS on x86_64 host. # xfs_io -fc "falloc 0 3k" -c "pwrite 2k 1k" \ -c "seek -d 0" /mnt/xfs/testfile wrote 1024/1024 bytes at offset 2048 1 KiB, 1 ops; 0.0000 sec (33.675 MiB/sec and 34482.7586 ops/sec) Whence Result DATA EOF Data at offset 2k was missed, and lseek(2) returned ENXIO. This is uncovered by generic/285 subtest 07 and 08 on ppc64 host, where pagesize is 64k. Because a recent change to generic/285 reduced the preallocated file size to smaller than 64k. Signed-off-by: Eryu Guan <eguan@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07xfs: use ->b_state to fix buffer I/O accounting release raceBrian Foster
commit 63db7c815bc0997c29e484d2409684fdd9fcd93b upstream. We've had user reports of unmount hangs in xfs_wait_buftarg() that analysis shows is due to btp->bt_io_count == -1. bt_io_count represents the count of in-flight asynchronous buffers and thus should always be >= 0. xfs_wait_buftarg() waits for this value to stabilize to zero in order to ensure that all untracked (with respect to the lru) buffers have completed I/O processing before unmount proceeds to tear down in-core data structures. The value of -1 implies an I/O accounting decrement race. Indeed, the fact that xfs_buf_ioacct_dec() is called from xfs_buf_rele() (where the buffer lock is no longer held) means that bp->b_flags can be updated from an unsafe context. While a user-level reproducer is currently not available, some intrusive hacks to run racing buffer lookups/ioacct/releases from multiple threads was used to successfully manufacture this problem. Existing callers do not expect to acquire the buffer lock from xfs_buf_rele(). Therefore, we can not safely update ->b_flags from this context. It turns out that we already have separate buffer state bits and associated serialization for dealing with buffer LRU state in the form of ->b_state and ->b_lock. Therefore, replace the _XBF_IN_FLIGHT flag with a ->b_state variant, update the I/O accounting wrappers appropriately and make sure they are used with the correct locking. This ensures that buffer in-flight state can be modified at buffer release time without racing with modifications from a buffer lock holder. Fixes: 9c7504aa72b6 ("xfs: track and serialize in-flight async buffers against unmount") Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Libor Pechacek <lpechacek@suse.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>