summaryrefslogtreecommitdiff
path: root/kernel/sched/sched.h
AgeCommit message (Collapse)Author
2016-05-17Merge tag 'pm-4.7-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "The majority of changes go into the cpufreq subsystem this time. To me, quite obviously, the biggest ticket item is the new "schedutil" governor. Interestingly enough, it's the first new cpufreq governor since the beginning of the git era (except for some out-of-the-tree ones). There are two main differences between it and the existing governors. First, it uses the information provided by the scheduler directly for making its decisions, so it doesn't have to track anything by itself. Second, it can invoke drivers (supporting that feature) to adjust CPU performance right away without having to spawn work items to be executed in process context or similar. Currently, the acpi-cpufreq driver is the only one supporting that mode of operation, but then it is used on a large number of systems. The "schedutil" governor as included here is very simple and mostly regarded as a foundation for future work on the integration of the scheduler with CPU power management (in fact, there is work in progress on top of it already). Nevertheless it works and the preliminary results obtained with it are encouraging. There also is some consolidation of CPU frequency management for ARM platforms that can add their machine IDs the the new stub dt-platdev driver now and that will take care of creating the requisite platform device for cpufreq-dt, so it is not necessary to do that in platform code any more. Several ARM platforms are switched over to using this generic mechanism. In addition to that, the intel_pstate driver is now going to respect CPU frequency limits set by the platform firmware (or a BMC) and provided via the ACPI _PPC object. The devfreq subsystem is getting a new "passive" governor for SoCs subsystems that will depend on somebody else to manage their voltage rails and its support for Samsung Exynos SoCs is consolidated. The rest is support for new hardware (Intel Broxton support in intel_idle for one example), bug fixes, optimizations and cleanups in a number of places. Specifics: - New cpufreq "schedutil" governor (making decisions based on CPU utilization information provided by the scheduler and capable of switching CPU frequencies right away if the underlying driver supports that) and support for fast frequency switching in the acpi-cpufreq driver (Rafael Wysocki) - Consolidation of CPU frequency management on ARM platforms allowing them to get rid of some platform-specific boilerplate code if they are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao, Marc Gonzalez) - Support for ACPI _PPC and CPU frequency limits in the intel_pstate driver (Srinivas Pandruvada) - Fixes and cleanups in the cpufreq core and generic governor code (Rafael Wysocki, Sai Gurrappadi) - intel_pstate driver optimizations and cleanups (Rafael Wysocki, Philippe Longepe, Chen Yu, Joe Perches) - cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri Bhat) - cpufreq qoriq driver fixes and cleanups (Jia Hongtao) - ACPI cpufreq driver cleanups (Viresh Kumar) - Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang, Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla) - Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann) - Fixes and cleanups in the OPP (Operating Performance Points) framework, mostly related to OPP sharing, and reorganization of OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla) - New "passive" governor for devfreq (for SoC subsystems that will rely on someone else for the management of their power resources) and consolidation of devfreq support for Exynos platforms, coding style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham) - PM core fixes and cleanups, mostly to make it work better with the generic power domains (genpd) framework, and updates for that framework (Ulf Hansson, Thierry Reding, Colin Ian King) - Intel Broxton support for the intel_idle driver (Len Brown) - cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach) - ARM cpuidle cleanups (Jisheng Zhang) - Intel Kabylake support for the RAPL power capping driver (Jacob Pan) - AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko Stuebner) - Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King, Mattia Dongili, Thomas Renninger)" * tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (112 commits) intel_pstate: Clean up get_target_pstate_use_performance() intel_pstate: Use sample.core_avg_perf in get_avg_pstate() intel_pstate: Clarify average performance computation intel_pstate: Avoid unnecessary synchronize_sched() during initialization cpufreq: schedutil: Make default depend on CONFIG_SMP cpufreq: powernv: del_timer_sync when global and local pstate are equal cpufreq: powernv: Move smp_call_function_any() out of irq safe block intel_pstate: Clean up intel_pstate_get() cpufreq: schedutil: Make it depend on CONFIG_SMP cpufreq: governor: Fix handling of special cases in dbs_update() PM / OPP: Move CONFIG_OF dependent code in a separate file cpufreq: intel_pstate: Ignore _PPC processing under HWP cpufreq: arm_big_little: use generic OPP functions for {init, free}_opp_table PM / OPP: add non-OF versions of dev_pm_opp_{cpumask_, }remove_table cpufreq: tango: Use generic platdev driver PM / OPP: pass cpumask by reference cpufreq: Fix GOV_LIMITS handling for the userspace governor cpupower: fix potential memory leak PM / devfreq: style/typo fixes PM / devfreq: exynos: Add the detailed correlation for Exynos5422 bus ..
2016-05-12sched/core: Kill sched_class::task_waking to clean up the migration logicPeter Zijlstra
With sched_class::task_waking being called only when we do set_task_cpu(), we can make sched_class::migrate_task_rq() do the work and eliminate sched_class::task_waking entirely. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Hunter <ahh@google.com> Cc: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Pavan Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: byungchul.park@lge.com Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12Merge branch 'smp/hotplug' into sched/core, to resolve conflictsIngo Molnar
Conflicts: kernel/sched/core.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-06sched/fair: Make ilb_notifier an explicit callThomas Gleixner
No need for an extra notifier. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: rt@linutronix.de Link: http://lkml.kernel.org/r/20160310120025.693720241@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-05sched/fair: Rename SCHED_LOAD_SHIFT to NICE_0_LOAD_SHIFT and remove ↵Yuyang Du
SCHED_LOAD_SCALE After cleaning up the sched metrics, there are two definitions that are ambiguous and confusing: SCHED_LOAD_SHIFT and SCHED_LOAD_SHIFT. Resolve this: - Rename SCHED_LOAD_SHIFT to NICE_0_LOAD_SHIFT, which better reflects what it is. - Replace SCHED_LOAD_SCALE use with SCHED_CAPACITY_SCALE and remove SCHED_LOAD_SCALE. Suggested-by: Ben Segall <bsegall@google.com> Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: lizefan@huawei.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1459829551-21625-3-git-send-email-yuyang.du@intel.com [ Rewrote the changelog and fixed the build on 32-bit kernels. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05sched/fair: Generalize the load/util averages resolution definitionYuyang Du
Integer metric needs fixed point arithmetic. In sched/fair, a few metrics, e.g., weight, load, load_avg, util_avg, freq, and capacity, may have different fixed point ranges, which makes their update and usage error-prone. In order to avoid the errors relating to the fixed point range, we definie a basic fixed point range, and then formalize all metrics to base on the basic range. The basic range is 1024 or (1 << 10). Further, one can recursively apply the basic range to have larger range. Pointed out by Ben Segall, weight (visible to user, e.g., NICE-0 has 1024) and load (e.g., NICE_0_LOAD) have independent ranges, but they must be well calibrated. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: lizefan@huawei.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1459829551-21625-2-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05sched/core: Enable increased load resolution on 64-bit kernelsPeter Zijlstra
Mike ran into the low load resolution limitation on his big machine. So reenable these bits; nobody could ever reproduce/analyze the reported power usage claim and Google has been running with this for years as well. Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com> Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05locking/lockdep, sched/core: Implement a better lock pinning schemePeter Zijlstra
The problem with the existing lock pinning is that each pin is of value 1; this mean you can simply unpin if you know its pinned, without having any extra information. This scheme generates a random (16 bit) cookie for each pin and requires this same cookie to unpin. This means you have to keep the cookie in context. No objsize difference for !LOCKDEP kernels. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05sched/core: Introduce 'struct rq_flags'Peter Zijlstra
In order to be able to pass around more than just the IRQ flags in the future, add a rq_flags structure. No difference in code generation for the x86_64-defconfig build I tested. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05sched/core: Move task_rq_lock() out of linePeter Zijlstra
Its a rather large function, inline doesn't seems to make much sense: $ size defconfig-build/kernel/sched/core.o{.orig,} text data bss dec hex filename 56533 21037 2320 79890 13812 defconfig-build/kernel/sched/core.o.orig 55733 21037 2320 79090 134f2 defconfig-build/kernel/sched/core.o The 'perf bench sched messaging' micro-benchmark shows a visible improvement of 4-5%: $ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor ; do echo performance > $i ; done $ perf stat --null --repeat 25 -- perf bench sched messaging -g 40 -l 5000 pre: 4.582798193 seconds time elapsed ( +- 1.41% ) 4.733374877 seconds time elapsed ( +- 2.10% ) 4.560955136 seconds time elapsed ( +- 1.43% ) 4.631062303 seconds time elapsed ( +- 1.40% ) post: 4.364765213 seconds time elapsed ( +- 0.91% ) 4.454442734 seconds time elapsed ( +- 1.18% ) 4.448893817 seconds time elapsed ( +- 1.41% ) 4.424346872 seconds time elapsed ( +- 0.97% ) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23sched/fair: Optimize !CONFIG_NO_HZ_COMMON CPU load updatesFrederic Weisbecker
Some code in CPU load update only concern NO_HZ configs but it is built on all configurations. When NO_HZ isn't built, that code is harmless but just happens to take some useless ressources in CPU and memory: 1) one useless field in struct rq 2) jiffies record on every tick that is never used (cpu_load_update_periodic) 3) decay_load_missed is called two times on every tick to eventually return immediately with no action taken. And that function is dead code. For pure optimization purposes, lets conditionally build the NO_HZ related code. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1461080211-16271-1-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23sched/fair: Gather CPU load functions under a more conventional namespaceFrederic Weisbecker
The CPU load update related functions have a weak naming convention currently, starting with update_cpu_load_*() which isn't ideal as "update" is a very generic concept. Since two of these functions are public already (and a third is to come) that's enough to introduce a more conventional naming scheme. So let's do the following rename instead: update_cpu_load_*() -> cpu_load_update_*() Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-01cpufreq: schedutil: New governor based on scheduler utilization dataRafael J. Wysocki
Add a new cpufreq scaling governor, called "schedutil", that uses scheduler-provided CPU utilization information as input for making its decisions. Doing that is possible after commit 34e2c555f3e1 (cpufreq: Add mechanism for registering utilization update callbacks) that introduced cpufreq_update_util() called by the scheduler on utilization changes (from CFS) and RT/DL task status updates. In particular, CPU frequency scaling decisions may be based on the the utilization data passed to cpufreq_update_util() by CFS. The new governor is relatively simple. The frequency selection formula used by it depends on whether or not the utilization is frequency-invariant. In the frequency-invariant case the new CPU frequency is given by next_freq = 1.25 * max_freq * util / max where util and max are the last two arguments of cpufreq_update_util(). In turn, if util is not frequency-invariant, the maximum frequency in the above formula is replaced with the current frequency of the CPU: next_freq = 1.25 * curr_freq * util / max The coefficient 1.25 corresponds to the frequency tipping point at (util / max) = 0.8. All of the computations are carried out in the utilization update handlers provided by the new governor. One of those handlers is used for cpufreq policies shared between multiple CPUs and the other one is for policies with one CPU only (and therefore it doesn't need to use any extra synchronization means). The governor supports fast frequency switching if that is supported by the cpufreq driver in use and possible for the given policy. In the fast switching case, all operations of the governor take place in its utilization update handlers. If fast switching cannot be used, the frequency switch operations are carried out with the help of a work item which only calls __cpufreq_driver_target() (under a mutex) to trigger a frequency update (to a value already computed beforehand in one of the utilization update handlers). Currently, the governor treats all of the RT and DL tasks as "unknown utilization" and sets the frequency to the allowed maximum when updated from the RT or DL sched classes. That heavy-handed approach should be replaced with something more subtle and specifically targeted at RT and DL tasks. The governor shares some tunables management code with the "ondemand" and "conservative" governors and uses some common definitions from cpufreq_governor.h, but apart from that it is stand-alone. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-03-31sched/fair: Initiate a new task's util avg to a bounded valueYuyang Du
A new task's util_avg is set to full utilization of a CPU (100% time running). This accelerates a new task's utilization ramp-up, useful to boost its execution in early time. However, it may result in (insanely) high utilization for a transient time period when a flood of tasks are spawned. Importantly, it violates the "fundamentally bounded" CPU utilization, and its side effect is negative if we don't take any measure to bound it. This patch proposes an algorithm to address this issue. It has two methods to approach a sensible initial util_avg: (1) An expected (or average) util_avg based on its cfs_rq's util_avg: util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight (2) A trajectory of how successive new tasks' util develops, which gives 1/2 of the left utilization budget to a new task such that the additional util is noticeably large (when overall util is low) or unnoticeably small (when overall util is high enough). In the meantime, the aggregate utilization is well bounded: util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n where n denotes the nth task. If util_avg is larger than util_avg_cap, then the effective util is clamped to the util_avg_cap. Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: steve.muckle@linaro.org Link: http://lkml.kernel.org/r/1459283456-21682-1-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-24Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Misc fixes: a cgroup fix, a fair-scheduler migration accounting fix, a cputime fix and two cpuacct cleanups" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/cpuacct: Simplify the cpuacct code sched/cpuacct: Rename parameter in cpuusage_write() for readability sched/fair: Add comments to explain select_idle_sibling() sched/fair: Fix fairness issue on migration sched/cgroup: Fix/cleanup cgroup teardown/init sched/cputime: Fix steal time accounting vs. CPU hotplug
2016-03-21Merge branch 'linus' into sched/urgent, to pick up dependenciesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-16Merge tag 'pm+acpi-4.6-rc1-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management and ACPI updates from Rafael Wysocki: "This time the majority of changes go into cpufreq and they are significant. First off, the way CPU frequency updates are triggered is different now. Instead of having to set up and manage a deferrable timer for each CPU in the system to evaluate and possibly change its frequency periodically, cpufreq governors set up callbacks to be invoked by the scheduler on a regular basis (basically on utilization updates). The "old" governors, "ondemand" and "conservative", still do all of their work in process context (although that is triggered by the scheduler now), but intel_pstate does it all in the callback invoked by the scheduler with no need for any additional asynchronous processing. Of course, this eliminates the overhead related to the management of all those timers, but also it allows the cpufreq governor code to be simplified quite a bit. On top of that, the common code and data structures used by the "ondemand" and "conservative" governors are cleaned up and made more straightforward and some long-standing and quite annoying problems are addressed. In particular, the handling of governor sysfs attributes is modified and the related locking becomes more fine grained which allows some concurrency problems to be avoided (particularly deadlocks with the core cpufreq code). In principle, the new mechanism for triggering frequency updates allows utilization information to be passed from the scheduler to cpufreq. Although the current code doesn't make use of it, in the works is a new cpufreq governor that will make decisions based on the scheduler's utilization data. That should allow the scheduler and cpufreq to work more closely together in the long run. In addition to the core and governor changes, cpufreq drivers are updated too. Fixes and optimizations go into intel_pstate, the cpufreq-dt driver is updated on top of some modification in the Operating Performance Points (OPP) framework and there are fixes and other updates in the powernv cpufreq driver. Apart from the cpufreq updates there is some new ACPICA material, including a fix for a problem introduced by previous ACPICA updates, and some less significant changes in the ACPI code, like CPPC code optimizations, ACPI processor driver cleanups and support for loading ACPI tables from initrd. Also updated are the generic power domains framework, the Intel RAPL power capping driver and the turbostat utility and we have a bunch of traditional assorted fixes and cleanups. Specifics: - Redesign of cpufreq governors and the intel_pstate driver to make them use callbacks invoked by the scheduler to trigger CPU frequency evaluation instead of using per-CPU deferrable timers for that purpose (Rafael Wysocki). - Reorganization and cleanup of cpufreq governor code to make it more straightforward and fix some concurrency problems in it (Rafael Wysocki, Viresh Kumar). - Cleanup and improvements of locking in the cpufreq core (Viresh Kumar). - Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh Kumar, Eric Biggers). - intel_pstate driver updates including fixes, optimizations and a modification to make it enable enable hardware-coordinated P-state selection (HWP) by default if supported by the processor (Philippe Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe Franciosi). - Operating Performance Points (OPP) framework updates to improve its handling of voltage regulators and device clocks and updates of the cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter). - Updates of the powernv cpufreq driver to fix initialization and cleanup problems in it and correct its worker thread handling with respect to CPU offline, new powernv_throttle tracepoint (Shilpasri Bhat). - ACPI cpufreq driver optimization and cleanup (Rafael Wysocki). - ACPICA updates including one fix for a regression introduced by previos changes in the ACPICA code (Bob Moore, Lv Zheng, David Box, Colin Ian King). - Support for installing ACPI tables from initrd (Lv Zheng). - Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin Chaugule). - Support for _HID(ACPI0010) devices (ACPI processor containers) and ACPI processor driver cleanups (Sudeep Holla). - Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory, Aleksey Makarov). - Modification of the ACPI PCI IRQ management code to make it treat 255 in the Interrupt Line register as "not connected" on x86 (as per the specification) and avoid attempts to use that value as a valid interrupt vector (Chen Fan). - ACPI APEI fixes related to resource leaks (Josh Hunt). - Removal of modularity from a few ACPI drivers (BGRT, GHES, intel_pmic_crc) that cannot be built as modules in practice (Paul Gortmaker). - PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS as a valid resource type (Harb Abdulhamid). - New device ID (future AMD I2C controller) in the ACPI driver for AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu). - Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin). - cpuidle menu governor optimization to avoid a square root computation in it (Rasmus Villemoes). - Fix for potential use-after-free in the generic device properties framework (Heikki Krogerus). - Updates of the generic power domains (genpd) framework including support for multiple power states of a domain, fixes and debugfs output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart, Geert Uytterhoeven). - Intel RAPL power capping driver updates to reduce IPI overhead in it (Jacob Pan). - System suspend/hibernation code cleanups (Eric Biggers, Saurabh Sengar). - Year 2038 fix for the process freezer (Abhilash Jindal). - turbostat utility updates including new features (decoding of more registers and CPUID fields, sub-second intervals support, GFX MHz and RC6 printout, --out command line option), fixes (syscall jitter detection and workaround, reductioin of the number of syscalls made, fixes related to Xeon x200 processors, compiler warning fixes) and cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu)" * tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (182 commits) tools/power turbostat: bugfix: TDP MSRs print bits fixing tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump tools/power turbostat: call __cpuid() instead of __get_cpuid() tools/power turbostat: indicate SMX and SGX support tools/power turbostat: detect and work around syscall jitter tools/power turbostat: show GFX%rc6 tools/power turbostat: show GFXMHz tools/power turbostat: show IRQs per CPU tools/power turbostat: make fewer systems calls tools/power turbostat: fix compiler warnings tools/power turbostat: add --out option for saving output in a file tools/power turbostat: re-name "%Busy" field to "Busy%" tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding tools/power turbostat: Intel Xeon x200: fix erroneous bclk value tools/power turbostat: allow sub-sec intervals ACPI / APEI: ERST: Fixed leaked resources in erst_init ACPI / APEI: Fix leaked resources intel_pstate: Do not skip samples partially intel_pstate: Remove freq calculation from intel_pstate_calc_busy() intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance() ...
2016-03-15Merge branch 'timers-nohz-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull NOHZ updates from Ingo Molnar: "NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors the NOHZ 'can the tick be stopped?' infrastructure and related code to be data driven, and harmonizes the naming and handling of all the various properties" [ This makes the ugly "fetch_or()" macro that the scheduler used internally a new generic helper, and does a bad job at it. I'm pulling it, but I've asked Ingo and Frederic to get this fixed up ] * 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched-clock: Migrate to use new tick dependency mask model posix-cpu-timers: Migrate to use new tick dependency mask model sched: Migrate sched to use new tick dependency mask model sched: Account rr tasks perf: Migrate perf to use new tick dependency mask model nohz: Use enum code for tick stop failure tracing message nohz: New tick dependency mask nohz: Implement wide kick on top of irq work atomic: Export fetch_or()
2016-03-10cpufreq: Move scheduler-related code to the sched directoryRafael J. Wysocki
Create cpufreq.c under kernel/sched/ and move the cpufreq code related to the scheduler to that file and to sched.h. Redefine cpufreq_update_util() as a static inline function to avoid function calls at its call sites in the scheduler code (as suggested by Peter Zijlstra). Also move the definition of struct update_util_data and declaration of cpufreq_set_update_util_data() from include/linux/cpufreq.h to include/linux/sched.h. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-03-09cpufreq: Add mechanism for registering utilization update callbacksRafael J. Wysocki
Introduce a mechanism by which parts of the cpufreq subsystem ("setpolicy" drivers or the core) can register callbacks to be executed from cpufreq_update_util() which is invoked by the scheduler's update_load_avg() on CPU utilization changes. This allows the "setpolicy" drivers to dispense with their timers and do all of the computations they need and frequency/voltage adjustments in the update_load_avg() code path, among other things. The update_load_avg() changes were suggested by Peter Zijlstra. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ingo Molnar <mingo@kernel.org>
2016-03-05sched/cputime: Fix steal time accounting vs. CPU hotplugThomas Gleixner
On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time value over CPU down and up. So after the CPU comes up again the delta calculation in steal_account_process_tick() wreckages itself due to the unsigned math: u64 steal = paravirt_steal_clock(smp_processor_id()); steal -= this_rq()->prev_steal_time; So if steal is smaller than rq->prev_steal_time we end up with an insane large value which then gets added to rq->prev_steal_time, resulting in a permanent wreckage of the accounting. As a consequence the per CPU stats in /proc/stat become stale. Nice trick to tell the world how idle the system is (100%) while the CPU is 100% busy running tasks. Though we prefer realistic numbers. None of the accounting values which use a previous value to account for fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity check for prev_irq_time and prev_steal_time_rq, but that sanity check solely deals with clock warps and limits the /proc/stat visible wreckage. The prev_time values are still wrong. Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: commit 095c0aa83e52 "sched: adjust scheduler cpu power for stolen time" Fixes: commit aa483808516c "sched: Remove irq time from available CPU power" Fixes: commit e6e6685accfa "KVM guest: Steal time accounting" Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-02sched: Migrate sched to use new tick dependency mask modelFrederic Weisbecker
Instead of providing asynchronous checks for the nohz subsystem to verify sched tick dependency, migrate sched to the new mask. Everytime a task is enqueued or dequeued, we evaluate the state of the tick dependency on top of the policy of the tasks in the runqueue, by order of priority: SCHED_DEADLINE: Need the tick in order to periodically check for runtime SCHED_FIFO : Don't need the tick (no round-robin) SCHED_RR : Need the tick if more than 1 task of the same priority for round robin (simplified with checking if more than one SCHED_RR task no matter what priority). SCHED_NORMAL : Need the tick if more than 1 task for round-robin. We could optimize that further with one flag per sched policy on the tick dependency mask and perform only the checks relevant to the policy concerned by an enqueue/dequeue operation. Since the checks aren't based on the current task anymore, we could get rid of the task switch hook but it's still needed for posix cpu timers. Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2016-03-02sched: Account rr tasksFrederic Weisbecker
In order to evaluate the scheduler tick dependency without probing context switches, we need to know how much SCHED_RR and SCHED_FIFO tasks are enqueued as those policies don't have the same preemption requirements. To prepare for that, let's account SCHED_RR tasks, we'll be able to deduce SCHED_FIFO tasks as well from it and the total RT tasks in the runqueue. Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2016-02-29sched/debug: Move sched_domain_sysctl to debug.cSteven Rostedt (Red Hat)
The sched_domain_sysctl setup is only enabled when SCHED_DEBUG is configured. As debug.c is only compiled when SCHED_DEBUG is configured as well, move the setup of sched_domain_sysctl into that file. Note, the (un)register_sched_domain_sysctl() functions had to be changed from static to allow access to them from core.c. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Clark Williams <williams@redhat.com> Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160222212825.599278093@goodmis.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29sched/rt: Fix PI handling vs. sched_setscheduler()Peter Zijlstra
Andrea Parri reported: > I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not > handled correctly: > > T1 (prio = 20) > lock(rtmutex); > > T2 (prio = 20) > blocks on rtmutex (rt_nr_boosted = 0 on T1's rq) > > T1 (prio = 20) > sys_set_scheduler(prio = 0) > [new_effective_prio == oldprio] > T1 prio = 20 (rt_nr_boosted = 0 on T1's rq) > > The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted()); > in particular, if we continue with > > T1 (prio = 20) > unlock(rtmutex) > wakeup(T2) > adjust_prio(T1) > [prio != rt_mutex_getprio(T1)] > dequeue(T1) > rt_nr_boosted = (unsigned long)(-1) > ... > T1 prio = 0 > > then we end up leaving rt_nr_boosted in an "inconsistent" state. > > The simple program attached could reproduce the previous scenario; note > that, as a consequence of the presence of this state, the "assertion" > > WARN_ON(!rt_nr_running && rt_nr_boosted) > > from dec_rt_group() may trigger. So normally we dequeue/enqueue tasks in sched_setscheduler(), which would ensure the accounting stays correct. However in the early PI path we fail to do so. So this was introduced at around v3.14, by: c365c292d059 ("sched: Consider pi boosting in setscheduler()") which fixed another problem exactly because that dequeue/enqueue, joy. Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it preserve runqueue location with that option. This requires decoupling the on_rt_rq() state from being on the list. In order to allow for explicit movement during the SAVE/RESTORE, introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these cases to preserve other invariants. Respecting the SAVE/RESTORE flags also has the (nice) side-effect that things like sys_nice()/sys_sched_setaffinity() also do not reorder FIFO tasks (whereas they used to before this patch). Reported-by: Andrea Parri <parri.andrea@gmail.com> Tested-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29sched/core: Remove duplicated sched_group_set_shares() prototypeDongsheng Yang
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <lizefan@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1452674558-31897-1-git-send-email-yangds.fnst@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29Merge branch 'sched/urgent' into sched/core, to pick up fixes before ↵Ingo Molnar
applying new changes Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29sched/cgroup: Fix cgroup entity load tracking tear-downPeter Zijlstra
When a cgroup's CPU runqueue is destroyed, it should remove its remaining load accounting from its parent cgroup. The current site for doing so it unsuited because its far too late and unordered against other cgroup removal (->css_free() will be, but we're also in an RCU callback). Put it in the ->css_offline() callback, which is the start of cgroup destruction, right after the group has been made unavailable to userspace. The ->css_offline() callbacks are called in hierarchical order after the following v4.4 commit: aa226ff4a1ce ("cgroup: make sure a parent css isn't offlined before its children") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160121212416.GL6357@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-09sched/debug: Make schedstats a runtime tunable that is disabled by defaultMel Gorman
schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-11Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - tickless load average calculation enhancements (Byungchul Park) - vtime handling enhancements (Frederic Weisbecker) - scalability improvement via properly aligning a key structure field (Jiri Olsa) - various stop_machine() fixes (Oleg Nesterov) - sched/numa enhancement (Rik van Riel) - various fixes and improvements (Andi Kleen, Dietmar Eggemann, Geliang Tang, Hiroshi Shimamoto, Joonwoo Park, Peter Zijlstra, Waiman Long, Wanpeng Li, Yuyang Du)" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) sched/fair: Fix new task's load avg removed from source CPU in wake_up_new_task() sched/core: Move sched_entity::avg into separate cache line x86/fpu: Properly align size in CHECK_MEMBER_AT_END_OF() macro sched/deadline: Fix the earliest_dl.next logic sched/fair: Disable the task group load_avg update for the root_task_group sched/fair: Move the cache-hot 'load_avg' variable into its own cacheline sched/fair: Avoid redundant idle_cpu() call in update_sg_lb_stats() sched/core: Move the sched_to_prio[] arrays out of line sched/cputime: Convert vtime_seqlock to seqcount sched/cputime: Introduce vtime accounting check for readers sched/cputime: Rename vtime_accounting_enabled() to vtime_accounting_cpu_enabled() sched/cputime: Correctly handle task guest time on housekeepers sched/cputime: Clarify vtime symbols and document them sched/cputime: Remove extra cost in task_cputime() sched/fair: Make it possible to account fair load avg consistently sched/fair: Modify the comment about lock assumptions in migrate_task_rq_fair() stop_machine: Clean up the usage of the preemption counter in cpu_stopper_thread() stop_machine: Shift the 'done != NULL' check from cpu_stop_signal_done() to callers stop_machine: Kill cpu_stop_done->executed stop_machine: Change __stop_cpus() to rely on cpu_stop_queue_work() ...
2015-12-04sched/fair: Move the cache-hot 'load_avg' variable into its own cachelineWaiman Long
If a system with large number of sockets was driven to full utilization, it was found that the clock tick handling occupied a rather significant proportion of CPU time when fair group scheduling and autogroup were enabled. Running a java benchmark on a 16-socket IvyBridge-EX system, the perf profile looked like: 10.52% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt 9.66% 0.05% java [kernel.vmlinux] [k] hrtimer_interrupt 8.65% 0.03% java [kernel.vmlinux] [k] tick_sched_timer 8.56% 0.00% java [kernel.vmlinux] [k] update_process_times 8.07% 0.03% java [kernel.vmlinux] [k] scheduler_tick 6.91% 1.78% java [kernel.vmlinux] [k] task_tick_fair 5.24% 5.04% java [kernel.vmlinux] [k] update_cfs_shares In particular, the high CPU time consumed by update_cfs_shares() was mostly due to contention on the cacheline that contained the task_group's load_avg statistical counter. This cacheline may also contains variables like shares, cfs_rq & se which are accessed rather frequently during clock tick processing. This patch moves the load_avg variable into another cacheline separated from the other frequently accessed variables. It also creates a cacheline aligned kmemcache for task_group to make sure that all the allocated task_group's are cacheline aligned. By doing so, the perf profile became: 9.44% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt 8.74% 0.01% java [kernel.vmlinux] [k] hrtimer_interrupt 7.83% 0.03% java [kernel.vmlinux] [k] tick_sched_timer 7.74% 0.00% java [kernel.vmlinux] [k] update_process_times 7.27% 0.03% java [kernel.vmlinux] [k] scheduler_tick 5.94% 1.74% java [kernel.vmlinux] [k] task_tick_fair 4.15% 3.92% java [kernel.vmlinux] [k] update_cfs_shares The %cpu time is still pretty high, but it is better than before. The benchmark results before and after the patch was as follows: Before patch - Max-jOPs: 907533 Critical-jOps: 134877 After patch - Max-jOPs: 916011 Critical-jOps: 142366 Signed-off-by: Waiman Long <Waiman.Long@hpe.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ben Segall <bsegall@google.com> Cc: Douglas Hatch <doug.hatch@hpe.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott J Norton <scott.norton@hpe.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yuyang Du <yuyang.du@intel.com> Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04sched/core: Move the sched_to_prio[] arrays out of lineAndi Kleen
When building a kernel with a gcc 6 snapshot the compiler complains about unused const static variables for prio_to_weight and prio_to_mult for multiple scheduler files (all but core.c and autogroup.c) The way the array is currently declared it will be duplicated in every scheduler file that includes sched.h, which seems rather wasteful. Move the array out of line into core.c. I also added a sched_ prefix to avoid any potential name space collisions. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04sched/fair: Make it possible to account fair load avg consistentlyByungchul Park
The current code accounts for the time a task was absent from the fair class (per ATTACH_AGE_LOAD). However it does not work correctly when a task got migrated or moved to another cgroup while outside of the fair class. This patch tries to address that by aging on migration. We locklessly read the 'last_update_time' stamp from both the old and new cfs_rq, ages the load upto the old time, and sets it to the new time. These timestamps should in general not be more than 1 tick apart from one another, so there is a definite bound on things. Signed-off-by: Byungchul Park <byungchul.park@lge.com> [ Changelog, a few edits and !SMP build fix ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04locking, sched: Introduce smp_cond_acquire() and use itPeter Zijlstra
Introduce smp_cond_acquire() which combines a control dependency and a read barrier to form acquire semantics. This primitive has two benefits: - it documents control dependencies, - its typically cheaper than using smp_load_acquire() in a loop. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04Merge branch 'sched/urgent' into sched/core, to pick up fixes before ↵Ingo Molnar
applying new changes Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04sched/core: Better document the try_to_wake_up() barriersPeter Zijlstra
Explain how the control dependency and smp_rmb() end up providing ACQUIRE semantics and pair with smp_store_release() in finish_lock_switch(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23sched/fair: Remove empty idle enter and exit functionsDietmar Eggemann
Commit cd126afe838d ("sched/fair: Remove rq's runnable avg") got rid of rq->avg and so there is no need to update it any more when entering or exiting idle. Remove the now empty functions idle_{enter|exit}_fair(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yuyang Du <yuyang.du@intel.com> Link: http://lkml.kernel.org/r/1445342681-17171-1-git-send-email-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Remove a parameter in the migrate_task_rq() functionxiaofeng.yan
The parameter "int next_cpu" in the following function is unused: migrate_task_rq(struct task_struct *p, int next_cpu) Remove it. Signed-off-by: xiaofeng.yan <yanxiaofeng@inspur.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1442991360-31945-1-git-send-email-yanxiaofeng@inspur.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Fix task and run queue sched_info::run_delay inconsistenciesPeter Zijlstra
Mike Meyer reported the following bug: > During evaluation of some performance data, it was discovered thread > and run queue run_delay accounting data was inconsistent with the other > accounting data that was collected. Further investigation found under > certain circumstances execution time was leaking into the task and > run queue accounting of run_delay. > > Consider the following sequence: > > a. thread is running. > b. thread moves beween cgroups, changes scheduling class or priority. > c. thread sleeps OR > d. thread involuntarily gives up cpu. > > a. implies: > > thread->sched_info.last_queued = 0 > > a. and b. results in the following: > > 1. dequeue_task(rq, thread) > > sched_info_dequeued(rq, thread) > delta = 0 > > sched_info_reset_dequeued(thread) > thread->sched_info.last_queued = 0 > > thread->sched_info.run_delay += delta > > 2. enqueue_task(rq, thread) > > sched_info_queued(rq, thread) > > /* thread is still on cpu at this point. */ > thread->sched_info.last_queued = task_rq(thread)->clock; > > c. results in: > > dequeue_task(rq, thread) > > sched_info_dequeued(rq, thread) > > /* delta is execution time not run_delay. */ > delta = task_rq(thread)->clock - thread->sched_info.last_queued > > sched_info_reset_dequeued(thread) > thread->sched_info.last_queued = 0 > > thread->sched_info.run_delay += delta > > Since thread was running between enqueue_task(rq, thread) and > dequeue_task(rq, thread), the delta above is really execution > time and not run_delay. > > d. results in: > > __sched_info_switch(thread, next_thread) > > sched_info_depart(rq, thread) > > sched_info_queued(rq, thread) > > /* last_queued not updated due to being non-zero */ > return > > Since thread was running between enqueue_task(rq, thread) and > __sched_info_switch(thread, next_thread), the execution time > between enqueue_task(rq, thread) and > __sched_info_switch(thread, next_thread) now will become > associated with run_delay due to when last_queued was last updated. > This alternative patch solves the problem by not calling sched_info_{de,}queued() in {de,en}queue_task(). Therefore the sched_info state is preserved and things work as expected. By inlining the {de,en}queue_task() functions the new condition becomes (mostly) a compile-time constant and we'll not emit any new branch instructions. It even shrinks the code (due to inlining {en,de}queue_task()): $ size defconfig-build/kernel/sched/core.o defconfig-build/kernel/sched/core.o.orig text data bss dec hex filename 64019 23378 2344 89741 15e8d defconfig-build/kernel/sched/core.o 64149 23378 2344 89871 15f0f defconfig-build/kernel/sched/core.o.orig Reported-by: Mike Meyer <Mike.Meyer@Teradata.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150930154413.GO3604@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06Merge branch 'sched/urgent' into sched/core, to pick up fixes before ↵Ingo Molnar
applying new changes Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Fix TASK_DEAD race in finish_task_switch()Peter Zijlstra
So the problem this patch is trying to address is as follows: CPU0 CPU1 context_switch(A, B) ttwu(A) LOCK A->pi_lock A->on_cpu == 0 finish_task_switch(A) prev_state = A->state <-. WMB | A->on_cpu = 0; | UNLOCK rq0->lock | | context_switch(C, A) `-- A->state = TASK_DEAD prev_state == TASK_DEAD put_task_struct(A) context_switch(A, C) finish_task_switch(A) A->state == TASK_DEAD put_task_struct(A) The argument being that the WMB will allow the load of A->state on CPU0 to cross over and observe CPU1's store of A->state, which will then result in a double-drop and use-after-free. Now the comment states (and this was true once upon a long time ago) that we need to observe A->state while holding rq->lock because that will order us against the wakeup; however the wakeup will not in fact acquire (that) rq->lock; it takes A->pi_lock these days. We can obviously fix this by upgrading the WMB to an MB, but that is expensive, so we'd rather avoid that. The alternative this patch takes is: smp_store_release(&A->on_cpu, 0), which avoids the MB on some archs, but not important ones like ARM. Reported-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: <stable@vger.kernel.org> # v3.1+ Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: manfred@colorfullife.com Cc: will.deacon@arm.com Fixes: e4a52bcb9a18 ("sched: Remove rq->lock from the first half of ttwu()") Link: http://lkml.kernel.org/r/20150929124509.GG3816@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-23sched/deadline: Unify dl_time_before() usageJuri Lelli
Move dl_time_before() static definition in include/linux/sched/deadline.h so that it can be used by different parties without being re-defined. Reported-by: Luca Abeni <luca.abeni@unitn.it> Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1441188096-23021-3-git-send-email-juri.lelli@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-18sched/core: Make policy-testing consistentHenrik Austad
Most of the policy-tests are done via the <class>_policy() helpers with the notable exception of idle. A new wrapper for valid_policy() has also been added to improve readability in set_load_weight(). This commit does not change the logical behavior of the scheduler core. Signed-off-by: Henrik Austad <henrik@austad.us> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1441810841-4756-1-git-send-email-henrik@austad.us Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13sched/fair: Make utilization tracking CPU scale-invariantDietmar Eggemann
Besides the existing frequency scale-invariance correction factor, apply CPU scale-invariance correction factor to utilization tracking to compensate for any differences in compute capacity. This could be due to micro-architectural differences (i.e. instructions per seconds) between cpus in HMP systems (e.g. big.LITTLE), and/or differences in the current maximum frequency supported by individual cpus in SMP systems. In the existing implementation utilization isn't comparable between cpus as it is relative to the capacity of each individual CPU. Each segment of the sched_avg.util_sum geometric series is now scaled by the CPU performance factor too so the sched_avg.util_avg of each sched entity will be invariant from the particular CPU of the HMP/SMP system on which the sched entity is scheduled. With this patch, the utilization of a CPU stays relative to the max CPU performance of the fastest CPU in the system. In contrast to utilization (sched_avg.util_sum), load (sched_avg.load_sum) should not be scaled by compute capacity. The utilization metric is based on running time which only makes sense when cpus are _not_ fully utilized (utilization cannot go beyond 100% even if more tasks are added), where load is runnable time which isn't limited by the capacity of the CPU and therefore is a better metric for overloaded scenarios. If we run two nice-0 busy loops on two cpus with different compute capacity their load should be similar since their compute demands are the same. We have to assume that the compute demand of any task running on a fully utilized CPU (no spare cycles = 100% utilization) is high and the same no matter of the compute capacity of its current CPU, hence we shouldn't scale load by CPU capacity. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/55CE7409.1000700@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13sched/fair: Convert arch_scale_cpu_capacity() from weak function to #defineMorten Rasmussen
Bring arch_scale_cpu_capacity() in line with the recent change of its arch_scale_freq_capacity() sibling in commit dfbca41f3479 ("sched: Optimize freq invariant accounting") from weak function to #define to allow inlining of the function. While at it, remove the ARCH_CAPACITY sched_feature as well. With the change to #define there isn't a straightforward way to allow runtime switch between an arch implementation and the default implementation of arch_scale_cpu_capacity() using sched_feature. The default was to use the arch-specific implementation, but only the arm architecture provides one and that is essentially equivalent to the default implementation. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com> Cc: Juri Lelli <Juri.Lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: daniel.lezcano@linaro.org Cc: mturquette@baylibre.com Cc: pang.xunlei@zte.com.cn Cc: rjw@rjwysocki.net Cc: sgurrappadi@nvidia.com Cc: vincent.guittot@linaro.org Cc: yuyang.du@intel.com Link: http://lkml.kernel.org/r/1439569394-11974-3-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13sched/numa: Convert sched_numa_balancing to a static_branchSrikar Dronamraju
Variable sched_numa_balancing toggles numa_balancing feature. Hence moving from a simple read mostly variable to a more apt static_branch. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1439310261-16124-1-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13sched/numa: Disable sched_numa_balancing on UMA systemsSrikar Dronamraju
Commit 2a1ed24 ("sched/numa: Prefer NUMA hotness over cache hotness") sets sched feature NUMA to true. However this can enable NUMA hinting faults on a UMA system. This commit ensures that NUMA hinting faults occur only on a NUMA system by setting/resetting sched_numa_balancing. This commit: - Makes sched_numa_balancing common to CONFIG_SCHED_DEBUG and !CONFIG_SCHED_DEBUG. Earlier it was only in !CONFIG_SCHED_DEBUG. - Checks for sched_numa_balancing instead of sched_feat(NUMA). Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1439290813-6683-3-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13sched/numa: Rename numabalancing_enabled to sched_numa_balancingSrikar Dronamraju
Simple rename of the 'numabalancing_enabled' variable to 'sched_numa_balancing'. No functional changes. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1439290813-6683-2-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13sched/core: Remove unused argument from sched_class::task_move_groupPeter Zijlstra
The previous patches made the second argument go unused, remove it. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-12sched: Make sched_class::set_cpus_allowed() unconditionalPeter Zijlstra
Give every class a set_cpus_allowed() method, this enables some small optimization in the RT,DL implementation by avoiding a double cpumask_weight() call. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dedekind1@gmail.com Cc: juri.lelli@arm.com Cc: mgorman@suse.de Cc: riel@redhat.com Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>