summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2016-03-22mm/mprotect.c: don't imply PROT_EXEC on non-exec fsPiotr Kwapulinski
The mprotect(PROT_READ) fails when called by the READ_IMPLIES_EXEC binary on a memory mapped file located on non-exec fs. The mprotect does not check whether fs is _executable_ or not. The PROT_EXEC flag is set automatically even if a memory mapped file is located on non-exec fs. Fix it by checking whether a memory mapped file is located on a non-exec fs. If so the PROT_EXEC is not implied by the PROT_READ. The implementation uses the VM_MAYEXEC flag set properly in mmap. Now it is consistent with mmap. I did the isolated tests (PT_GNU_STACK X/NX, multiple VMAs, X/NX fs). I also patched the official 3.19.0-47-generic Ubuntu 14.04 kernel and it seems to work. Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22kernel: add kcov code coverageDmitry Vyukov
kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22zram: revive swap_slot_free_notifyMinchan Kim
Commit b430e9d1c6d4 ("remove compressed copy from zram in-memory") applied swap_slot_free_notify call in *end_swap_bio_read* to remove duplicated memory between zram and memory. However, with the introduction of rw_page in zram: 8c7f01025f7b ("zram: implement rw_page operation of zram"), it became void because rw_page doesn't need bio. Memory footprint is really important in embedded platforms which have small memory, for example, 512M) recently because it could start to kill processes if memory footprint exceeds some threshold by LMK or some similar memory management modules. This patch restores the function for rw_page, thereby eliminating this duplication. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: karam.lee <karam.lee@lge.com> Cc: <sangseok.lee@lge.com> Cc: Chan Jeong <chan.jeong@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-21Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linuxLinus Torvalds
Pull drm updates from Dave Airlie: "This is the main drm pull request for 4.6 kernel. Overall the coolest thing here for me is the nouveau maxwell signed firmware support from NVidia, it's taken a long while to extract this from them. I also wish the ARM vendors just designed one set of display IP, ARM display block proliferation is definitely increasing. Core: - drm_event cleanups - Internal API cleanup making mode_fixup optional. - Apple GMUX vga switcheroo support. - DP AUX testing interface Panel: - Refactoring of DSI core for use over more transports. New driver: - ARM hdlcd driver i915: - FBC/PSR (framebuffer compression, panel self refresh) enabled by default. - Ongoing atomic display support work - Ongoing runtime PM work - Pixel clock limit checks - VBT DSI description support - GEM fixes - GuC firmware scheduler enhancements amdkfd: - Deferred probing fixes to avoid make file or link ordering. amdgpu/radeon: - ACP support for i2s audio support. - Command Submission/GPU scheduler/GPUVM optimisations - Initial GPU reset support for amdgpu vmwgfx: - Support for DX10 gen mipmaps - Pageflipping and other fixes. exynos: - Exynos5420 SoC support for FIMD - Exynos5422 SoC support for MIPI-DSI nouveau: - GM20x secure boot support - adds acceleration for Maxwell GPUs. - GM200 support - GM20B clock driver support - Power sensors work etnaviv: - Correctness fixes for GPU cache flushing - Better support for i.MX6 systems. imx-drm: - VBlank IRQ support - Fence support - OF endpoint support msm: - HDMI support for 8996 (snapdragon 820) - Adreno 430 support - Timestamp queries support virtio-gpu: - Fixes for Android support. rockchip: - Add support for Innosilicion HDMI rcar-du: - Support for 4 crtcs - R8A7795 support - RCar Gen 3 support omapdrm: - HDMI interlace output support - dma-buf import support - Refactoring to remove a lot of legacy code. tilcdc: - Rewrite of pageflipping code - dma-buf support - pinctrl support vc4: - HDMI modesetting bug fixes - Significant 3D performance improvement. fsl-dcu (FreeScale): - Lots of fixes tegra: - Two small fixes sti: - Atomic support for planes - Improved HDMI support" * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (1063 commits) drm/amdgpu: release_pages requires linux/pagemap.h drm/sti: restore mode_fixup callback drm/amdgpu/gfx7: add MTYPE definition drm/amdgpu: removing BO_VAs shouldn't be interruptible drm/amd/powerplay: show uvd/vce power gate enablement for tonga. drm/amd/powerplay: show uvd/vce power gate info for fiji drm/amdgpu: use sched fence if possible drm/amdgpu: move ib.fence to job.fence drm/amdgpu: give a fence param to ib_free drm/amdgpu: include the right version of gmc header files for iceland drm/radeon: fix indentation. drm/amd/powerplay: add uvd/vce dpm enabling flag to fix the performance issue for CZ drm/amdgpu: switch back to 32bit hw fences v2 drm/amdgpu: remove amdgpu_fence_is_signaled drm/amdgpu: drop the extra fence range check v2 drm/amdgpu: signal fences directly in amdgpu_fence_process drm/amdgpu: cleanup amdgpu_fence_wait_empty v2 drm/amdgpu: keep all fences in an RCU protected array v2 drm/amdgpu: add number of hardware submissions to amdgpu_fence_driver_init_ring drm/amdgpu: RCU protected amd_sched_fence_release ...
2016-03-21Merge branch 'mm-pkeys-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 protection key support from Ingo Molnar: "This tree adds support for a new memory protection hardware feature that is available in upcoming Intel CPUs: 'protection keys' (pkeys). There's a background article at LWN.net: https://lwn.net/Articles/643797/ The gist is that protection keys allow the encoding of user-controllable permission masks in the pte. So instead of having a fixed protection mask in the pte (which needs a system call to change and works on a per page basis), the user can map a (handful of) protection mask variants and can change the masks runtime relatively cheaply, without having to change every single page in the affected virtual memory range. This allows the dynamic switching of the protection bits of large amounts of virtual memory, via user-space instructions. It also allows more precise control of MMU permission bits: for example the executable bit is separate from the read bit (see more about that below). This tree adds the MM infrastructure and low level x86 glue needed for that, plus it adds a high level API to make use of protection keys - if a user-space application calls: mmap(..., PROT_EXEC); or mprotect(ptr, sz, PROT_EXEC); (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice this special case, and will set a special protection key on this memory range. It also sets the appropriate bits in the Protection Keys User Rights (PKRU) register so that the memory becomes unreadable and unwritable. So using protection keys the kernel is able to implement 'true' PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies PROT_READ as well. Unreadable executable mappings have security advantages: they cannot be read via information leaks to figure out ASLR details, nor can they be scanned for ROP gadgets - and they cannot be used by exploits for data purposes either. We know about no user-space code that relies on pure PROT_EXEC mappings today, but binary loaders could start making use of this new feature to map binaries and libraries in a more secure fashion. There is other pending pkeys work that offers more high level system call APIs to manage protection keys - but those are not part of this pull request. Right now there's a Kconfig that controls this feature (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled (like most x86 CPU feature enablement code that has no runtime overhead), but it's not user-configurable at the moment. If there's any serious problem with this then we can make it configurable and/or flip the default" * 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/mm/pkeys: Fix mismerge of protection keys CPUID bits mm/pkeys: Fix siginfo ABI breakage caused by new u64 field x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA mm/core, x86/mm/pkeys: Add execute-only protection keys support x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags x86/mm/pkeys: Allow kernel to modify user pkey rights register x86/fpu: Allow setting of XSAVE state x86/mm: Factor out LDT init from context init mm/core, x86/mm/pkeys: Add arch_validate_pkey() mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits() x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU x86/mm/pkeys: Add Kconfig prompt to existing config option x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps x86/mm/pkeys: Dump PKRU with other kernel registers mm/core, x86/mm/pkeys: Differentiate instruction fetches x86/mm/pkeys: Optimize fault handling in access_error() mm/core: Do not enforce PKEY permissions on remote mm access um, pkeys: Add UML arch_*_access_permitted() methods mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys x86/mm/gup: Simplify get_user_pages() PTE bit handling ...
2016-03-19Merge tag 'powerpc-4.6-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "This was delayed a day or two by some build-breakage on old toolchains which we've now fixed. There's two PCI commits both acked by Bjorn. There's one commit to mm/hugepage.c which is (co)authored by Kirill. Highlights: - Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras - Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V - Add POWER9 cputable entry from Michael Neuling - FPU/Altivec/VSX save/restore optimisations from Cyril Bur - Add support for new ftrace ABI on ppc64le from Torsten Duwe Various cleanups & minor fixes from: - Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh. General: - atomics: Allow architectures to define their own __atomic_op_* helpers from Boqun Feng - Implement atomic{, 64}_*_return_* variants and acquire/release/ relaxed variants for (cmp)xchg from Boqun Feng - Add powernv_defconfig from Jeremy Kerr - Fix BUG_ON() reporting in real mode from Balbir Singh - Add xmon command to dump OPAL msglog from Andrew Donnellan - Add xmon command to dump process/task similar to ps(1) from Douglas Miller - Clean up memory hotplug failure paths from David Gibson pci/eeh: - Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei Yang. - EEH Support for SRIOV VFs from Wei Yang and Gavin Shan. - PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang - PCI: Add pcibios_bus_add_device() weak function from Wei Yang - MAINTAINERS: Update EEH details and maintainership from Russell Currey cxl: - Support added to the CXL driver for running on both bare-metal and hypervisor systems, from Christophe Lombard and Frederic Barrat. - Ignore probes for virtual afu pci devices from Vaibhav Jain perf: - Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu - hv-24x7: Fix usage with chip events, display change in counter values, display domain indices in sysfs, eliminate domain suffix in event names, from Sukadev Bhattiprolu Freescale: - Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and other dt bits, and minor fixes/cleanup" * tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits) powerpc: Fix unrecoverable SLB miss during restore_math() powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers powerpc/rcpm: Fix build break when SMP=n powerpc/book3e-64: Use hardcoded mttmr opcode powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible powerpc/T104xRDB: add tdm riser card node to device tree powerpc32: PAGE_EXEC required for inittext powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s) powerpc/86xx: Introduce and use common dtsi powerpc/86xx: Update device tree powerpc/86xx: Move dts files to fsl directory powerpc/86xx: Switch to kconfig fragments approach powerpc/86xx: Update defconfigs powerpc/86xx: Consolidate common platform code powerpc32: Remove one insn in mulhdu powerpc32: small optimisation in flush_icache_range() powerpc: Simplify test in __dma_sync() powerpc32: move xxxxx_dcache_range() functions inline powerpc32: Remove clear_pages() and define clear_page() inline ...
2016-03-19Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge second patch-bomb from Andrew Morton: - a couple of hotfixes - the rest of MM - a new timer slack control in procfs - a couple of procfs fixes - a few misc things - some printk tweaks - lib/ updates, notably to radix-tree. - add my and Nick Piggin's old userspace radix-tree test harness to tools/testing/radix-tree/. Matthew said it was a godsend during the radix-tree work he did. - a few code-size improvements, switching to __always_inline where gcc screwed up. - partially implement character sets in sscanf * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (118 commits) sscanf: implement basic character sets lib/bug.c: use common WARN helper param: convert some "on"/"off" users to strtobool lib: add "on"/"off" support to kstrtobool lib: update single-char callers of strtobool() lib: move strtobool() to kstrtobool() include/linux/unaligned: force inlining of byteswap operations include/uapi/linux/byteorder, swab: force inlining of some byteswap operations include/asm-generic/atomic-long.h: force inlining of some atomic_long operations usb: common: convert to use match_string() helper ide: hpt366: convert to use match_string() helper ata: hpt366: convert to use match_string() helper power: ab8500: convert to use match_string() helper power: charger_manager: convert to use match_string() helper drm/edid: convert to use match_string() helper pinctrl: convert to use match_string() helper device property: convert to use match_string() helper lib/string: introduce match_string() helper radix-tree tests: add test for radix_tree_iter_next radix-tree tests: add regression3 test ...
2016-03-18Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial Pull trivial tree updates from Jiri Kosina. * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: drivers/rtc: broken link fix drm/i915 Fix typos in i915_gem_fence.c Docs: fix missing word in REPORTING-BUGS lib+mm: fix few spelling mistakes MAINTAINERS: add git URL for APM driver treewide: Fix typo in printk
2016-03-17radix-tree,shmem: introduce radix_tree_iter_next()Matthew Wilcox
shmem likes to occasionally drop the lock, schedule, then reacqire the lock and continue with the iteration from the last place it left off. This is currently done with a pretty ugly goto. Introduce radix_tree_iter_next() and use it throughout shmem.c. [koct9i@gmail.com: fix bug in radix_tree_iter_next() for tagged iteration] Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: use radix_tree_iter_retry()Matthew Wilcox
Instead of a 'goto restart', we can now use radix_tree_iter_retry() to restart from our current position. This will make a difference when there are more ways to happen across an indirect pointer. And it eliminates some confusing gotos. [vbabka@suse.cz: remove now-obsolete-and-misleading comment] Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17radix_tree: add support for multi-order entriesMatthew Wilcox
With huge pages, it is convenient to have the radix tree be able to return an entry that covers multiple indices. Previous attempts to deal with the problem have involved inserting N duplicate entries, which is a waste of memory and leads to problems trying to handle aliased tags, or probing the tree multiple times to find alternative entries which might cover the requested index. This approach inserts one canonical entry into the tree for a given range of indices, and may also insert other entries in order to ensure that lookups find the canonical entry. This solution only tolerates inserting powers of two that are greater than the fanout of the tree. If we wish to expand the radix tree's abilities to support large-ish pages that is less than the fanout at the penultimate level of the tree, then we would need to add one more step in lookup to ensure that any sibling nodes in the final level of the tree are dereferenced and we return the canonical entry that they reference. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17fix Christoph's email addressesChristoph Lameter
There are various email addresses for me throughout the kernel. Use the one that will always be valid. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm,oom: do not loop !__GFP_FS allocation if the OOM killer is disabledTetsuo Handa
After the OOM killer is disabled during suspend operation, any !__GFP_NOFAIL && __GFP_FS allocations are forced to fail. Thus, any !__GFP_NOFAIL && !__GFP_FS allocations should be forced to fail as well. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm,oom: make oom_killer_disable() killableTetsuo Handa
While oom_killer_disable() is called by freeze_processes() after all user threads except the current thread are frozen, it is possible that kernel threads invoke the OOM killer and sends SIGKILL to the current thread due to sharing the thawed victim's memory. Therefore, checking for SIGKILL is preferable than TIF_MEMDIE. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm/zsmalloc: add `freeable' column to pool statSergey Senozhatsky
Add a new column to pool stats, which will tell how many pages ideally can be freed by class compaction, so it will be easier to analyze zsmalloc fragmentation. At the moment, we have only numbers of FULL and ALMOST_EMPTY classes, but they don't tell us how badly the class is fragmented internally. The new /sys/kernel/debug/zsmalloc/zramX/classes output look as follows: class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable [..] 12 224 0 2 146 5 8 4 4 13 240 0 0 0 0 0 1 0 14 256 1 13 1840 1672 115 1 10 15 272 0 0 0 0 0 1 0 [..] 49 816 0 3 745 735 149 1 2 51 848 3 4 361 306 76 4 8 52 864 12 14 378 268 81 3 21 54 896 1 12 117 57 26 2 12 57 944 0 0 0 0 0 3 0 [..] Total 26 131 12709 10994 1071 134 For example, from this particular output we can easily conclude that class-896 is heavily fragmented -- it occupies 26 pages, 12 can be freed by compaction. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17zsmalloc: drop unused member 'mapping_area->huge'YiPing Xu
When unmapping a huge class page in zs_unmap_object, the page will be unmapped by kmap_atomic. the "!area->huge" branch in __zs_unmap_object is alway true, and no code set "area->huge" now, so we can drop it. Signed-off-by: YiPing Xu <xuyiping@huawei.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm/vmalloc: use PAGE_ALIGNED() to check PAGE_SIZE alignmentShawn Lin
We have PAGE_ALIGNED() in mm.h, so let's use it instead of IS_ALIGNED() for checking PAGE_SIZE aligned case. Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: memcontrol: zap oom_info_lockVladimir Davydov
mem_cgroup_print_oom_info is always called under oom_lock, so oom_info_lock is redundant. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: memcontrol: clarify the uncharge_list() loopJohannes Weiner
uncharge_list() does an unusual list walk because the function can take regular lists with dedicated list_heads as well as singleton lists where a single page is passed via the page->lru list node. This can sometimes lead to confusion as well as suggestions to replace the loop with a list_for_each_entry(), which wouldn't work. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: memcontrol: reclaim and OOM kill when shrinking memory.max below usageJohannes Weiner
Setting the original memory.limit_in_bytes hardlimit is subject to a race condition when the desired value is below the current usage. The code tries a few times to first reclaim and then see if the usage has dropped to where we would like it to be, but there is no locking, and the workload is free to continue making new charges up to the old limit. Thus, attempting to shrink a workload relies on pure luck and hope that the workload happens to cooperate. To fix this in the cgroup2 memory.max knob, do it the other way round: set the limit first, then try enforcement. And if reclaim is not able to succeed, trigger OOM kills in the group. Keep going until the new limit is met, we run out of OOM victims and there's only unreclaimable memory left, or the task writing to memory.max is killed. This allows users to shrink groups reliably, and the behavior is consistent with what happens when new charges are attempted in excess of memory.max. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: memcontrol: reclaim when shrinking memory.high below usageJohannes Weiner
When setting memory.high below usage, nothing happens until the next charge comes along, and then it will only reclaim its own charge and not the now potentially huge excess of the new memory.high. This can cause groups to stay in excess of their memory.high indefinitely. To fix that, when shrinking memory.high, kick off a reclaim cycle that goes after the delta. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: meminit: initialise more memory for inode/dentry hash tables in early bootLi Zhang
Upstream has supported page parallel initialisation for X86 and the boot time is improved greately. Some tests have been done for Power. Here is the result I have done with different memory size. * 4GB memory: boot time is as the following: with patch vs without patch: 10.4s vs 24.5s boot time is improved 57% * 200GB memory: boot time looks the same with and without patches. boot time is about 38s * 32TB memory: boot time looks the same with and without patches boot time is about 160s. The boot time is much shorter than X86 with 24TB memory. From community discussion, it costs about 694s for X86 24T system. Parallel initialisation improves the performance by deferring memory initilisation to kswap with N kthreads, it should improve the performance therotically. In testing on X86, performance is improved greatly with huge memory. But on Power platform, it is improved greatly with less than 100GB memory. For huge memory, it is not improved greatly. But it saves the time with several threads at least, as the following information shows(32TB system log): [ 22.648169] node 9 initialised, 16607461 pages in 280ms [ 22.783772] node 3 initialised, 23937243 pages in 410ms [ 22.858877] node 6 initialised, 29179347 pages in 490ms [ 22.863252] node 2 initialised, 29179347 pages in 490ms [ 22.907545] node 0 initialised, 32049614 pages in 540ms [ 22.920891] node 15 initialised, 32212280 pages in 550ms [ 22.923236] node 4 initialised, 32306127 pages in 550ms [ 22.923384] node 12 initialised, 32314319 pages in 550ms [ 22.924754] node 8 initialised, 32314319 pages in 550ms [ 22.940780] node 13 initialised, 33353677 pages in 570ms [ 22.940796] node 11 initialised, 33353677 pages in 570ms [ 22.941700] node 5 initialised, 33353677 pages in 570ms [ 22.941721] node 10 initialised, 33353677 pages in 570ms [ 22.941876] node 7 initialised, 33353677 pages in 570ms [ 22.944946] node 14 initialised, 33353677 pages in 570ms [ 22.946063] node 1 initialised, 33345485 pages in 580ms It saves the time about 550*16 ms at least, although it can be ignore to compare the boot time about 160 seconds. What's more, the boot time is much shorter on Power even without patches than x86 for huge memory machine. So this patchset is still necessary to be enabled for Power. This patch (of 2): This patch is based on Mel Gorman's old patch in the mailing list, https://lkml.org/lkml/2015/5/5/280 which is discussed but it is fixed with a completion to wait for all memory initialised in page_alloc_init_late(). It is to fix the OOM problem on X86 with 24TB memory which allocates memory in late initialisation. But for Power platform with 32TB memory, it causes a call trace in vfs_caches_init->inode_init() and inode hash table needs more memory. So this patch allocates 1GB for 0.25TB/node for large system as it is mentioned in https://lkml.org/lkml/2015/5/1/627 This call trace is found on Power with 32TB memory, 1024CPUs, 16nodes. Currently, it only allocates 2GB*16=32GB for early initialisation. But Dentry cache hash table needes 16GB and Inode cache hash table needs 16GB. So the system have no enough memory for it. The log from dmesg as the following: Dentry cache hash table entries: 2147483648 (order: 18,17179869184 bytes) vmalloc: allocation failure, allocated 16021913600 of 17179934720 bytes swapper/0: page allocation failure: order:0,mode:0x2080020 CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.4.0-0-ppc64 Call Trace: .dump_stack+0xb4/0xb664 (unreliable) .warn_alloc_failed+0x114/0x160 .__vmalloc_area_node+0x1a4/0x2b0 .__vmalloc_node_range+0xe4/0x110 .__vmalloc_node+0x40/0x50 .alloc_large_system_hash+0x134/0x2a4 .inode_init+0xa4/0xf0 .vfs_caches_init+0x80/0x144 .start_kernel+0x40c/0x4e0 start_here_common+0x20/0x4a4 Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17thp: fix deadlock in split_huge_pmd()Kirill A. Shutemov
split_huge_pmd() tries to munlock page with munlock_vma_page(). That requires the page to locked. If the is locked by caller, we would get a deadlock: Unable to find swap-space signature INFO: task trinity-c85:1907 blocked for more than 120 seconds. Not tainted 4.4.0-00032-gf19d0bdced41-dirty #1606 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. trinity-c85 D ffff88084d997608 0 1907 309 0x00000000 Call Trace: schedule+0x9f/0x1c0 schedule_timeout+0x48e/0x600 io_schedule_timeout+0x1c3/0x390 bit_wait_io+0x29/0xd0 __wait_on_bit_lock+0x94/0x140 __lock_page+0x1d4/0x280 __split_huge_pmd+0x5a8/0x10f0 split_huge_pmd_address+0x1d9/0x230 try_to_unmap_one+0x540/0xc70 rmap_walk_anon+0x284/0x810 rmap_walk_locked+0x11e/0x190 try_to_unmap+0x1b1/0x4b0 split_huge_page_to_list+0x49d/0x18a0 follow_page_mask+0xa36/0xea0 SyS_move_pages+0xaf3/0x1570 entry_SYSCALL_64_fastpath+0x12/0x6b 2 locks held by trinity-c85/1907: #0: (&mm->mmap_sem){++++++}, at: SyS_move_pages+0x933/0x1570 #1: (&anon_vma->rwsem){++++..}, at: split_huge_page_to_list+0x402/0x18a0 I don't think the deadlock is triggerable without split_huge_page() simplifilcation patchset. But munlock_vma_page() here is wrong: we want to munlock the page unconditionally, no need in rmap lookup, that munlock_vma_page() does. Let's use clear_page_mlock() instead. It can be called under ptl. Fixes: e90309c9f772 ("thp: allow mlocked THP again") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkersKirill A. Shutemov
freeze_page() and unfreeze_page() helpers evolved in rather complex beasts. It would be nice to cut complexity of this code. This patch rewrites freeze_page() using standard try_to_unmap(). unfreeze_page() is rewritten with remove_migration_ptes(). The result is much simpler. But the new variant is somewhat slower for PTE-mapped THPs. Current helpers iterates over VMAs the compound page is mapped to, and then over ptes within this VMA. New helpers iterates over small page, then over VMA the small page mapped to, and only then find relevant pte. We have short cut for PMD-mapped THP: we directly install migration entries on PMD split. I don't think the slowdown is critical, considering how much simpler result is and that split_huge_page() is quite rare nowadays. It only happens due memory pressure or migration. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: make remove_migration_ptes() beyond mm/migration.cKirill A. Shutemov
Make remove_migration_ptes() available to be used in split_huge_page(). New parameter 'locked' added: as with try_to_umap() we need a way to indicate that caller holds rmap lock. We also shouldn't try to mlock() pte-mapped huge pages: pte-mapeed THP pages are never mlocked. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17rmap: extend try_to_unmap() to be usable by split_huge_page()Kirill A. Shutemov
Add support for two ttu_flags: - TTU_SPLIT_HUGE_PMD would split PMD if it's there, before trying to unmap page; - TTU_RMAP_LOCKED indicates that caller holds relevant rmap lock; Also, change rwc->done to !page_mapcount() instead of !page_mapped(). try_to_unmap() works on pte level, so we are really interested in the mappedness of this small page rather than of the compound page it's a part of. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17rmap: introduce rmap_walk_locked()Kirill A. Shutemov
This patchset rewrites freeze_page() and unfreeze_page() using try_to_unmap() and remove_migration_ptes(). Result is much simpler, but somewhat slower. Migration 8GiB worth of PMD-mapped THP: Baseline 20.21 +/- 0.393 Patched 20.73 +/- 0.082 Slowdown 1.03x It's 3% slower, comparing to 14% in v1. I don't it should be a stopper. Splitting of PTE-mapped pages slowed more. But this is not a common case. Migration 8GiB worth of PMD-mapped THP: Baseline 20.39 +/- 0.225 Patched 22.43 +/- 0.496 Slowdown 1.10x rmap_walk_locked() is the same as rmap_walk(), but the caller takes care of the relevant rmap lock. This is preparation for switching THP splitting from custom rmap walk in freeze_page()/unfreeze_page() to the generic one. There is no support for KSM pages for now: not clear which lock is implied. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: ZONE_DEVICE depends on SPARSEMEM_VMEMMAPDan Williams
The primary use case for devm_memremap_pages() is to allocate an memmap array from persistent memory. That capabilty requires vmem_altmap which requires SPARSEMEM_VMEMMAP. Also, without SPARSEMEM_VMEMMAP the addition of ZONE_DEVICE expands ZONES_WIDTH and triggers the: "Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid." ...warning in mm/memory.c. SPARSEMEM_VMEMMAP=n && ZONE_DEVICE=y is not a configuration we should worry about supporting. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: percpu: use pr_fmt to prefix outputJoe Perches
Use the normal mechanism to make the logging output consistently "percpu:" instead of a mix of "PERCPU:" and "percpu:" Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: convert printk(KERN_<LEVEL> to pr_<level>Joe Perches
Most of the mm subsystem uses pr_<level> so make it consistent. Miscellanea: - Realign arguments - Add missing newline to format - kmemleak-test.c has a "kmemleak: " prefix added to the "Kmemleak testing" logging message via pr_fmt Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: coalesce split stringsJoe Perches
Kernel style prefers a single string over split strings when the string is 'user-visible'. Miscellanea: - Add a missing newline - Realign arguments Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: convert pr_warning to pr_warnJoe Perches
There are a mixture of pr_warning and pr_warn uses in mm. Use pr_warn consistently. Miscellanea: - Coalesce formats - Realign arguments Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: exclude ZONE_DEVICE from GFP_ZONE_TABLEDan Williams
ZONE_DEVICE (merged in 4.3) and ZONE_CMA (proposed) are examples of new mm zones that are bumping up against the current maximum limit of 4 zones, i.e. 2 bits in page->flags for the GFP_ZONE_TABLE. The GFP_ZONE_TABLE poses an interesting constraint since include/linux/gfp.h gets included by the 32-bit portion of a 64-bit build. We need to be careful to only build the table for zones that have a corresponding gfp_t flag. GFP_ZONES_SHIFT is introduced for this purpose. This patch does not attempt to solve the problem of adding a new zone that also has a corresponding GFP_ flag. Vlastimil points out that ZONE_DEVICE, by depending on x86_64 and SPARSEMEM_VMEMMAP implies that SECTIONS_WIDTH is zero. In other words even though ZONE_DEVICE does not fit in GFP_ZONE_TABLE it is free to consume another bit in page->flags (expand ZONES_WIDTH) with room to spare. Link: https://bugzilla.kernel.org/show_bug.cgi?id=110931 Fixes: 033fbae988fc ("mm: ZONE_DEVICE for "device memory"") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Mark <markk@clara.co.uk> Reported-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: memcontrol: cleanup css_reset callbackVladimir Davydov
- Do not take memcg_limit_mutex for resetting limits - the cgroup cannot be altered from userspace anymore, so no need to protect them. - Use plain page_counter_limit() for resetting ->memory and ->memsw limits instead of mem_cgrouop_resize_* helpers - we enlarge the limits, so no need in special handling. - Reset ->swap and ->tcpmem limits as well. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm, memory hotplug: print debug message in the proper way for online_pagesChen Yucong
online_pages() simply returns an error value if memory_notify(MEM_GOING_ONLINE, &arg) return a value that is not what we want for successfully onlining target pages. This patch arms to print more failure information like offline_pages() in online_pages. This patch also converts printk(KERN_<LEVEL>) to pr_<level>(), and moves __offline_pages() to not print failure information with KERN_INFO according to David Rientjes's suggestion[1]. [1] https://lkml.org/lkml/2016/2/24/1094 Signed-off-by: Chen Yucong <slaoub@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: remove __GFP_NOFAIL is deprecated commentMichal Hocko
Commit 647757197cd3 ("mm: clarify __GFP_NOFAIL deprecation status") was incomplete and didn't remove the comment about __GFP_NOFAIL being deprecated in buffered_rmqueue. Let's get rid of this leftover but keep the WARN_ON_ONCE for order > 1 because we should really discourage from using __GFP_NOFAIL with higher order allocations because those are just too subtle. Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm/page_ref: add tracepoint to track down page reference manipulationJoonsoo Kim
CMA allocation should be guaranteed to succeed by definition, but, unfortunately, it would be failed sometimes. It is hard to track down the problem, because it is related to page reference manipulation and we don't have any facility to analyze it. This patch adds tracepoints to track down page reference manipulation. With it, we can find exact reason of failure and can fix the problem. Following is an example of tracepoint output. (note: this example is stale version that printing flags as the number. Recent version will print it as human readable string.) <...>-9018 [004] 92.678375: page_ref_set: pfn=0x17ac9 flags=0x0 count=1 mapcount=0 mapping=(nil) mt=4 val=1 <...>-9018 [004] 92.678378: kernel_stack: => get_page_from_freelist (ffffffff81176659) => __alloc_pages_nodemask (ffffffff81176d22) => alloc_pages_vma (ffffffff811bf675) => handle_mm_fault (ffffffff8119e693) => __do_page_fault (ffffffff810631ea) => trace_do_page_fault (ffffffff81063543) => do_async_page_fault (ffffffff8105c40a) => async_page_fault (ffffffff817581d8) [snip] <...>-9018 [004] 92.678379: page_ref_mod: pfn=0x17ac9 flags=0x40048 count=2 mapcount=1 mapping=0xffff880015a78dc1 mt=4 val=1 [snip] ... ... <...>-9131 [001] 93.174468: test_pages_isolated: start_pfn=0x17800 end_pfn=0x17c00 fin_pfn=0x17ac9 ret=fail [snip] <...>-9018 [004] 93.174843: page_ref_mod_and_test: pfn=0x17ac9 flags=0x40068 count=0 mapcount=0 mapping=0xffff880015a78dc1 mt=4 val=-1 ret=1 => release_pages (ffffffff8117c9e4) => free_pages_and_swap_cache (ffffffff811b0697) => tlb_flush_mmu_free (ffffffff81199616) => tlb_finish_mmu (ffffffff8119a62c) => exit_mmap (ffffffff811a53f7) => mmput (ffffffff81073f47) => do_exit (ffffffff810794e9) => do_group_exit (ffffffff81079def) => SyS_exit_group (ffffffff81079e74) => entry_SYSCALL_64_fastpath (ffffffff817560b6) This output shows that problem comes from exit path. In exit path, to improve performance, pages are not freed immediately. They are gathered and processed by batch. During this process, migration cannot be possible and CMA allocation is failed. This problem is hard to find without this page reference tracepoint facility. Enabling this feature bloat kernel text 30 KB in my configuration. text data bss dec hex filename 12127327 2243616 1507328 15878271 f2487f vmlinux_disabled 12157208 2258880 1507328 15923416 f2f8d8 vmlinux_enabled Note that, due to header file dependency problem between mm.h and tracepoint.h, this feature has to open code the static key functions for tracepoints. Proposed by Steven Rostedt in following link. https://lkml.org/lkml/2015/12/9/699 [arnd@arndb.de: crypto/async_pq: use __free_page() instead of put_page()] [iamjoonsoo.kim@lge.com: fix build failure for xtensa] [akpm@linux-foundation.org: tweak Kconfig text, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: introduce page reference manipulation functionsJoonsoo Kim
The success of CMA allocation largely depends on the success of migration and key factor of it is page reference count. Until now, page reference is manipulated by direct calling atomic functions so we cannot follow up who and where manipulate it. Then, it is hard to find actual reason of CMA allocation failure. CMA allocation should be guaranteed to succeed so finding offending place is really important. In this patch, call sites where page reference is manipulated are converted to introduced wrapper function. This is preparation step to add tracepoint to each page reference manipulation function. With this facility, we can easily find reason of CMA allocation failure. There is no functional change in this patch. In addition, this patch also converts reference read sites. It will help a second step that renames page._count to something else and prevents later attempt to direct access to it (Suggested by Andrew). Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: thp: set THP defrag by default to madvise and add a stall-free defrag optionMel Gorman
THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm, mempool: only set __GFP_NOMEMALLOC if there are free elementsDavid Rientjes
If an oom killed thread calls mempool_alloc(), it is possible that it'll loop forever if there are no elements on the freelist since __GFP_NOMEMALLOC prevents it from accessing needed memory reserves in oom conditions. Only set __GFP_NOMEMALLOC if there are elements on the freelist. If there are no free elements, allow allocations without the bit set so that memory reserves can be accessed if needed. Additionally, using mempool_alloc() with __GFP_NOMEMALLOC is not supported since the implementation can loop forever without accessing memory reserves when needed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: scale kswapd watermarks in proportion to memoryJohannes Weiner
In machines with 140G of memory and enterprise flash storage, we have seen read and write bursts routinely exceed the kswapd watermarks and cause thundering herds in direct reclaim. Unfortunately, the only way to tune kswapd aggressiveness is through adjusting min_free_kbytes - the system's emergency reserves - which is entirely unrelated to the system's latency requirements. In order to get kswapd to maintain a 250M buffer of free memory, the emergency reserves need to be set to 1G. That is a lot of memory wasted for no good reason. On the other hand, it's reasonable to assume that allocation bursts and overall allocation concurrency scale with memory capacity, so it makes sense to make kswapd aggressiveness a function of that as well. Change the kswapd watermark scale factor from the currently fixed 25% of the tunable emergency reserve to a tunable 0.1% of memory. Beyond 1G of memory, this will produce bigger watermark steps than the current formula in default settings. Ensure that the new formula never chooses steps smaller than that, i.e. 25% of the emergency reserve. On a 140G machine, this raises the default watermark steps - the distance between min and low, and low and high - from 16M to 143M. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: cleanup *pte_alloc* interfacesKirill A. Shutemov
There are few things about *pte_alloc*() helpers worth cleaning up: - 'vma' argument is unused, let's drop it; - most __pte_alloc() callers do speculative check for pmd_none(), before taking ptl: let's introduce pte_alloc() macro which does the check. The only direct user of __pte_alloc left is userfaultfd, which has different expectation about atomicity wrt pmd. - pte_alloc_map() and pte_alloc_map_lock() are redefined using pte_alloc(). [sudeep.holla@arm.com: fix build for arm64 hugetlbpage] [sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm/page_alloc.c: calculate 'available' memory in a separate functionIgor Redko
Add a new field, VIRTIO_BALLOON_S_AVAIL, to virtio_balloon memory statistics protocol, corresponding to 'Available' in /proc/meminfo. It indicates to the hypervisor how big the balloon can be inflated without pushing the guest system to swap. This metric would be very useful in VM orchestration software to improve memory management of different VMs under overcommit. This patch (of 2): Factor out calculation of the available memory counter into a separate exportable function, in order to be able to use it in other parts of the kernel. In particular, it appears a relevant metric to report to the hypervisor via virtio-balloon statistics interface (in a followup patch). Signed-off-by: Igor Redko <redkoi@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Cc: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm/Kconfig: remove redundant arch depend for memory hotplugYang Shi
MEMORY_HOTPLUG already depends on ARCH_ENABLE_MEMORY_HOTPLUG which is selected by the supported architectures, so the following arch depend is unnecessary. Signed-off-by: Yang Shi <yang.shi@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm/thp/migration: switch from flush_tlb_range to flush_pmd_tlb_rangeAneesh Kumar K.V
We remove one instace of flush_tlb_range here. That was added by commit f714f4f20e59 ("mm: numa: call MMU notifiers on THP migration"). But the pmdp_huge_clear_flush_notify should have done the require flush for us. Hence remove the extra flush. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: deduplicate memory overcommitment codeAndrey Ryabinin
Currently we have two copies of the same code which implements memory overcommitment logic. Let's move it into mm/util.c and hence avoid duplication. No functional changes here. Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: move max_map_count bits into mm.hAndrey Ryabinin
max_map_count sysctl unrelated to scheduler. Move its bits from include/linux/sched/sysctl.h to include/linux/mm.h. Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17thp, vmstats: count deferred split eventsKirill A. Shutemov
Count how many times we put a THP in split queue. Currently, it happens on partial unmap of a THP. Rapidly growing value can indicate that an application behaves unfriendly wrt THP: often fault in huge page and then unmap part of it. This leads to unnecessary memory fragmentation and the application may require tuning. The event also can help with debugging kernel [mis-]behaviour. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: workingset: make shadow node shrinker memcg awareVladimir Davydov
Workingset code was recently made memcg aware, but shadow node shrinker is still global. As a result, one small cgroup can consume all memory available for shadow nodes, possibly hurting other cgroups by reclaiming their shadow nodes, even though reclaim distances stored in its shadow nodes have no effect. To avoid this, we need to make shadow node shrinker memcg aware. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17mm: workingset: size shadow nodes lru basing on file cache sizeVladimir Davydov
A page is activated on refault if the refault distance stored in the corresponding shadow entry is less than the number of active file pages. Since active file pages can't occupy more than half memory, we assume that the maximal effective refault distance can't be greater than half the number of present pages and size the shadow nodes lru list appropriately. Generally speaking, this assumption is correct, but it can result in wasting a considerable chunk of memory on stale shadow nodes in case the portion of file pages is small, e.g. if a workload mostly uses anonymous memory. To sort this out, we need to compute the size of shadow nodes lru basing not on the maximal possible, but the current size of file cache. We could take the size of active file lru for the maximal refault distance, but active lru is pretty unstable - it can shrink dramatically at runtime possibly disrupting workingset detection logic. Instead we assume that the maximal refault distance equals half the total number of file cache pages. This will protect us against active file lru size fluctuations while still being correct, because size of active lru is normally maintained lower than size of inactive lru. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>