Age | Commit message (Collapse) | Author |
|
To avoid potential format string expansion via module parameters, do not
use the zpool type directly in request_module() without a format string.
Additionally, to avoid arbitrary modules being loaded via zpool API
(e.g. via the zswap_zpool_type module parameter) add a "zpool-" prefix
to the requested module, as well as module aliases for the existing
zpool types (zbud and zsmalloc).
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Update zbud and zsmalloc to implement the zpool api.
[fengguang.wu@intel.com: make functions static]
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add zpool api.
zpool provides an interface for memory storage, typically of compressed
memory. Users can select what backend to use; currently the only
implementations are zbud, a low density implementation with up to two
compressed pages per storage page, and zsmalloc, a higher density
implementation with multiple compressed pages per storage page.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently map_vm_area() takes (struct page *** pages) as third argument,
and after mapping, it moves (*pages) to point to (*pages +
nr_mappped_pages).
It looks like this kind of increment is useless to its caller these
days. The callers don't care about the increments and actually they're
trying to avoid this by passing another copy to map_vm_area().
The caller can always guarantee all the pages can be mapped into vm_area
as specified in first argument and the caller only cares about whether
map_vm_area() fails or not.
This patch cleans up the pointer movement in map_vm_area() and updates
its callers accordingly.
Signed-off-by: WANG Chao <chaowang@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
According to calculation, ZS_SIZE_CLASSES value is 255 on systems with 4K
page size, not 254. The old value may forget count the ZS_MIN_ALLOC_SIZE
in.
This patch fixes this trivial issue in the comments.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Subsystems that want to register CPU hotplug callbacks, as well as perform
initialization for the CPUs that are already online, often do it as shown
below:
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
This is wrong, since it is prone to ABBA deadlocks involving the
cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
with CPU hotplug operations).
Instead, the correct and race-free way of performing the callback
registration is:
cpu_notifier_register_begin();
for_each_online_cpu(cpu)
init_cpu(cpu);
/* Note the use of the double underscored version of the API */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_notifier_register_done();
Fix the zsmalloc code by using this latter form of callback registration.
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add my copyright to the zsmalloc source code which I maintain.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch moves zsmalloc under mm directory.
Before that, description will explain why we have needed custom
allocator.
Zsmalloc is a new slab-based memory allocator for storing compressed
pages. It is designed for low fragmentation and high allocation success
rate on large object, but <= PAGE_SIZE allocations.
zsmalloc differs from the kernel slab allocator in two primary ways to
achieve these design goals.
zsmalloc never requires high order page allocations to back slabs, or
"size classes" in zsmalloc terms. Instead it allows multiple
single-order pages to be stitched together into a "zspage" which backs
the slab. This allows for higher allocation success rate under memory
pressure.
Also, zsmalloc allows objects to span page boundaries within the zspage.
This allows for lower fragmentation than could be had with the kernel
slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the
kernel slab allocator, if a page compresses to 60% of it original size,
the memory savings gained through compression is lost in fragmentation
because another object of the same size can't be stored in the leftover
space.
This ability to span pages results in zsmalloc allocations not being
directly addressable by the user. The user is given an
non-dereferencable handle in response to an allocation request. That
handle must be mapped, using zs_map_object(), which returns a pointer to
the mapped region that can be used. The mapping is necessary since the
object data may reside in two different noncontigious pages.
The zsmalloc fulfills the allocation needs for zram perfectly
[sjenning@linux.vnet.ibm.com: borrow Seth's quote]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|