summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2013-01-09mm: reinstante dropped pmd_trans_splitting() checkLinus Torvalds
The check for a pmd being in the process of being split was dropped by mistake by commit d10e63f29488 ("mm: numa: Create basic numa page hinting infrastructure"). Put it back. Reported-by: Dave Jones <davej@redhat.com> Debugged-by: Hillf Danton <dhillf@gmail.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill Shutemov <kirill@shutemov.name> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-05mm: limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPTMichal Hocko
Since commit e303297e6c3a ("mm: extended batches for generic mmu_gather") we are batching pages to be freed until either tlb_next_batch cannot allocate a new batch or we are done. This works just fine most of the time but we can get in troubles with non-preemptible kernel (CONFIG_PREEMPT_NONE or CONFIG_PREEMPT_VOLUNTARY) on large machines where too aggressive batching might lead to soft lockups during process exit path (exit_mmap) because there are no scheduling points down the free_pages_and_swap_cache path and so the freeing can take long enough to trigger the soft lockup. The lockup is harmless except when the system is setup to panic on softlockup which is not that unusual. The simplest way to work around this issue is to limit the maximum number of batches in a single mmu_gather. 10k of collected pages should be safe to prevent from soft lockups (we would have 2ms for one) even if they are all freed without an explicit scheduling point. This patch doesn't add any new explicit scheduling points because it relies on zap_pmd_range during page tables zapping which calls cond_resched per PMD. The following lockup has been reported for 3.0 kernel with a huge process (in order of hundreds gigs but I do know any more details). BUG: soft lockup - CPU#56 stuck for 22s! [kernel:31053] Modules linked in: af_packet nfs lockd fscache auth_rpcgss nfs_acl sunrpc mptctl mptbase autofs4 binfmt_misc dm_round_robin dm_multipath bonding cpufreq_conservative cpufreq_userspace cpufreq_powersave pcc_cpufreq mperf microcode fuse loop osst sg sd_mod crc_t10dif st qla2xxx scsi_transport_fc scsi_tgt netxen_nic i7core_edac iTCO_wdt joydev e1000e serio_raw pcspkr edac_core iTCO_vendor_support acpi_power_meter rtc_cmos hpwdt hpilo button container usbhid hid dm_mirror dm_region_hash dm_log linear uhci_hcd ehci_hcd usbcore usb_common scsi_dh_emc scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh dm_snapshot pcnet32 mii edd dm_mod raid1 ext3 mbcache jbd fan thermal processor thermal_sys hwmon cciss scsi_mod Supported: Yes CPU 56 Pid: 31053, comm: kernel Not tainted 3.0.31-0.9-default #1 HP ProLiant DL580 G7 RIP: 0010: _raw_spin_unlock_irqrestore+0x8/0x10 RSP: 0018:ffff883ec1037af0 EFLAGS: 00000206 RAX: 0000000000000e00 RBX: ffffea01a0817e28 RCX: ffff88803ffd9e80 RDX: 0000000000000200 RSI: 0000000000000206 RDI: 0000000000000206 RBP: 0000000000000002 R08: 0000000000000001 R09: ffff887ec724a400 R10: 0000000000000000 R11: dead000000200200 R12: ffffffff8144c26e R13: 0000000000000030 R14: 0000000000000297 R15: 000000000000000e FS: 00007ed834282700(0000) GS:ffff88c03f200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 000000000068b240 CR3: 0000003ec13c5000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kernel (pid: 31053, threadinfo ffff883ec1036000, task ffff883ebd5d4100) Call Trace: release_pages+0xc5/0x260 free_pages_and_swap_cache+0x9d/0xc0 tlb_flush_mmu+0x5c/0x80 tlb_finish_mmu+0xe/0x50 exit_mmap+0xbd/0x120 mmput+0x49/0x120 exit_mm+0x122/0x160 do_exit+0x17a/0x430 do_group_exit+0x3d/0xb0 get_signal_to_deliver+0x247/0x480 do_signal+0x71/0x1b0 do_notify_resume+0x98/0xb0 int_signal+0x12/0x17 DWARF2 unwinder stuck at int_signal+0x12/0x17 Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> [3.0+] Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-05mm: fix zone_watermark_ok_safe() accounting of isolated pagesBartlomiej Zolnierkiewicz
Commit 702d1a6e0766 ("memory-hotplug: fix kswapd looping forever problem") added an isolated pageblocks counter (nr_pageblock_isolate in struct zone) and used it to adjust free pages counter in zone_watermark_ok_safe() to prevent kswapd looping forever problem. Then later, commit 2139cbe627b8 ("cma: fix counting of isolated pages") fixed accounting of isolated pages in global free pages counter. It made the previous zone_watermark_ok_safe() fix unnecessary and potentially harmful (cause now isolated pages may be accounted twice making free pages counter incorrect). This patch removes the special isolated pageblocks counter altogether which fixes zone_watermark_ok_safe() free pages check. Reported-by: Tomasz Stanislawski <t.stanislaws@samsung.com> Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: Minchan Kim <minchan@kernel.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-03MM: vmscan: remove __devinit attribute.Greg Kroah-Hartman
CONFIG_HOTPLUG is going away as an option. As a result, the __dev* markings need to be removed. This change removes the use of __devinit from the file. Based on patches originally written by Bill Pemberton, but redone by me in order to handle some of the coding style issues better, by hand. Cc: Bill Pemberton <wfp5p@virginia.edu> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-03mm: mempolicy: Convert shared_policy mutex to spinlockMel Gorman
Sasha was fuzzing with trinity and reported the following problem: BUG: sleeping function called from invalid context at kernel/mutex.c:269 in_atomic(): 1, irqs_disabled(): 0, pid: 6361, name: trinity-main 2 locks held by trinity-main/6361: #0: (&mm->mmap_sem){++++++}, at: [<ffffffff810aa314>] __do_page_fault+0x1e4/0x4f0 #1: (&(&mm->page_table_lock)->rlock){+.+...}, at: [<ffffffff8122f017>] handle_pte_fault+0x3f7/0x6a0 Pid: 6361, comm: trinity-main Tainted: G W 3.7.0-rc2-next-20121024-sasha-00001-gd95ef01-dirty #74 Call Trace: __might_sleep+0x1c3/0x1e0 mutex_lock_nested+0x29/0x50 mpol_shared_policy_lookup+0x2e/0x90 shmem_get_policy+0x2e/0x30 get_vma_policy+0x5a/0xa0 mpol_misplaced+0x41/0x1d0 handle_pte_fault+0x465/0x6a0 This was triggered by a different version of automatic NUMA balancing but in theory the current version is vunerable to the same problem. do_numa_page -> numa_migrate_prep -> mpol_misplaced -> get_vma_policy -> shmem_get_policy It's very unlikely this will happen as shared pages are not marked pte_numa -- see the page_mapcount() check in change_pte_range() -- but it is possible. To address this, this patch restores sp->lock as originally implemented by Kosaki Motohiro. In the path where get_vma_policy() is called, it should not be calling sp_alloc() so it is not necessary to treat the PTL specially. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02mempolicy: remove arg from mpol_parse_str, mpol_to_strHugh Dickins
Remove the unused argument (formerly no_context) from mpol_parse_str() and from mpol_to_str(). Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02tmpfs mempolicy: fix /proc/mounts corrupting memoryHugh Dickins
Recently I suggested using "mount -o remount,mpol=local /tmp" in NUMA mempolicy testing. Very nasty. Reading /proc/mounts, /proc/pid/mounts or /proc/pid/mountinfo may then corrupt one bit of kernel memory, often in a page table (causing "Bad swap" or "Bad page map" warning or "Bad pagetable" oops), sometimes in a vm_area_struct or rbnode or somewhere worse. "mpol=prefer" and "mpol=prefer:Node" are equally toxic. Recent NUMA enhancements are not to blame: this dates back to 2.6.35, when commit e17f74af351c "mempolicy: don't call mpol_set_nodemask() when no_context" skipped mpol_parse_str()'s call to mpol_set_nodemask(), which used to initialize v.preferred_node, or set MPOL_F_LOCAL in flags. With slab poisoning, you can then rely on mpol_to_str() to set the bit for node 0x6b6b, probably in the next page above the caller's stack. mpol_parse_str() is only called from shmem_parse_options(): no_context is always true, so call it unused for now, and remove !no_context code. Set v.nodes or v.preferred_node or MPOL_F_LOCAL as mpol_to_str() might expect. Then mpol_to_str() can ignore its no_context argument also, the mpol being appropriately initialized whether contextualized or not. Rename its no_context unused too, and let subsequent patch remove them (that's not needed for stable backporting, which would involve rejects). I don't understand why MPOL_LOCAL is described as a pseudo-policy: it's a reasonable policy which suffers from a confusing implementation in terms of MPOL_PREFERRED with MPOL_F_LOCAL. I believe this would be much more robust if MPOL_LOCAL were recognized in switch statements throughout, MPOL_F_LOCAL deleted, and MPOL_PREFERRED use the (possibly empty) nodes mask like everyone else, instead of its preferred_node variant (I presume an optimization from the days before MPOL_LOCAL). But that would take me too long to get right and fully tested. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-28mm: fix null pointer dereference in wait_iff_congested()Zlatko Calusic
An unintended consequence of commit 4ae0a48b5efc ("mm: modify pgdat_balanced() so that it also handles order-0") is that wait_iff_congested() can now be called with NULL 'struct zone *' producing kernel oops like this: BUG: unable to handle kernel NULL pointer dereference IP: [<ffffffff811542d9>] wait_iff_congested+0x59/0x140 This trivial patch fixes it. Reported-by: Zhouping Liu <zliu@redhat.com> Reported-and-tested-by: Sedat Dilek <sedat.dilek@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Zlatko Calusic <zlatko.calusic@iskon.hr> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-23mm: modify pgdat_balanced() so that it also handles order-0Zlatko Calusic
Teach pgdat_balanced() about order-0 allocations so that we can simplify code in a few places in vmstat.c. Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Zlatko Calusic <zlatko.calusic@iskon.hr> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-21Merge branch 'akpm' (Andrew's patch-bomb)Linus Torvalds
Merge the rest of Andrew's patches for -rc1: "A bunch of fixes and misc missed-out-on things. That'll do for -rc1. I still have a batch of IPC patches which still have a possible bug report which I'm chasing down." * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (25 commits) keys: use keyring_alloc() to create module signing keyring keys: fix unreachable code sendfile: allows bypassing of notifier events SGI-XP: handle non-fatal traps fat: fix incorrect function comment Documentation: ABI: remove testing/sysfs-devices-node proc: fix inconsistent lock state linux/kernel.h: fix DIV_ROUND_CLOSEST with unsigned divisors memcg: don't register hotcpu notifier from ->css_alloc() checkpatch: warn on uapi #includes that #include <uapi/... revert "rtc: recycle id when unloading a rtc driver" mm: clean up transparent hugepage sysfs error messages hfsplus: add error message for the case of failure of sync fs in delayed_sync_fs() method hfsplus: rework processing of hfs_btree_write() returned error hfsplus: rework processing errors in hfsplus_free_extents() hfsplus: avoid crash on failed block map free kcmp: include linux/ptrace.h drivers/rtc/rtc-imxdi.c: must include <linux/spinlock.h> mm: cma: WARN if freed memory is still in use exec: do not leave bprm->interp on stack ...
2012-12-21memcg: don't register hotcpu notifier from ->css_alloc()Tejun Heo
Commit 648bb56d076b ("cgroup: lock cgroup_mutex in cgroup_init_subsys()") made cgroup_init_subsys() grab cgroup_mutex before invoking ->css_alloc() for the root css. Because memcg registers hotcpu notifier from ->css_alloc() for the root css, this introduced circular locking dependency between cgroup_mutex and cpu hotplug. Fix it by moving hotcpu notifier registration to a subsys initcall. ====================================================== [ INFO: possible circular locking dependency detected ] 3.7.0-rc4-work+ #42 Not tainted ------------------------------------------------------- bash/645 is trying to acquire lock: (cgroup_mutex){+.+.+.}, at: [<ffffffff8110c5b7>] cgroup_lock+0x17/0x20 but task is already holding lock: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8109300f>] cpu_hotplug_begin+0x2f/0x60 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (cpu_hotplug.lock){+.+.+.}: lock_acquire+0x97/0x1e0 mutex_lock_nested+0x61/0x3b0 get_online_cpus+0x3c/0x60 rebuild_sched_domains_locked+0x1b/0x70 cpuset_write_resmask+0x298/0x2c0 cgroup_file_write+0x1ef/0x300 vfs_write+0xa8/0x160 sys_write+0x52/0xa0 system_call_fastpath+0x16/0x1b -> #0 (cgroup_mutex){+.+.+.}: __lock_acquire+0x14ce/0x1d20 lock_acquire+0x97/0x1e0 mutex_lock_nested+0x61/0x3b0 cgroup_lock+0x17/0x20 cpuset_handle_hotplug+0x1b/0x560 cpuset_update_active_cpus+0xe/0x10 cpuset_cpu_inactive+0x47/0x50 notifier_call_chain+0x66/0x150 __raw_notifier_call_chain+0xe/0x10 __cpu_notify+0x20/0x40 _cpu_down+0x7e/0x2f0 cpu_down+0x36/0x50 store_online+0x5d/0xe0 dev_attr_store+0x18/0x30 sysfs_write_file+0xe0/0x150 vfs_write+0xa8/0x160 sys_write+0x52/0xa0 system_call_fastpath+0x16/0x1b other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(cpu_hotplug.lock); lock(cgroup_mutex); lock(cpu_hotplug.lock); lock(cgroup_mutex); *** DEADLOCK *** 5 locks held by bash/645: #0: (&buffer->mutex){+.+.+.}, at: [<ffffffff8123bab8>] sysfs_write_file+0x48/0x150 #1: (s_active#42){.+.+.+}, at: [<ffffffff8123bb38>] sysfs_write_file+0xc8/0x150 #2: (x86_cpu_hotplug_driver_mutex){+.+...}, at: [<ffffffff81079277>] cpu_hotplug_driver_lock+0x1 +7/0x20 #3: (cpu_add_remove_lock){+.+.+.}, at: [<ffffffff81093157>] cpu_maps_update_begin+0x17/0x20 #4: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8109300f>] cpu_hotplug_begin+0x2f/0x60 stack backtrace: Pid: 645, comm: bash Not tainted 3.7.0-rc4-work+ #42 Call Trace: print_circular_bug+0x28e/0x29f __lock_acquire+0x14ce/0x1d20 lock_acquire+0x97/0x1e0 mutex_lock_nested+0x61/0x3b0 cgroup_lock+0x17/0x20 cpuset_handle_hotplug+0x1b/0x560 cpuset_update_active_cpus+0xe/0x10 cpuset_cpu_inactive+0x47/0x50 notifier_call_chain+0x66/0x150 __raw_notifier_call_chain+0xe/0x10 __cpu_notify+0x20/0x40 _cpu_down+0x7e/0x2f0 cpu_down+0x36/0x50 store_online+0x5d/0xe0 dev_attr_store+0x18/0x30 sysfs_write_file+0xe0/0x150 vfs_write+0xa8/0x160 sys_write+0x52/0xa0 system_call_fastpath+0x16/0x1b Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-21mm: clean up transparent hugepage sysfs error messagesJeremy Eder
Clarify error messages and correct a few typos in the transparent hugepage sysfs init code. Signed-off-by: Jeremy Eder <jeder@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-21mm: cma: WARN if freed memory is still in useMarek Szyprowski
Memory returned to free_contig_range() must have no other references. Let kernel to complain loudly if page reference count is not equal to 1. [rientjes@google.com: support sparsemem] Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-21mm: fix calculation of dirtyable memorySonny Rao
The system uses global_dirtyable_memory() to calculate number of dirtyable pages/pages that can be allocated to the page cache. A bug causes an underflow thus making the page count look like a big unsigned number. This in turn confuses the dirty writeback throttling to aggressively write back pages as they become dirty (usually 1 page at a time). This generally only affects systems with highmem because the underflowed count gets subtracted from the global count of dirtyable memory. The problem was introduced with v3.2-4896-gab8fabd Fix is to ensure we don't get an underflowed total of either highmem or global dirtyable memory. Signed-off-by: Sonny Rao <sonnyrao@chromium.org> Signed-off-by: Puneet Kumar <puneetster@chromium.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Damien Wyart <damien.wyart@free.fr> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-21compaction: fix build error in CMA && !COMPACTIONMinchan Kim
isolate_freepages_block() and isolate_migratepages_range() are used for CMA as well as compaction so it breaks build for CONFIG_CMA && !CONFIG_COMPACTION. This patch fixes it. [akpm@linux-foundation.org: add "do { } while (0)", per Mel] Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-20Merge branch 'fscache' of ↵Al Viro
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs into for-linus
2012-12-20mm: drop vmtruncateMarco Stornelli
Removed vmtruncate Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-12-20Merge tag 'virtio-next-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux Pull virtio update from Rusty Russell: "Some nice cleanups, and even a patch my wife did as a "live" demo for Latinoware 2012. There's a slightly non-trivial merge in virtio-net, as we cleaned up the virtio add_buf interface while DaveM accepted the mq virtio-net patches." * tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (27 commits) virtio_console: Add support for remoteproc serial virtio_console: Merge struct buffer_token into struct port_buffer virtio: add drv_to_virtio to make code clearly virtio: use dev_to_virtio wrapper in virtio virtio-mmio: Fix irq parsing in command line parameter virtio_console: Free buffers from out-queue upon close virtio: Convert dev_printk(KERN_<LEVEL> to dev_<level>( virtio_console: Use kmalloc instead of kzalloc virtio_console: Free buffer if splice fails virtio: tools: make it clear that virtqueue_add_buf() no longer returns > 0 virtio: scsi: make it clear that virtqueue_add_buf() no longer returns > 0 virtio: rpmsg: make it clear that virtqueue_add_buf() no longer returns > 0 virtio: net: make it clear that virtqueue_add_buf() no longer returns > 0 virtio: console: make it clear that virtqueue_add_buf() no longer returns > 0 virtio: make virtqueue_add_buf() returning 0 on success, not capacity. virtio: console: don't rely on virtqueue_add_buf() returning capacity. virtio_net: don't rely on virtqueue_add_buf() returning capacity. virtio-net: remove unused skb_vnet_hdr->num_sg field virtio-net: correct capacity math on ring full virtio: move queue_index and num_free fields into core struct virtqueue. ...
2012-12-20ksm: make rmap walks more scalableHugh Dickins
The rmap walks in ksm.c are like those in rmap.c: they can safely be done with anon_vma_lock_read(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-20mm: do not sleep in balance_pgdat if there's no i/o congestionZlatko Calusic
On a 4GB RAM machine, where Normal zone is much smaller than DMA32 zone, the Normal zone gets fragmented in time. This requires relatively more pressure in balance_pgdat to get the zone above the required watermark. Unfortunately, the congestion_wait() call in there slows it down for a completely wrong reason, expecting that there's a lot of writeback/swapout, even when there's none (much more common). After a few days, when fragmentation progresses, this flawed logic translates to a very high CPU iowait times, even though there's no I/O congestion at all. If THP is enabled, the problem occurs sooner, but I was able to see it even on !THP kernels, just by giving it a bit more time to occur. The proper way to deal with this is to not wait, unless there's congestion. Thanks to Mel Gorman, we already have the function that perfectly fits the job. The patch was tested on a machine which nicely revealed the problem after only 1 day of uptime, and it's been working great. Signed-off-by: Zlatko Calusic <zlatko.calusic@iskon.hr> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm/vmscan.c: avoid possible deadlock caused by too_many_isolated()Fengguang Wu
Neil found that if too_many_isolated() returns true while performing direct reclaim we can end up waiting for other threads to complete their direct reclaim. If those threads are allowed to enter the FS or IO to free memory, but this thread is not, then it is possible that those threads will be waiting on this thread and so we get a circular deadlock. some task enters direct reclaim with GFP_KERNEL => too_many_isolated() false => vmscan and run into dirty pages => pageout() => take some FS lock => fs/block code does GFP_NOIO allocation => enter direct reclaim again => too_many_isolated() true => waiting for others to progress, however the other tasks may be circular waiting for the FS lock.. The fix is to let !__GFP_IO and !__GFP_FS direct reclaims enjoy higher priority than normal ones, by lowering the throttle threshold for the latter. Allowing ~1/8 isolated pages in normal is large enough. For example, for a 1GB LRU list, that's ~128MB isolated pages, or 1k blocked tasks (each isolates 32 4KB pages), or 64 blocked tasks per logical CPU (assuming 16 logical CPUs per NUMA node). So it's not likely some CPU goes idle waiting (when it could make progress) because of this limit: there are much more sleeping reclaim tasks than the number of CPU, so the task may well be blocked by some low level queue/lock anyway. Now !GFP_IOFS reclaims won't be waiting for GFP_IOFS reclaims to progress. They will be blocked only when there are too many concurrent !GFP_IOFS reclaims, however that's very unlikely because the IO-less direct reclaims is able to progress much more faster, and they won't deadlock each other. The threshold is raised high enough for them, so that there can be sufficient parallel progress of !GFP_IOFS reclaims. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Torsten Kaiser <just.for.lkml@googlemail.com> Tested-by: NeilBrown <neilb@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18vmscan: comment too_many_isolated()Fengguang Wu
Comment "Why it's doing so" rather than "What it does" as proposed by Andrew Morton. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm/kmemleak.c: remove obsolete simple_strtoulAbhijit Pawar
Replace the obsolete simple_strtoul() with kstrtoul(). Signed-off-by: Abhijit Pawar <abhi.c.pawar@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm/memory_hotplug.c: improve commentsTang Chen
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm/hugetlb: create hugetlb cgroup file in hugetlb_initJianguo Wu
Build kernel with CONFIG_HUGETLBFS=y,CONFIG_HUGETLB_PAGE=y and CONFIG_CGROUP_HUGETLB=y, then specify hugepagesz=xx boot option, system will fail to boot. This failure is caused by following code path: setup_hugepagesz hugetlb_add_hstate hugetlb_cgroup_file_init cgroup_add_cftypes kzalloc <--slab is *not available* yet For this path, slab is not available yet, so memory allocated will be failed, and cause WARN_ON() in hugetlb_cgroup_file_init(). So I move hugetlb_cgroup_file_init() into hugetlb_init(). [akpm@linux-foundation.org: tweak coding-style, remove pointless __init on inlined function] [akpm@linux-foundation.org: fix warning] Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm/mprotect.c: coding-style cleanupsAndrew Morton
A few gremlins have recently crept in. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slub: drop mutex before deleting sysfs entryGlauber Costa
Sasha Levin recently reported a lockdep problem resulting from the new attribute propagation introduced by kmemcg series. In short, slab_mutex will be called from within the sysfs attribute store function. This will create a dependency, that will later be held backwards when a cache is destroyed - since destruction occurs with the slab_mutex held, and then calls in to the sysfs directory removal function. In this patch, I propose to adopt a strategy close to what __kmem_cache_create does before calling sysfs_slab_add, and release the lock before the call to sysfs_slab_remove. This is pretty much the last operation in the kmem_cache_shutdown() path, so we could do better by splitting this and moving this call alone to later on. This will fit nicely when sysfs handling is consistent between all caches, but will look weird now. Lockdep info: ====================================================== [ INFO: possible circular locking dependency detected ] 3.7.0-rc4-next-20121106-sasha-00008-g353b62f #117 Tainted: G W ------------------------------------------------------- trinity-child13/6961 is trying to acquire lock: (s_active#43){++++.+}, at: sysfs_addrm_finish+0x31/0x60 but task is already holding lock: (slab_mutex){+.+.+.}, at: kmem_cache_destroy+0x22/0xe0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (slab_mutex){+.+.+.}: lock_acquire+0x1aa/0x240 __mutex_lock_common+0x59/0x5a0 mutex_lock_nested+0x3f/0x50 slab_attr_store+0xde/0x110 sysfs_write_file+0xfa/0x150 vfs_write+0xb0/0x180 sys_pwrite64+0x60/0xb0 tracesys+0xe1/0xe6 -> #0 (s_active#43){++++.+}: __lock_acquire+0x14df/0x1ca0 lock_acquire+0x1aa/0x240 sysfs_deactivate+0x122/0x1a0 sysfs_addrm_finish+0x31/0x60 sysfs_remove_dir+0x89/0xd0 kobject_del+0x16/0x40 __kmem_cache_shutdown+0x40/0x60 kmem_cache_destroy+0x40/0xe0 mon_text_release+0x78/0xe0 __fput+0x122/0x2d0 ____fput+0x9/0x10 task_work_run+0xbe/0x100 do_exit+0x432/0xbd0 do_group_exit+0x84/0xd0 get_signal_to_deliver+0x81d/0x930 do_signal+0x3a/0x950 do_notify_resume+0x3e/0x90 int_signal+0x12/0x17 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(slab_mutex); lock(s_active#43); lock(slab_mutex); lock(s_active#43); *** DEADLOCK *** 2 locks held by trinity-child13/6961: #0: (mon_lock){+.+.+.}, at: mon_text_release+0x25/0xe0 #1: (slab_mutex){+.+.+.}, at: kmem_cache_destroy+0x22/0xe0 stack backtrace: Pid: 6961, comm: trinity-child13 Tainted: G W 3.7.0-rc4-next-20121106-sasha-00008-g353b62f #117 Call Trace: print_circular_bug+0x1fb/0x20c __lock_acquire+0x14df/0x1ca0 lock_acquire+0x1aa/0x240 sysfs_deactivate+0x122/0x1a0 sysfs_addrm_finish+0x31/0x60 sysfs_remove_dir+0x89/0xd0 kobject_del+0x16/0x40 __kmem_cache_shutdown+0x40/0x60 kmem_cache_destroy+0x40/0xe0 mon_text_release+0x78/0xe0 __fput+0x122/0x2d0 ____fput+0x9/0x10 task_work_run+0xbe/0x100 do_exit+0x432/0xbd0 do_group_exit+0x84/0xd0 get_signal_to_deliver+0x81d/0x930 do_signal+0x3a/0x950 do_notify_resume+0x3e/0x90 int_signal+0x12/0x17 Signed-off-by: Glauber Costa <glommer@parallels.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: add comments clarifying aspects of cache attribute propagationGlauber Costa
This patch clarifies two aspects of cache attribute propagation. First, the expected context for the for_each_memcg_cache macro in memcontrol.h. The usages already in the codebase are safe. In mm/slub.c, it is trivially safe because the lock is acquired right before the loop. In mm/slab.c, it is less so: the lock is acquired by an outer function a few steps back in the stack, so a VM_BUG_ON() is added to make sure it is indeed safe. A comment is also added to detail why we are returning the value of the parent cache and ignoring the children's when we propagate the attributes. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slub: slub-specific propagation changesGlauber Costa
SLUB allows us to tune a particular cache behavior with sysfs-based tunables. When creating a new memcg cache copy, we'd like to preserve any tunables the parent cache already had. This can be done by tapping into the store attribute function provided by the allocator. We of course don't need to mess with read-only fields. Since the attributes can have multiple types and are stored internally by sysfs, the best strategy is to issue a ->show() in the root cache, and then ->store() in the memcg cache. The drawback of that, is that sysfs can allocate up to a page in buffering for show(), that we are likely not to need, but also can't guarantee. To avoid always allocating a page for that, we can update the caches at store time with the maximum attribute size ever stored to the root cache. We will then get a buffer big enough to hold it. The corolary to this, is that if no stores happened, nothing will be propagated. It can also happen that a root cache has its tunables updated during normal system operation. In this case, we will propagate the change to all caches that are already active. [akpm@linux-foundation.org: tweak code to avoid __maybe_unused] Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab: propagate tunable valuesGlauber Costa
SLAB allows us to tune a particular cache behavior with tunables. When creating a new memcg cache copy, we'd like to preserve any tunables the parent cache already had. This could be done by an explicit call to do_tune_cpucache() after the cache is created. But this is not very convenient now that the caches are created from common code, since this function is SLAB-specific. Another method of doing that is taking advantage of the fact that do_tune_cpucache() is always called from enable_cpucache(), which is called at cache initialization. We can just preset the values, and then things work as expected. It can also happen that a root cache has its tunables updated during normal system operation. In this case, we will propagate the change to all caches that are already active. This change will require us to move the assignment of root_cache in memcg_params a bit earlier. We need this to be already set - which memcg_kmem_register_cache will do - when we reach __kmem_cache_create() Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: aggregate memcg cache values in slabinfoGlauber Costa
When we create caches in memcgs, we need to display their usage information somewhere. We'll adopt a scheme similar to /proc/meminfo, with aggregate totals shown in the global file, and per-group information stored in the group itself. For the time being, only reads are allowed in the per-group cache. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg/sl[au]b: shrink dead cachesGlauber Costa
This means that when we destroy a memcg cache that happened to be empty, those caches may take a lot of time to go away: removing the memcg reference won't destroy them - because there are pending references, and the empty pages will stay there, until a shrinker is called upon for any reason. In this patch, we will call kmem_cache_shrink() for all dead caches that cannot be destroyed because of remaining pages. After shrinking, it is possible that it could be freed. If this is not the case, we'll schedule a lazy worker to keep trying. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg/sl[au]b: track all the memcg children of a kmem_cacheGlauber Costa
This enables us to remove all the children of a kmem_cache being destroyed, if for example the kernel module it's being used in gets unloaded. Otherwise, the children will still point to the destroyed parent. Signed-off-by: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: destroy memcg cachesGlauber Costa
Implement destruction of memcg caches. Right now, only caches where our reference counter is the last remaining are deleted. If there are any other reference counters around, we just leave the caches lying around until they go away. When that happens, a destruction function is called from the cache code. Caches are only destroyed in process context, so we queue them up for later processing in the general case. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18sl[au]b: allocate objects from memcg cacheGlauber Costa
We are able to match a cache allocation to a particular memcg. If the task doesn't change groups during the allocation itself - a rare event, this will give us a good picture about who is the first group to touch a cache page. This patch uses the now available infrastructure by calling memcg_kmem_get_cache() before all the cache allocations. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18sl[au]b: always get the cache from its page in kmem_cache_free()Glauber Costa
struct page already has this information. If we start chaining caches, this information will always be more trustworthy than whatever is passed into the function. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: skip memcg kmem allocations in specified code regionsGlauber Costa
Create a mechanism that skip memcg allocations during certain pieces of our core code. It basically works in the same way as preempt_disable()/preempt_enable(): By marking a region under which all allocations will be accounted to the root memcg. We need this to prevent races in early cache creation, when we allocate data using caches that are not necessarily created already. Signed-off-by: Glauber Costa <glommer@parallels.com> yCc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: infrastructure to match an allocation to the right cacheGlauber Costa
The page allocator is able to bind a page to a memcg when it is allocated. But for the caches, we'd like to have as many objects as possible in a page belonging to the same cache. This is done in this patch by calling memcg_kmem_get_cache in the beginning of every allocation function. This function is patched out by static branches when kernel memory controller is not being used. It assumes that the task allocating, which determines the memcg in the page allocator, belongs to the same cgroup throughout the whole process. Misaccounting can happen if the task calls memcg_kmem_get_cache() while belonging to a cgroup, and later on changes. This is considered acceptable, and should only happen upon task migration. Before the cache is created by the memcg core, there is also a possible imbalance: the task belongs to a memcg, but the cache being allocated from is the global cache, since the child cache is not yet guaranteed to be ready. This case is also fine, since in this case the GFP_KMEMCG will not be passed and the page allocator will not attempt any cgroup accounting. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: allocate memory for memcg caches whenever a new memcg appearsGlauber Costa
Every cache that is considered a root cache (basically the "original" caches, tied to the root memcg/no-memcg) will have an array that should be large enough to store a cache pointer per each memcg in the system. Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently in the 64k pointers range. Most of the time, we won't be using that much. What goes in this patch, is a simple scheme to dynamically allocate such an array, in order to minimize memory usage for memcg caches. Because we would also like to avoid allocations all the time, at least for now, the array will only grow. It will tend to be big enough to hold the maximum number of kmem-limited memcgs ever achieved. We'll allocate it to be a minimum of 64 kmem-limited memcgs. When we have more than that, we'll start doubling the size of this array every time the limit is reached. Because we are only considering kmem limited memcgs, a natural point for this to happen is when we write to the limit. At that point, we already have set_limit_mutex held, so that will become our natural synchronization mechanism. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab/slub: consider a memcg parameter in kmem_create_cacheGlauber Costa
Allow a memcg parameter to be passed during cache creation. When the slub allocator is being used, it will only merge caches that belong to the same memcg. We'll do this by scanning the global list, and then translating the cache to a memcg-specific cache Default function is created as a wrapper, passing NULL to the memcg version. We only merge caches that belong to the same memcg. A helper is provided, memcg_css_id: because slub needs a unique cache name for sysfs. Since this is visible, but not the canonical location for slab data, the cache name is not used, the css_id should suffice. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab: annotate on-slab caches nodelist locksGlauber Costa
We currently provide lockdep annotation for kmalloc caches, and also caches that have SLAB_DEBUG_OBJECTS enabled. The reason for this is that we can quite frequently nest in the l3->list_lock lock, which is not something trivial to avoid. My proposal with this patch, is to extend this to caches whose slab management object lives within the slab as well ("on_slab"). The need for this arose in the context of testing kmemcg-slab patches. With such patchset, we can have per-memcg kmalloc caches. So the same path that led to nesting between kmalloc caches will could then lead to in-memcg nesting. Because they are not annotated, lockdep will trigger. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab/slub: struct memcg_paramsGlauber Costa
For the kmem slab controller, we need to record some extra information in the kmem_cache structure. Signed-off-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Suleiman Souhlal <suleiman@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: execute the whole memcg freeing in free_worker()Glauber Costa
A lot of the initialization we do in mem_cgroup_create() is done with softirqs enabled. This include grabbing a css id, which holds &ss->id_lock->rlock, and the per-zone trees, which holds rtpz->lock->rlock. All of those signal to the lockdep mechanism that those locks can be used in SOFTIRQ-ON-W context. This means that the freeing of memcg structure must happen in a compatible context, otherwise we'll get a deadlock, like the one below, caught by lockdep: free_accounted_pages+0x47/0x4c free_task+0x31/0x5c __put_task_struct+0xc2/0xdb put_task_struct+0x1e/0x22 delayed_put_task_struct+0x7a/0x98 __rcu_process_callbacks+0x269/0x3df rcu_process_callbacks+0x31/0x5b __do_softirq+0x122/0x277 This usage pattern could not be triggered before kmem came into play. With the introduction of kmem stack handling, it is possible that we call the last mem_cgroup_put() from the task destructor, which is run in an rcu callback. Such callbacks are run with softirqs disabled, leading to the offensive usage pattern. In general, we have little, if any, means to guarantee in which context the last memcg_put will happen. The best we can do is test it and try to make sure no invalid context releases are happening. But as we add more code to memcg, the possible interactions grow in number and expose more ways to get context conflicts. One thing to keep in mind, is that part of the freeing process is already deferred to a worker, such as vfree(), that can only be called from process context. For the moment, the only two functions we really need moved away are: * free_css_id(), and * mem_cgroup_remove_from_trees(). But because the later accesses per-zone info, free_mem_cgroup_per_zone_info() needs to be moved as well. With that, we are left with the per_cpu stats only. Better move it all. Signed-off-by: Glauber Costa <glommer@parallels.com> Tested-by: Greg Thelen <gthelen@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: allow a memcg with kmem charges to be destructedGlauber Costa
Because the ultimate goal of the kmem tracking in memcg is to track slab pages as well, we can't guarantee that we'll always be able to point a page to a particular process, and migrate the charges along with it - since in the common case, a page will contain data belonging to multiple processes. Because of that, when we destroy a memcg, we only make sure the destruction will succeed by discounting the kmem charges from the user charges when we try to empty the cgroup. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: use static branches when code not in useGlauber Costa
We can use static branches to patch the code in or out when not used. Because the _ACTIVE bit on kmem_accounted is only set after the increment is done, we guarantee that the root memcg will always be selected for kmem charges until all call sites are patched (see memcg_kmem_enabled). This guarantees that no mischarges are applied. Static branch decrement happens when the last reference count from the kmem accounting in memcg dies. This will only happen when the charges drop down to 0. When that happens, we need to disable the static branch only on those memcgs that enabled it. To achieve this, we would be forced to complicate the code by keeping track of which memcgs were the ones that actually enabled limits, and which ones got it from its parents. It is a lot simpler just to do static_key_slow_inc() on every child that is accounted. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: kmem accounting lifecycle managementGlauber Costa
Because kmem charges can outlive the cgroup, we need to make sure that we won't free the memcg structure while charges are still in flight. For reviewing simplicity, the charge functions will issue mem_cgroup_get() at every charge, and mem_cgroup_put() at every uncharge. This can get expensive, however, and we can do better. mem_cgroup_get() only really needs to be issued once: when the first limit is set. In the same spirit, we only need to issue mem_cgroup_put() when the last charge is gone. We'll need an extra bit in kmem_account_flags for that: KMEM_ACCOUNTED_DEAD. it will be set when the cgroup dies, if there are charges in the group. If there aren't, we can proceed right away. Our uncharge function will have to test that bit every time the charges drop to 0. Because that is not the likely output of res_counter_uncharge, this should not impose a big hit on us: it is certainly much better than a reference count decrease at every operation. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm: allocate kernel pages to the right memcgGlauber Costa
When a process tries to allocate a page with the __GFP_KMEMCG flag, the page allocator will call the corresponding memcg functions to validate the allocation. Tasks in the root memcg can always proceed. To avoid adding markers to the page - and a kmem flag that would necessarily follow, as much as doing page_cgroup lookups for no reason, whoever is marking its allocations with __GFP_KMEMCG flag is responsible for telling the page allocator that this is such an allocation at free_pages() time. This is done by the invocation of __free_accounted_pages() and free_accounted_pages(). Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: kmem controller infrastructureGlauber Costa
Introduce infrastructure for tracking kernel memory pages to a given memcg. This will happen whenever the caller includes the flag __GFP_KMEMCG flag, and the task belong to a memcg other than the root. In memcontrol.h those functions are wrapped in inline acessors. The idea is to later on, patch those with static branches, so we don't incur any overhead when no mem cgroups with limited kmem are being used. Users of this functionality shall interact with the memcg core code through the following functions: memcg_kmem_newpage_charge: will return true if the group can handle the allocation. At this point, struct page is not yet allocated. memcg_kmem_commit_charge: will either revert the charge, if struct page allocation failed, or embed memcg information into page_cgroup. memcg_kmem_uncharge_page: called at free time, will revert the charge. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: kmem accounting basic infrastructureGlauber Costa
Add the basic infrastructure for the accounting of kernel memory. To control that, the following files are created: * memory.kmem.usage_in_bytes * memory.kmem.limit_in_bytes * memory.kmem.failcnt * memory.kmem.max_usage_in_bytes They have the same meaning of their user memory counterparts. They reflect the state of the "kmem" res_counter. Per cgroup kmem memory accounting is not enabled until a limit is set for the group. Once the limit is set the accounting cannot be disabled for that group. This means that after the patch is applied, no behavioral changes exists for whoever is still using memcg to control their memory usage, until memory.kmem.limit_in_bytes is set for the first time. We always account to both user and kernel resource_counters. This effectively means that an independent kernel limit is in place when the limit is set to a lower value than the user memory. A equal or higher value means that the user limit will always hit first, meaning that kmem is effectively unlimited. People who want to track kernel memory but not limit it, can set this limit to a very high number (like RESOURCE_MAX - 1page - that no one will ever hit, or equal to the user memory) [akpm@linux-foundation.org: MEMCG_MMEM only works with slab and slub] Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: change defines to an enumGlauber Costa
This is just a cleanup patch for clarity of expression. In earlier submissions, people asked it to be in a separate patch, so here it is. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>