summaryrefslogtreecommitdiff
path: root/drivers/memory/fsl_ifc.c
blob: 10d2a5f8b06a493559990694637f3080e680c869 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/*
 * Copyright 2011 Freescale Semiconductor, Inc
 *
 * Freescale Integrated Flash Controller
 *
 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/fsl_ifc.h>
#include <linux/irqdomain.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>

struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
#define FSL_IFC_V1_3_0	0x01030000
#define IFC_TIMEOUT_MSECS	1000 /* 1000ms */

/*
 * convert_ifc_address - convert the base address
 * @addr_base:	base address of the memory bank
 */
unsigned int convert_ifc_address(phys_addr_t addr_base)
{
	return addr_base & CSPR_BA;
}
EXPORT_SYMBOL(convert_ifc_address);

/*
 * fsl_ifc_find - find IFC bank
 * @addr_base:	base address of the memory bank
 *
 * This function walks IFC banks comparing "Base address" field of the CSPR
 * registers with the supplied addr_base argument. When bases match this
 * function returns bank number (starting with 0), otherwise it returns
 * appropriate errno value.
 */
int fsl_ifc_find(phys_addr_t addr_base)
{
	int i = 0;

	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
		return -ENODEV;

	for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
		u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
				convert_ifc_address(addr_base))
			return i;
	}

	return -ENOENT;
}
EXPORT_SYMBOL(fsl_ifc_find);

static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
{
	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;

	/*
	 * Clear all the common status and event registers
	 */
	if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);

	/* enable all error and events */
	ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);

	/* enable all error and event interrupts */
	ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
	ifc_out32(0x0, &ifc->cm_erattr0);
	ifc_out32(0x0, &ifc->cm_erattr1);

	return 0;
}

static int fsl_ifc_ctrl_remove(struct platform_device *dev)
{
	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);

	free_irq(ctrl->nand_irq, ctrl);
	free_irq(ctrl->irq, ctrl);

	irq_dispose_mapping(ctrl->nand_irq);
	irq_dispose_mapping(ctrl->irq);

	iounmap(ctrl->gregs);

	dev_set_drvdata(&dev->dev, NULL);
	kfree(ctrl);

	return 0;
}

/*
 * NAND events are split between an operational interrupt which only
 * receives OPC, and an error interrupt that receives everything else,
 * including non-NAND errors.  Whichever interrupt gets to it first
 * records the status and wakes the wait queue.
 */
static DEFINE_SPINLOCK(nand_irq_lock);

static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
{
	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
	unsigned long flags;
	u32 stat;

	spin_lock_irqsave(&nand_irq_lock, flags);

	stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
	if (stat) {
		ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
		ctrl->nand_stat = stat;
		wake_up(&ctrl->nand_wait);
	}

	spin_unlock_irqrestore(&nand_irq_lock, flags);

	return stat;
}

static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
{
	struct fsl_ifc_ctrl *ctrl = data;

	if (check_nand_stat(ctrl))
		return IRQ_HANDLED;

	return IRQ_NONE;
}

/*
 * NOTE: This interrupt is used to report ifc events of various kinds,
 * such as transaction errors on the chipselects.
 */
static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
{
	struct fsl_ifc_ctrl *ctrl = data;
	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
	u32 err_axiid, err_srcid, status, cs_err, err_addr;
	irqreturn_t ret = IRQ_NONE;

	/* read for chip select error */
	cs_err = ifc_in32(&ifc->cm_evter_stat);
	if (cs_err) {
		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to"
				"any memory bank 0x%08X\n", cs_err);
		/* clear the chip select error */
		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);

		/* read error attribute registers print the error information */
		status = ifc_in32(&ifc->cm_erattr0);
		err_addr = ifc_in32(&ifc->cm_erattr1);

		if (status & IFC_CM_ERATTR0_ERTYP_READ)
			dev_err(ctrl->dev, "Read transaction error"
				"CM_ERATTR0 0x%08X\n", status);
		else
			dev_err(ctrl->dev, "Write transaction error"
				"CM_ERATTR0 0x%08X\n", status);

		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
					IFC_CM_ERATTR0_ERAID_SHIFT;
		dev_err(ctrl->dev, "AXI ID of the error"
					"transaction 0x%08X\n", err_axiid);

		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
					IFC_CM_ERATTR0_ESRCID_SHIFT;
		dev_err(ctrl->dev, "SRC ID of the error"
					"transaction 0x%08X\n", err_srcid);

		dev_err(ctrl->dev, "Transaction Address corresponding to error"
					"ERADDR 0x%08X\n", err_addr);

		ret = IRQ_HANDLED;
	}

	if (check_nand_stat(ctrl))
		ret = IRQ_HANDLED;

	return ret;
}

/*
 * fsl_ifc_ctrl_probe
 *
 * called by device layer when it finds a device matching
 * one our driver can handled. This code allocates all of
 * the resources needed for the controller only.  The
 * resources for the NAND banks themselves are allocated
 * in the chip probe function.
*/
static int fsl_ifc_ctrl_probe(struct platform_device *dev)
{
	int ret = 0;
	int version, banks;
	void __iomem *addr;

	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");

	fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
	if (!fsl_ifc_ctrl_dev)
		return -ENOMEM;

	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);

	/* IOMAP the entire IFC region */
	fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
	if (!fsl_ifc_ctrl_dev->gregs) {
		dev_err(&dev->dev, "failed to get memory region\n");
		ret = -ENODEV;
		goto err;
	}

	if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
		fsl_ifc_ctrl_dev->little_endian = true;
		dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
	} else {
		fsl_ifc_ctrl_dev->little_endian = false;
		dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
	}

	version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
			FSL_IFC_VERSION_MASK;

	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
		version >> 24, (version >> 16) & 0xf, banks);

	fsl_ifc_ctrl_dev->version = version;
	fsl_ifc_ctrl_dev->banks = banks;

	addr = fsl_ifc_ctrl_dev->gregs;
	if (version >= FSL_IFC_VERSION_2_0_0)
		addr += PGOFFSET_64K;
	else
		addr += PGOFFSET_4K;
	fsl_ifc_ctrl_dev->rregs = addr;

	/* get the Controller level irq */
	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
	if (fsl_ifc_ctrl_dev->irq == 0) {
		dev_err(&dev->dev, "failed to get irq resource "
							"for IFC\n");
		ret = -ENODEV;
		goto err;
	}

	/* get the nand machine irq */
	fsl_ifc_ctrl_dev->nand_irq =
			irq_of_parse_and_map(dev->dev.of_node, 1);

	fsl_ifc_ctrl_dev->dev = &dev->dev;

	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
	if (ret < 0)
		goto err;

	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);

	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
			  "fsl-ifc", fsl_ifc_ctrl_dev);
	if (ret != 0) {
		dev_err(&dev->dev, "failed to install irq (%d)\n",
			fsl_ifc_ctrl_dev->irq);
		goto err_irq;
	}

	if (fsl_ifc_ctrl_dev->nand_irq) {
		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
		if (ret != 0) {
			dev_err(&dev->dev, "failed to install irq (%d)\n",
				fsl_ifc_ctrl_dev->nand_irq);
			goto err_nandirq;
		}
	}

	return 0;

err_nandirq:
	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
err_irq:
	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
err:
	return ret;
}

#ifdef CONFIG_PM_SLEEP
/* save ifc registers */
static int fsl_ifc_suspend(struct device *dev)
{
	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(dev);
	struct fsl_ifc_global __iomem *fcm = ctrl->gregs;
	struct fsl_ifc_runtime __iomem *runtime = ctrl->rregs;
	__be32 nand_evter_intr_en, cm_evter_intr_en, nor_evter_intr_en,
							 gpcm_evter_intr_en;
	uint32_t ifc_bank, i;

	ctrl->saved_gregs = kzalloc(sizeof(struct fsl_ifc_global), GFP_KERNEL);
	if (!ctrl->saved_gregs)
		return -ENOMEM;
	ctrl->saved_rregs = kzalloc(sizeof(struct fsl_ifc_runtime), GFP_KERNEL);
	if (!ctrl->saved_rregs)
		return -ENOMEM;

	cm_evter_intr_en = ifc_in32(&fcm->cm_evter_intr_en);
	nand_evter_intr_en = ifc_in32(&runtime->ifc_nand.nand_evter_intr_en);
	nor_evter_intr_en = ifc_in32(&runtime->ifc_nor.nor_evter_intr_en);
	gpcm_evter_intr_en = ifc_in32(&runtime->ifc_gpcm.gpcm_evter_intr_en);

/* IFC interrupts disabled */

	ifc_out32(0x0, &fcm->cm_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nand.nand_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nor.nor_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_gpcm.gpcm_evter_intr_en);

	if (ctrl->saved_gregs) {
		for (ifc_bank = 0; ifc_bank < FSL_IFC_BANK_COUNT; ifc_bank++) {
			ctrl->saved_gregs->cspr_cs[ifc_bank].cspr_ext =
				ifc_in32(&fcm->cspr_cs[ifc_bank].cspr_ext);
			ctrl->saved_gregs->cspr_cs[ifc_bank].cspr =
				ifc_in32(&fcm->cspr_cs[ifc_bank].cspr);
			ctrl->saved_gregs->amask_cs[ifc_bank].amask =
				ifc_in32(&fcm->amask_cs[ifc_bank].amask);
			ctrl->saved_gregs->csor_cs[ifc_bank].csor_ext =
				ifc_in32(&fcm->csor_cs[ifc_bank].csor_ext);
			ctrl->saved_gregs->csor_cs[ifc_bank].csor =
				ifc_in32(&fcm->csor_cs[ifc_bank].csor);
			for (i = 0; i < 4; i++) {
				ctrl->saved_gregs->ftim_cs[ifc_bank].ftim[i] =
					ifc_in32(
					&fcm->ftim_cs[ifc_bank].ftim[i]);
			}
		}

		ctrl->saved_gregs->rb_map = ifc_in32(&fcm->rb_map);
		ctrl->saved_gregs->wb_map = ifc_in32(&fcm->wb_map);
		ctrl->saved_gregs->ifc_gcr = ifc_in32(&fcm->ifc_gcr);
		ctrl->saved_gregs->ddr_ccr_low = ifc_in32(&fcm->ddr_ccr_low);
		ctrl->saved_gregs->cm_evter_en = ifc_in32(&fcm->cm_evter_en);
	}

	if (ctrl->saved_rregs) {
		/* IFC controller NAND machine registers */
		ctrl->saved_rregs->ifc_nand.ncfgr =
					ifc_in32(&runtime->ifc_nand.ncfgr);
		ctrl->saved_rregs->ifc_nand.nand_fcr0 =
					ifc_in32(&runtime->ifc_nand.nand_fcr0);
		ctrl->saved_rregs->ifc_nand.nand_fcr1 =
					ifc_in32(&runtime->ifc_nand.nand_fcr1);
		ctrl->saved_rregs->ifc_nand.row0 =
					ifc_in32(&runtime->ifc_nand.row0);
		ctrl->saved_rregs->ifc_nand.row1 =
					ifc_in32(&runtime->ifc_nand.row1);
		ctrl->saved_rregs->ifc_nand.col0 =
					ifc_in32(&runtime->ifc_nand.col0);
		ctrl->saved_rregs->ifc_nand.col1 =
					ifc_in32(&runtime->ifc_nand.col1);
		ctrl->saved_rregs->ifc_nand.row2 =
					ifc_in32(&runtime->ifc_nand.row2);
		ctrl->saved_rregs->ifc_nand.col2 =
					ifc_in32(&runtime->ifc_nand.col2);
		ctrl->saved_rregs->ifc_nand.row3 =
					ifc_in32(&runtime->ifc_nand.row3);
		ctrl->saved_rregs->ifc_nand.col3 =
					ifc_in32(&runtime->ifc_nand.col3);

		ctrl->saved_rregs->ifc_nand.nand_fbcr =
					ifc_in32(&runtime->ifc_nand.nand_fbcr);
		ctrl->saved_rregs->ifc_nand.nand_fir0 =
					ifc_in32(&runtime->ifc_nand.nand_fir0);
		ctrl->saved_rregs->ifc_nand.nand_fir1 =
					ifc_in32(&runtime->ifc_nand.nand_fir1);
		ctrl->saved_rregs->ifc_nand.nand_fir2 =
					ifc_in32(&runtime->ifc_nand.nand_fir2);
		ctrl->saved_rregs->ifc_nand.nand_csel =
					ifc_in32(&runtime->ifc_nand.nand_csel);
		ctrl->saved_rregs->ifc_nand.nandseq_strt =
					ifc_in32(
					&runtime->ifc_nand.nandseq_strt);
		ctrl->saved_rregs->ifc_nand.nand_evter_en =
					ifc_in32(
					&runtime->ifc_nand.nand_evter_en);
		ctrl->saved_rregs->ifc_nand.nanndcr =
					ifc_in32(&runtime->ifc_nand.nanndcr);
		ctrl->saved_rregs->ifc_nand.nand_dll_lowcfg0 =
					ifc_in32(
					&runtime->ifc_nand.nand_dll_lowcfg0);
		ctrl->saved_rregs->ifc_nand.nand_dll_lowcfg1 =
					ifc_in32(
					&runtime->ifc_nand.nand_dll_lowcfg1);

		/* IFC controller NOR machine registers */
		ctrl->saved_rregs->ifc_nor.nor_evter_en =
					ifc_in32(
					&runtime->ifc_nor.nor_evter_en);
		ctrl->saved_rregs->ifc_nor.norcr =
					ifc_in32(&runtime->ifc_nor.norcr);

		/* IFC controller GPCM Machine registers */
		ctrl->saved_rregs->ifc_gpcm.gpcm_evter_en =
					ifc_in32(
					&runtime->ifc_gpcm.gpcm_evter_en);
	}

/* save the interrupt values */
	ctrl->saved_gregs->cm_evter_intr_en = cm_evter_intr_en;
	ctrl->saved_rregs->ifc_nand.nand_evter_intr_en = nand_evter_intr_en;
	ctrl->saved_rregs->ifc_nor.nor_evter_intr_en = nor_evter_intr_en;
	ctrl->saved_rregs->ifc_gpcm.gpcm_evter_intr_en = gpcm_evter_intr_en;

	return 0;
}

/* restore ifc registers */
static int fsl_ifc_resume(struct device *dev)
{
	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(dev);
	struct fsl_ifc_global __iomem *fcm = ctrl->gregs;
	struct fsl_ifc_runtime __iomem *runtime = ctrl->rregs;
	struct fsl_ifc_global *savd_gregs = ctrl->saved_gregs;
	struct fsl_ifc_runtime *savd_rregs = ctrl->saved_rregs;
	uint32_t ver = 0, ncfgr, timeout, ifc_bank, i;

/*
 * IFC interrupts disabled
 */
	ifc_out32(0x0, &fcm->cm_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nand.nand_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nor.nor_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_gpcm.gpcm_evter_intr_en);


	if (ctrl->saved_gregs) {
		for (ifc_bank = 0; ifc_bank < FSL_IFC_BANK_COUNT; ifc_bank++) {
			ifc_out32(savd_gregs->cspr_cs[ifc_bank].cspr_ext,
					&fcm->cspr_cs[ifc_bank].cspr_ext);
			ifc_out32(savd_gregs->cspr_cs[ifc_bank].cspr,
					&fcm->cspr_cs[ifc_bank].cspr);
			ifc_out32(savd_gregs->amask_cs[ifc_bank].amask,
					&fcm->amask_cs[ifc_bank].amask);
			ifc_out32(savd_gregs->csor_cs[ifc_bank].csor_ext,
					&fcm->csor_cs[ifc_bank].csor_ext);
			ifc_out32(savd_gregs->csor_cs[ifc_bank].csor,
					&fcm->csor_cs[ifc_bank].csor);
			for (i = 0; i < 4; i++) {
				ifc_out32(savd_gregs->ftim_cs[ifc_bank].ftim[i],
					&fcm->ftim_cs[ifc_bank].ftim[i]);
			}
		}
		ifc_out32(savd_gregs->rb_map, &fcm->rb_map);
		ifc_out32(savd_gregs->wb_map, &fcm->wb_map);
		ifc_out32(savd_gregs->ifc_gcr, &fcm->ifc_gcr);
		ifc_out32(savd_gregs->ddr_ccr_low, &fcm->ddr_ccr_low);
		ifc_out32(savd_gregs->cm_evter_en, &fcm->cm_evter_en);
	}

	if (ctrl->saved_rregs) {
		/* IFC controller NAND machine registers */
		ifc_out32(savd_rregs->ifc_nand.ncfgr,
						&runtime->ifc_nand.ncfgr);
		ifc_out32(savd_rregs->ifc_nand.nand_fcr0,
						&runtime->ifc_nand.nand_fcr0);
		ifc_out32(savd_rregs->ifc_nand.nand_fcr1,
						&runtime->ifc_nand.nand_fcr1);
		ifc_out32(savd_rregs->ifc_nand.row0, &runtime->ifc_nand.row0);
		ifc_out32(savd_rregs->ifc_nand.row1, &runtime->ifc_nand.row1);
		ifc_out32(savd_rregs->ifc_nand.col0, &runtime->ifc_nand.col0);
		ifc_out32(savd_rregs->ifc_nand.col1, &runtime->ifc_nand.col1);
		ifc_out32(savd_rregs->ifc_nand.row2, &runtime->ifc_nand.row2);
		ifc_out32(savd_rregs->ifc_nand.col2, &runtime->ifc_nand.col2);
		ifc_out32(savd_rregs->ifc_nand.row3, &runtime->ifc_nand.row3);
		ifc_out32(savd_rregs->ifc_nand.col3, &runtime->ifc_nand.col3);
		ifc_out32(savd_rregs->ifc_nand.nand_fbcr,
						&runtime->ifc_nand.nand_fbcr);
		ifc_out32(savd_rregs->ifc_nand.nand_fir0,
						&runtime->ifc_nand.nand_fir0);
		ifc_out32(savd_rregs->ifc_nand.nand_fir1,
						&runtime->ifc_nand.nand_fir1);
		ifc_out32(savd_rregs->ifc_nand.nand_fir2,
						&runtime->ifc_nand.nand_fir2);
		ifc_out32(savd_rregs->ifc_nand.nand_csel,
						&runtime->ifc_nand.nand_csel);
		ifc_out32(savd_rregs->ifc_nand.nandseq_strt,
					&runtime->ifc_nand.nandseq_strt);
		ifc_out32(savd_rregs->ifc_nand.nand_evter_en,
					&runtime->ifc_nand.nand_evter_en);
		ifc_out32(savd_rregs->ifc_nand.nanndcr,
					&runtime->ifc_nand.nanndcr);
		ifc_out32(savd_rregs->ifc_nand.nand_dll_lowcfg0,
					&runtime->ifc_nand.nand_dll_lowcfg0);
		ifc_out32(savd_rregs->ifc_nand.nand_dll_lowcfg1,
					&runtime->ifc_nand.nand_dll_lowcfg1);

		/* IFC controller NOR machine registers */
		ifc_out32(savd_rregs->ifc_nor.nor_evter_en,
					&runtime->ifc_nor.nor_evter_en);
		ifc_out32(savd_rregs->ifc_nor.norcr, &runtime->ifc_nor.norcr);

		/* IFC controller GPCM Machine registers */
		ifc_out32(savd_rregs->ifc_gpcm.gpcm_evter_en,
					&runtime->ifc_gpcm.gpcm_evter_en);

		/* IFC interrupts enabled */
		ifc_out32(ctrl->saved_gregs->cm_evter_intr_en,
					&fcm->cm_evter_intr_en);
		ifc_out32(ctrl->saved_rregs->ifc_nand.nand_evter_intr_en,
					&runtime->ifc_nand.nand_evter_intr_en);
		ifc_out32(ctrl->saved_rregs->ifc_nor.nor_evter_intr_en,
					&runtime->ifc_nor.nor_evter_intr_en);
		ifc_out32(ctrl->saved_rregs->ifc_gpcm.gpcm_evter_intr_en,
					&runtime->ifc_gpcm.gpcm_evter_intr_en);

		kfree(ctrl->saved_gregs);
		kfree(ctrl->saved_rregs);
		ctrl->saved_gregs = NULL;
		ctrl->saved_rregs = NULL;
	}

	ver = ifc_in32(&fcm->ifc_rev);
	ncfgr = ifc_in32(&runtime->ifc_nand.ncfgr);
	if (ver >= FSL_IFC_V1_3_0) {

		ifc_out32(ncfgr | IFC_NAND_SRAM_INIT_EN,
					&runtime->ifc_nand.ncfgr);
		/* wait for  SRAM_INIT bit to be clear or timeout */
		timeout = 10;
		while ((ifc_in32(&runtime->ifc_nand.ncfgr) &
			IFC_NAND_SRAM_INIT_EN) && timeout) {
			mdelay(IFC_TIMEOUT_MSECS);
			timeout--;
		}

		if (!timeout)
			dev_err(ctrl->dev, "Timeout waiting for IFC SRAM INIT");
	}

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static const struct of_device_id fsl_ifc_match[] = {
	{
		.compatible = "fsl,ifc",
	},
	{},
};

static const struct dev_pm_ops ifc_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_ifc_suspend, fsl_ifc_resume)
};

static struct platform_driver fsl_ifc_ctrl_driver = {
	.driver = {
		.name	= "fsl-ifc",
		.of_match_table = fsl_ifc_match,
		.pm = &ifc_pm_ops,
	},
	.probe       = fsl_ifc_ctrl_probe,
	.remove      = fsl_ifc_ctrl_remove,
};

static int __init fsl_ifc_init(void)
{
	return platform_driver_register(&fsl_ifc_ctrl_driver);
}
subsys_initcall(fsl_ifc_init);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale Semiconductor");
MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");