1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
/*
* Copyright (C) 2013 Imagination Technologies
* Author: Paul Burton <paul.burton@imgtec.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/io.h>
#include <linux/irqchip/mips-gic.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <asm/bcache.h>
#include <asm/mips-cm.h>
#include <asm/mips-cpc.h>
#include <asm/mips_mt.h>
#include <asm/mipsregs.h>
#include <asm/pm-cps.h>
#include <asm/r4kcache.h>
#include <asm/smp-cps.h>
#include <asm/time.h>
#include <asm/uasm.h>
static DECLARE_BITMAP(core_power, NR_CPUS);
struct core_boot_config *mips_cps_core_bootcfg;
static unsigned core_vpe_count(unsigned core)
{
unsigned cfg;
if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
return 1;
write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
}
static void __init cps_smp_setup(void)
{
unsigned int ncores, nvpes, core_vpes;
int c, v;
/* Detect & record VPE topology */
ncores = mips_cm_numcores();
pr_info("VPE topology ");
for (c = nvpes = 0; c < ncores; c++) {
core_vpes = core_vpe_count(c);
pr_cont("%c%u", c ? ',' : '{', core_vpes);
/* Use the number of VPEs in core 0 for smp_num_siblings */
if (!c)
smp_num_siblings = core_vpes;
for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
cpu_data[nvpes + v].core = c;
#ifdef CONFIG_MIPS_MT_SMP
cpu_data[nvpes + v].vpe_id = v;
#endif
}
nvpes += core_vpes;
}
pr_cont("} total %u\n", nvpes);
/* Indicate present CPUs (CPU being synonymous with VPE) */
for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
set_cpu_possible(v, true);
set_cpu_present(v, true);
__cpu_number_map[v] = v;
__cpu_logical_map[v] = v;
}
/* Set a coherent default CCA (CWB) */
change_c0_config(CONF_CM_CMASK, 0x5);
/* Core 0 is powered up (we're running on it) */
bitmap_set(core_power, 0, 1);
/* Initialise core 0 */
mips_cps_core_init();
/* Make core 0 coherent with everything */
write_gcr_cl_coherence(0xff);
#ifdef CONFIG_MIPS_MT_FPAFF
/* If we have an FPU, enroll ourselves in the FPU-full mask */
if (cpu_has_fpu)
cpumask_set_cpu(0, &mt_fpu_cpumask);
#endif /* CONFIG_MIPS_MT_FPAFF */
}
static void __init cps_prepare_cpus(unsigned int max_cpus)
{
unsigned ncores, core_vpes, c, cca;
bool cca_unsuitable;
u32 *entry_code;
mips_mt_set_cpuoptions();
/* Detect whether the CCA is unsuited to multi-core SMP */
cca = read_c0_config() & CONF_CM_CMASK;
switch (cca) {
case 0x4: /* CWBE */
case 0x5: /* CWB */
/* The CCA is coherent, multi-core is fine */
cca_unsuitable = false;
break;
default:
/* CCA is not coherent, multi-core is not usable */
cca_unsuitable = true;
}
/* Warn the user if the CCA prevents multi-core */
ncores = mips_cm_numcores();
if (cca_unsuitable && ncores > 1) {
pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
cca);
for_each_present_cpu(c) {
if (cpu_data[c].core)
set_cpu_present(c, false);
}
}
/*
* Patch the start of mips_cps_core_entry to provide:
*
* v1 = CM base address
* s0 = kseg0 CCA
*/
entry_code = (u32 *)&mips_cps_core_entry;
UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
uasm_i_addiu(&entry_code, 16, 0, cca);
blast_dcache_range((unsigned long)&mips_cps_core_entry,
(unsigned long)entry_code);
bc_wback_inv((unsigned long)&mips_cps_core_entry,
(void *)entry_code - (void *)&mips_cps_core_entry);
__sync();
/* Allocate core boot configuration structs */
mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
GFP_KERNEL);
if (!mips_cps_core_bootcfg) {
pr_err("Failed to allocate boot config for %u cores\n", ncores);
goto err_out;
}
/* Allocate VPE boot configuration structs */
for (c = 0; c < ncores; c++) {
core_vpes = core_vpe_count(c);
mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
sizeof(*mips_cps_core_bootcfg[c].vpe_config),
GFP_KERNEL);
if (!mips_cps_core_bootcfg[c].vpe_config) {
pr_err("Failed to allocate %u VPE boot configs\n",
core_vpes);
goto err_out;
}
}
/* Mark this CPU as booted */
atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
1 << cpu_vpe_id(¤t_cpu_data));
return;
err_out:
/* Clean up allocations */
if (mips_cps_core_bootcfg) {
for (c = 0; c < ncores; c++)
kfree(mips_cps_core_bootcfg[c].vpe_config);
kfree(mips_cps_core_bootcfg);
mips_cps_core_bootcfg = NULL;
}
/* Effectively disable SMP by declaring CPUs not present */
for_each_possible_cpu(c) {
if (c == 0)
continue;
set_cpu_present(c, false);
}
}
static void boot_core(unsigned core)
{
u32 access;
/* Select the appropriate core */
write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
/* Set its reset vector */
write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
/* Ensure its coherency is disabled */
write_gcr_co_coherence(0);
/* Ensure the core can access the GCRs */
access = read_gcr_access();
access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
write_gcr_access(access);
if (mips_cpc_present()) {
/* Reset the core */
mips_cpc_lock_other(core);
write_cpc_co_cmd(CPC_Cx_CMD_RESET);
mips_cpc_unlock_other();
} else {
/* Take the core out of reset */
write_gcr_co_reset_release(0);
}
/* The core is now powered up */
bitmap_set(core_power, core, 1);
}
static void remote_vpe_boot(void *dummy)
{
mips_cps_boot_vpes();
}
static void cps_boot_secondary(int cpu, struct task_struct *idle)
{
unsigned core = cpu_data[cpu].core;
unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
unsigned int remote;
int err;
vpe_cfg->pc = (unsigned long)&smp_bootstrap;
vpe_cfg->sp = __KSTK_TOS(idle);
vpe_cfg->gp = (unsigned long)task_thread_info(idle);
atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
preempt_disable();
if (!test_bit(core, core_power)) {
/* Boot a VPE on a powered down core */
boot_core(core);
goto out;
}
if (core != current_cpu_data.core) {
/* Boot a VPE on another powered up core */
for (remote = 0; remote < NR_CPUS; remote++) {
if (cpu_data[remote].core != core)
continue;
if (cpu_online(remote))
break;
}
BUG_ON(remote >= NR_CPUS);
err = smp_call_function_single(remote, remote_vpe_boot,
NULL, 1);
if (err)
panic("Failed to call remote CPU\n");
goto out;
}
BUG_ON(!cpu_has_mipsmt);
/* Boot a VPE on this core */
mips_cps_boot_vpes();
out:
preempt_enable();
}
static void cps_init_secondary(void)
{
/* Disable MT - we only want to run 1 TC per VPE */
if (cpu_has_mipsmt)
dmt();
change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
}
static void cps_smp_finish(void)
{
write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
#ifdef CONFIG_MIPS_MT_FPAFF
/* If we have an FPU, enroll ourselves in the FPU-full mask */
if (cpu_has_fpu)
cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
#endif /* CONFIG_MIPS_MT_FPAFF */
local_irq_enable();
}
#ifdef CONFIG_HOTPLUG_CPU
static int cps_cpu_disable(void)
{
unsigned cpu = smp_processor_id();
struct core_boot_config *core_cfg;
if (!cpu)
return -EBUSY;
if (!cps_pm_support_state(CPS_PM_POWER_GATED))
return -EINVAL;
core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask);
smp_mb__after_atomic();
set_cpu_online(cpu, false);
cpumask_clear_cpu(cpu, &cpu_callin_map);
return 0;
}
static DECLARE_COMPLETION(cpu_death_chosen);
static unsigned cpu_death_sibling;
static enum {
CPU_DEATH_HALT,
CPU_DEATH_POWER,
} cpu_death;
void play_dead(void)
{
unsigned cpu, core;
local_irq_disable();
idle_task_exit();
cpu = smp_processor_id();
cpu_death = CPU_DEATH_POWER;
if (cpu_has_mipsmt) {
core = cpu_data[cpu].core;
/* Look for another online VPE within the core */
for_each_online_cpu(cpu_death_sibling) {
if (cpu_data[cpu_death_sibling].core != core)
continue;
/*
* There is an online VPE within the core. Just halt
* this TC and leave the core alone.
*/
cpu_death = CPU_DEATH_HALT;
break;
}
}
/* This CPU has chosen its way out */
complete(&cpu_death_chosen);
if (cpu_death == CPU_DEATH_HALT) {
/* Halt this TC */
write_c0_tchalt(TCHALT_H);
instruction_hazard();
} else {
/* Power down the core */
cps_pm_enter_state(CPS_PM_POWER_GATED);
}
/* This should never be reached */
panic("Failed to offline CPU %u", cpu);
}
static void wait_for_sibling_halt(void *ptr_cpu)
{
unsigned cpu = (unsigned long)ptr_cpu;
unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
unsigned halted;
unsigned long flags;
do {
local_irq_save(flags);
settc(vpe_id);
halted = read_tc_c0_tchalt();
local_irq_restore(flags);
} while (!(halted & TCHALT_H));
}
static void cps_cpu_die(unsigned int cpu)
{
unsigned core = cpu_data[cpu].core;
unsigned stat;
int err;
/* Wait for the cpu to choose its way out */
if (!wait_for_completion_timeout(&cpu_death_chosen,
msecs_to_jiffies(5000))) {
pr_err("CPU%u: didn't offline\n", cpu);
return;
}
/*
* Now wait for the CPU to actually offline. Without doing this that
* offlining may race with one or more of:
*
* - Onlining the CPU again.
* - Powering down the core if another VPE within it is offlined.
* - A sibling VPE entering a non-coherent state.
*
* In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
* with which we could race, so do nothing.
*/
if (cpu_death == CPU_DEATH_POWER) {
/*
* Wait for the core to enter a powered down or clock gated
* state, the latter happening when a JTAG probe is connected
* in which case the CPC will refuse to power down the core.
*/
do {
mips_cpc_lock_other(core);
stat = read_cpc_co_stat_conf();
stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
mips_cpc_unlock_other();
} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
/* Indicate the core is powered off */
bitmap_clear(core_power, core, 1);
} else if (cpu_has_mipsmt) {
/*
* Have a CPU with access to the offlined CPUs registers wait
* for its TC to halt.
*/
err = smp_call_function_single(cpu_death_sibling,
wait_for_sibling_halt,
(void *)(unsigned long)cpu, 1);
if (err)
panic("Failed to call remote sibling CPU\n");
}
}
#endif /* CONFIG_HOTPLUG_CPU */
static struct plat_smp_ops cps_smp_ops = {
.smp_setup = cps_smp_setup,
.prepare_cpus = cps_prepare_cpus,
.boot_secondary = cps_boot_secondary,
.init_secondary = cps_init_secondary,
.smp_finish = cps_smp_finish,
.send_ipi_single = gic_send_ipi_single,
.send_ipi_mask = gic_send_ipi_mask,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_disable = cps_cpu_disable,
.cpu_die = cps_cpu_die,
#endif
};
bool mips_cps_smp_in_use(void)
{
extern struct plat_smp_ops *mp_ops;
return mp_ops == &cps_smp_ops;
}
int register_cps_smp_ops(void)
{
if (!mips_cm_present()) {
pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
return -ENODEV;
}
/* check we have a GIC - we need one for IPIs */
if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
return -ENODEV;
}
register_smp_ops(&cps_smp_ops);
return 0;
}
|