summaryrefslogtreecommitdiff
path: root/drivers/lguest/io.c
blob: da288128e44f8df314ecbc4954064b7ab029edd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*P:300 The I/O mechanism in lguest is simple yet flexible, allowing the Guest
 * to talk to the Launcher or directly to another Guest.  It uses familiar
 * concepts of DMA and interrupts, plus some neat code stolen from
 * futexes... :*/

/* Copyright (C) 2006 Rusty Russell IBM Corporation
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */
#include <linux/types.h>
#include <linux/futex.h>
#include <linux/jhash.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/uaccess.h>
#include "lg.h"

/*L:300
 * I/O
 *
 * Getting data in and out of the Guest is quite an art.  There are numerous
 * ways to do it, and they all suck differently.  We try to keep things fairly
 * close to "real" hardware so our Guest's drivers don't look like an alien
 * visitation in the middle of the Linux code, and yet make sure that Guests
 * can talk directly to other Guests, not just the Launcher.
 *
 * To do this, the Guest gives us a key when it binds or sends DMA buffers.
 * The key corresponds to a "physical" address inside the Guest (ie. a virtual
 * address inside the Launcher process).  We don't, however, use this key
 * directly.
 *
 * We want Guests which share memory to be able to DMA to each other: two
 * Launchers can mmap memory the same file, then the Guests can communicate.
 * Fortunately, the futex code provides us with a way to get a "union
 * futex_key" corresponding to the memory lying at a virtual address: if the
 * two processes share memory, the "union futex_key" for that memory will match
 * even if the memory is mapped at different addresses in each.  So we always
 * convert the keys to "union futex_key"s to compare them.
 *
 * Before we dive into this though, we need to look at another set of helper
 * routines used throughout the Host kernel code to access Guest memory.
 :*/
static struct list_head dma_hash[61];

/* An unfortunate side effect of the Linux double-linked list implementation is
 * that there's no good way to statically initialize an array of linked
 * lists. */
void lguest_io_init(void)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(dma_hash); i++)
		INIT_LIST_HEAD(&dma_hash[i]);
}

/* FIXME: allow multi-page lengths. */
static int check_dma_list(struct lguest *lg, const struct lguest_dma *dma)
{
	unsigned int i;

	for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
		if (!dma->len[i])
			return 1;
		if (!lguest_address_ok(lg, dma->addr[i], dma->len[i]))
			goto kill;
		if (dma->len[i] > PAGE_SIZE)
			goto kill;
		/* We could do over a page, but is it worth it? */
		if ((dma->addr[i] % PAGE_SIZE) + dma->len[i] > PAGE_SIZE)
			goto kill;
	}
	return 1;

kill:
	kill_guest(lg, "bad DMA entry: %u@%#lx", dma->len[i], dma->addr[i]);
	return 0;
}

/*L:330 This is our hash function, using the wonderful Jenkins hash.
 *
 * The futex key is a union with three parts: an unsigned long word, a pointer,
 * and an int "offset".  We could use jhash_2words() which takes three u32s.
 * (Ok, the hash functions are great: the naming sucks though).
 *
 * It's nice to be portable to 64-bit platforms, so we use the more generic
 * jhash2(), which takes an array of u32, the number of u32s, and an initial
 * u32 to roll in.  This is uglier, but breaks down to almost the same code on
 * 32-bit platforms like this one.
 *
 * We want a position in the array, so we modulo ARRAY_SIZE(dma_hash) (ie. 61).
 */
static unsigned int hash(const union futex_key *key)
{
	return jhash2((u32*)&key->both.word,
		      (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
		      key->both.offset)
		% ARRAY_SIZE(dma_hash);
}

/* This is a convenience routine to compare two keys.  It's a much bemoaned C
 * weakness that it doesn't allow '==' on structures or unions, so we have to
 * open-code it like this. */
static inline int key_eq(const union futex_key *a, const union futex_key *b)
{
	return (a->both.word == b->both.word
		&& a->both.ptr == b->both.ptr
		&& a->both.offset == b->both.offset);
}

/*L:360 OK, when we need to actually free up a Guest's DMA array we do several
 * things, so we have a convenient function to do it.
 *
 * The caller must hold a read lock on dmainfo owner's current->mm->mmap_sem
 * for the drop_futex_key_refs(). */
static void unlink_dma(struct lguest_dma_info *dmainfo)
{
	/* You locked this too, right? */
	BUG_ON(!mutex_is_locked(&lguest_lock));
	/* This is how we know that the entry is free. */
	dmainfo->interrupt = 0;
	/* Remove it from the hash table. */
	list_del(&dmainfo->list);
	/* Drop the references we were holding (to the inode or mm). */
	drop_futex_key_refs(&dmainfo->key);
}

/*L:350 This is the routine which we call when the Guest asks to unregister a
 * DMA array attached to a given key.  Returns true if the array was found. */
static int unbind_dma(struct lguest *lg,
		      const union futex_key *key,
		      unsigned long dmas)
{
	int i, ret = 0;

	/* We don't bother with the hash table, just look through all this
	 * Guest's DMA arrays. */
	for (i = 0; i < LGUEST_MAX_DMA; i++) {
		/* In theory it could have more than one array on the same key,
		 * or one array on multiple keys, so we check both */
		if (key_eq(key, &lg->dma[i].key) && dmas == lg->dma[i].dmas) {
			unlink_dma(&lg->dma[i]);
			ret = 1;
			break;
		}
	}
	return ret;
}

/*L:340 BIND_DMA: this is the hypercall which sets up an array of "struct
 * lguest_dma" for receiving I/O.
 *
 * The Guest wants to bind an array of "struct lguest_dma"s to a particular key
 * to receive input.  This only happens when the Guest is setting up a new
 * device, so it doesn't have to be very fast.
 *
 * It returns 1 on a successful registration (it can fail if we hit the limit
 * of registrations for this Guest).
 */
int bind_dma(struct lguest *lg,
	     unsigned long ukey, unsigned long dmas, u16 numdmas, u8 interrupt)
{
	unsigned int i;
	int ret = 0;
	union futex_key key;
	/* Futex code needs the mmap_sem. */
	struct rw_semaphore *fshared = &current->mm->mmap_sem;

	/* Invalid interrupt?  (We could kill the guest here). */
	if (interrupt >= LGUEST_IRQS)
		return 0;

	/* We need to grab the Big Lguest Lock, because other Guests may be
	 * trying to look through this Guest's DMAs to send something while
	 * we're doing this. */
	mutex_lock(&lguest_lock);
	down_read(fshared);
	if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) {
		kill_guest(lg, "bad dma key %#lx", ukey);
		goto unlock;
	}

	/* We want to keep this key valid once we drop mmap_sem, so we have to
	 * hold a reference. */
	get_futex_key_refs(&key);

	/* If the Guest specified an interrupt of 0, that means they want to
	 * unregister this array of "struct lguest_dma"s. */
	if (interrupt == 0)
		ret = unbind_dma(lg, &key, dmas);
	else {
		/* Look through this Guest's dma array for an unused entry. */
		for (i = 0; i < LGUEST_MAX_DMA; i++) {
			/* If the interrupt is non-zero, the entry is already
			 * used. */
			if (lg->dma[i].interrupt)
				continue;

			/* OK, a free one!  Fill on our details. */
			lg->dma[i].dmas = dmas;
			lg->dma[i].num_dmas = numdmas;
			lg->dma[i].next_dma = 0;
			lg->dma[i].key = key;
			lg->dma[i].guestid = lg->guestid;
			lg->dma[i].interrupt = interrupt;

			/* Now we add it to the hash table: the position
			 * depends on the futex key that we got. */
			list_add(&lg->dma[i].list, &dma_hash[hash(&key)]);
			/* Success! */
			ret = 1;
			goto unlock;
		}
	}
	/* If we didn't find a slot to put the key in, drop the reference
	 * again. */
	drop_futex_key_refs(&key);
unlock:
	/* Unlock and out. */
 	up_read(fshared);
	mutex_unlock(&lguest_lock);
	return ret;
}

/*L:385 Note that our routines to access a different Guest's memory are called
 * lgread_other() and lgwrite_other(): these names emphasize that they are only
 * used when the Guest is *not* the current Guest.
 *
 * The interface for copying from another process's memory is called
 * access_process_vm(), with a final argument of 0 for a read, and 1 for a
 * write.
 *
 * We need lgread_other() to read the destination Guest's "struct lguest_dma"
 * array. */
static int lgread_other(struct lguest *lg,
			void *buf, u32 addr, unsigned bytes)
{
	if (!lguest_address_ok(lg, addr, bytes)
	    || access_process_vm(lg->tsk, addr, buf, bytes, 0) != bytes) {
		memset(buf, 0, bytes);
		kill_guest(lg, "bad address in registered DMA struct");
		return 0;
	}
	return 1;
}

/* "lgwrite()" to another Guest: used to update the destination "used_len" once
 * we've transferred data into the buffer. */
static int lgwrite_other(struct lguest *lg, u32 addr,
			 const void *buf, unsigned bytes)
{
	if (!lguest_address_ok(lg, addr, bytes)
	    || (access_process_vm(lg->tsk, addr, (void *)buf, bytes, 1)
		!= bytes)) {
		kill_guest(lg, "bad address writing to registered DMA");
		return 0;
	}
	return 1;
}

/*L:400 This is the generic engine which copies from a source "struct
 * lguest_dma" from this Guest into another Guest's "struct lguest_dma".  The
 * destination Guest's pages have already been mapped, as contained in the
 * pages array.
 *
 * If you're wondering if there's a nice "copy from one process to another"
 * routine, so was I.  But Linux isn't really set up to copy between two
 * unrelated processes, so we have to write it ourselves.
 */
static u32 copy_data(struct lguest *srclg,
		     const struct lguest_dma *src,
		     const struct lguest_dma *dst,
		     struct page *pages[])
{
	unsigned int totlen, si, di, srcoff, dstoff;
	void *maddr = NULL;

	/* We return the total length transferred. */
	totlen = 0;

	/* We keep indexes into the source and destination "struct lguest_dma",
	 * and an offset within each region. */
	si = di = 0;
	srcoff = dstoff = 0;

	/* We loop until the source or destination is exhausted. */
	while (si < LGUEST_MAX_DMA_SECTIONS && src->len[si]
	       && di < LGUEST_MAX_DMA_SECTIONS && dst->len[di]) {
		/* We can only transfer the rest of the src buffer, or as much
		 * as will fit into the destination buffer. */
		u32 len = min(src->len[si] - srcoff, dst->len[di] - dstoff);

		/* For systems using "highmem" we need to use kmap() to access
		 * the page we want.  We often use the same page over and over,
		 * so rather than kmap() it on every loop, we set the maddr
		 * pointer to NULL when we need to move to the next
		 * destination page. */
		if (!maddr)
			maddr = kmap(pages[di]);

		/* Copy directly from (this Guest's) source address to the
		 * destination Guest's kmap()ed buffer.  Note that maddr points
		 * to the start of the page: we need to add the offset of the
		 * destination address and offset within the buffer. */

		/* FIXME: This is not completely portable.  I looked at
		 * copy_to_user_page(), and some arch's seem to need special
		 * flushes.  x86 is fine. */
		if (copy_from_user(maddr + (dst->addr[di] + dstoff)%PAGE_SIZE,
				   (void __user *)src->addr[si], len) != 0) {
			/* If a copy failed, it's the source's fault. */
			kill_guest(srclg, "bad address in sending DMA");
			totlen = 0;
			break;
		}

		/* Increment the total and src & dst offsets */
		totlen += len;
		srcoff += len;
		dstoff += len;

		/* Presumably we reached the end of the src or dest buffers: */
		if (srcoff == src->len[si]) {
			/* Move to the next buffer at offset 0 */
			si++;
			srcoff = 0;
		}
		if (dstoff == dst->len[di]) {
			/* We need to unmap that destination page and reset
			 * maddr ready for the next one. */
			kunmap(pages[di]);
			maddr = NULL;
			di++;
			dstoff = 0;
		}
	}

	/* If we still had a page mapped at the end, unmap now. */
	if (maddr)
		kunmap(pages[di]);

	return totlen;
}

/*L:390 This is how we transfer a "struct lguest_dma" from the source Guest
 * (the current Guest which called SEND_DMA) to another Guest. */
static u32 do_dma(struct lguest *srclg, const struct lguest_dma *src,
		  struct lguest *dstlg, const struct lguest_dma *dst)
{
	int i;
	u32 ret;
	struct page *pages[LGUEST_MAX_DMA_SECTIONS];

	/* We check that both source and destination "struct lguest_dma"s are
	 * within the bounds of the source and destination Guests */
	if (!check_dma_list(dstlg, dst) || !check_dma_list(srclg, src))
		return 0;

	/* We need to map the pages which correspond to each parts of
	 * destination buffer. */
	for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
		if (dst->len[i] == 0)
			break;
		/* get_user_pages() is a complicated function, especially since
		 * we only want a single page.  But it works, and returns the
		 * number of pages.  Note that we're holding the destination's
		 * mmap_sem, as get_user_pages() requires. */
		if (get_user_pages(dstlg->tsk, dstlg->mm,
				   dst->addr[i], 1, 1, 1, pages+i, NULL)
		    != 1) {
			/* This means the destination gave us a bogus buffer */
			kill_guest(dstlg, "Error mapping DMA pages");
			ret = 0;
			goto drop_pages;
		}
	}

	/* Now copy the data until we run out of src or dst. */
	ret = copy_data(srclg, src, dst, pages);

drop_pages:
	while (--i >= 0)
		put_page(pages[i]);
	return ret;
}

/*L:380 Transferring data from one Guest to another is not as simple as I'd
 * like.  We've found the "struct lguest_dma_info" bound to the same address as
 * the send, we need to copy into it.
 *
 * This function returns true if the destination array was empty. */
static int dma_transfer(struct lguest *srclg,
			unsigned long udma,
			struct lguest_dma_info *dst)
{
	struct lguest_dma dst_dma, src_dma;
	struct lguest *dstlg;
	u32 i, dma = 0;

	/* From the "struct lguest_dma_info" we found in the hash, grab the
	 * Guest. */
	dstlg = &lguests[dst->guestid];
	/* Read in the source "struct lguest_dma" handed to SEND_DMA. */
	lgread(srclg, &src_dma, udma, sizeof(src_dma));

	/* We need the destination's mmap_sem, and we already hold the source's
	 * mmap_sem for the futex key lookup.  Normally this would suggest that
	 * we could deadlock if the destination Guest was trying to send to
	 * this source Guest at the same time, which is another reason that all
	 * I/O is done under the big lguest_lock. */
	down_read(&dstlg->mm->mmap_sem);

	/* Look through the destination DMA array for an available buffer. */
	for (i = 0; i < dst->num_dmas; i++) {
		/* We keep a "next_dma" pointer which often helps us avoid
		 * looking at lots of previously-filled entries. */
		dma = (dst->next_dma + i) % dst->num_dmas;
		if (!lgread_other(dstlg, &dst_dma,
				  dst->dmas + dma * sizeof(struct lguest_dma),
				  sizeof(dst_dma))) {
			goto fail;
		}
		if (!dst_dma.used_len)
			break;
	}

	/* If we found a buffer, we do the actual data copy. */
	if (i != dst->num_dmas) {
		unsigned long used_lenp;
		unsigned int ret;

		ret = do_dma(srclg, &src_dma, dstlg, &dst_dma);
		/* Put used length in the source "struct lguest_dma"'s used_len
		 * field.  It's a little tricky to figure out where that is,
		 * though. */
		lgwrite_u32(srclg,
			    udma+offsetof(struct lguest_dma, used_len), ret);
		/* Tranferring 0 bytes is OK if the source buffer was empty. */
		if (ret == 0 && src_dma.len[0] != 0)
			goto fail;

		/* The destination Guest might be running on a different CPU:
		 * we have to make sure that it will see the "used_len" field
		 * change to non-zero *after* it sees the data we copied into
		 * the buffer.  Hence a write memory barrier. */
		wmb();
		/* Figuring out where the destination's used_len field for this
		 * "struct lguest_dma" in the array is also a little ugly. */
		used_lenp = dst->dmas
			+ dma * sizeof(struct lguest_dma)
			+ offsetof(struct lguest_dma, used_len);
		lgwrite_other(dstlg, used_lenp, &ret, sizeof(ret));
		/* Move the cursor for next time. */
		dst->next_dma++;
	}
 	up_read(&dstlg->mm->mmap_sem);

	/* We trigger the destination interrupt, even if the destination was
	 * empty and we didn't transfer anything: this gives them a chance to
	 * wake up and refill. */
	set_bit(dst->interrupt, dstlg->irqs_pending);
	/* Wake up the destination process. */
	wake_up_process(dstlg->tsk);
	/* If we passed the last "struct lguest_dma", the receive had no
	 * buffers left. */
	return i == dst->num_dmas;

fail:
	up_read(&dstlg->mm->mmap_sem);
	return 0;
}

/*L:370 This is the counter-side to the BIND_DMA hypercall; the SEND_DMA
 * hypercall.  We find out who's listening, and send to them. */
void send_dma(struct lguest *lg, unsigned long ukey, unsigned long udma)
{
	union futex_key key;
	int empty = 0;
	struct rw_semaphore *fshared = &current->mm->mmap_sem;

again:
	mutex_lock(&lguest_lock);
	down_read(fshared);
	/* Get the futex key for the key the Guest gave us */
	if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) {
		kill_guest(lg, "bad sending DMA key");
		goto unlock;
	}
	/* Since the key must be a multiple of 4, the futex key uses the lower
	 * bit of the "offset" field (which would always be 0) to indicate a
	 * mapping which is shared with other processes (ie. Guests). */
	if (key.shared.offset & 1) {
		struct lguest_dma_info *i;
		/* Look through the hash for other Guests. */
		list_for_each_entry(i, &dma_hash[hash(&key)], list) {
			/* Don't send to ourselves. */
			if (i->guestid == lg->guestid)
				continue;
			if (!key_eq(&key, &i->key))
				continue;

			/* If dma_transfer() tells us the destination has no
			 * available buffers, we increment "empty". */
			empty += dma_transfer(lg, udma, i);
			break;
		}
		/* If the destination is empty, we release our locks and
		 * give the destination Guest a brief chance to restock. */
		if (empty == 1) {
			/* Give any recipients one chance to restock. */
			up_read(&current->mm->mmap_sem);
			mutex_unlock(&lguest_lock);
			/* Next time, we won't try again. */
			empty++;
			goto again;
		}
	} else {
		/* Private mapping: Guest is sending to its Launcher.  We set
		 * the "dma_is_pending" flag so that the main loop will exit
		 * and the Launcher's read() from /dev/lguest will return. */
		lg->dma_is_pending = 1;
		lg->pending_dma = udma;
		lg->pending_key = ukey;
	}
unlock:
	up_read(fshared);
	mutex_unlock(&lguest_lock);
}
/*:*/

void release_all_dma(struct lguest *lg)
{
	unsigned int i;

	BUG_ON(!mutex_is_locked(&lguest_lock));

	down_read(&lg->mm->mmap_sem);
	for (i = 0; i < LGUEST_MAX_DMA; i++) {
		if (lg->dma[i].interrupt)
			unlink_dma(&lg->dma[i]);
	}
	up_read(&lg->mm->mmap_sem);
}

/*L:320 This routine looks for a DMA buffer registered by the Guest on the
 * given key (using the BIND_DMA hypercall). */
unsigned long get_dma_buffer(struct lguest *lg,
			     unsigned long ukey, unsigned long *interrupt)
{
	unsigned long ret = 0;
	union futex_key key;
	struct lguest_dma_info *i;
	struct rw_semaphore *fshared = &current->mm->mmap_sem;

	/* Take the Big Lguest Lock to stop other Guests sending this Guest DMA
	 * at the same time. */
	mutex_lock(&lguest_lock);
	/* To match between Guests sharing the same underlying memory we steal
	 * code from the futex infrastructure.  This requires that we hold the
	 * "mmap_sem" for our process (the Launcher), and pass it to the futex
	 * code. */
	down_read(fshared);

	/* This can fail if it's not a valid address, or if the address is not
	 * divisible by 4 (the futex code needs that, we don't really). */
	if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) {
		kill_guest(lg, "bad registered DMA buffer");
		goto unlock;
	}
	/* Search the hash table for matching entries (the Launcher can only
	 * send to its own Guest for the moment, so the entry must be for this
	 * Guest) */
	list_for_each_entry(i, &dma_hash[hash(&key)], list) {
		if (key_eq(&key, &i->key) && i->guestid == lg->guestid) {
			unsigned int j;
			/* Look through the registered DMA array for an
			 * available buffer. */
			for (j = 0; j < i->num_dmas; j++) {
				struct lguest_dma dma;

				ret = i->dmas + j * sizeof(struct lguest_dma);
				lgread(lg, &dma, ret, sizeof(dma));
				if (dma.used_len == 0)
					break;
			}
			/* Store the interrupt the Guest wants when the buffer
			 * is used. */
			*interrupt = i->interrupt;
			break;
		}
	}
unlock:
	up_read(fshared);
	mutex_unlock(&lguest_lock);
	return ret;
}
/*:*/

/*L:410 This really has completed the Launcher.  Not only have we now finished
 * the longest chapter in our journey, but this also means we are over halfway
 * through!
 *
 * Enough prevaricating around the bush: it is time for us to dive into the
 * core of the Host, in "make Host".
 */