summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_reflink.c
blob: d953df3a201c93e35e5e196a42b381ded75532eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 *
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
#include "xfs_iomap.h"

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
 * When dirty pages are being written out (typically in writepage), the
 * delalloc reservations are converted into real mappings by allocating
 * blocks and replacing the delalloc mapping with real ones.  A delalloc
 * mapping can be replaced by several real ones if the free space is
 * fragmented.
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
 * the data fork, and remove the extent from the CoW fork.
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

	error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
	if (error)
		return error;

	cur = xfs_refcountbt_init_cursor(mp, NULL, agbp, agno, NULL);

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);

	xfs_buf_relse(agbp);
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
	if (!xfs_is_reflink_inode(ip) ||
	    ISUNWRITTEN(irec) ||
	    irec->br_startblock == HOLESTARTBLOCK ||
	    irec->br_startblock == DELAYSTARTBLOCK) {
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

	error = xfs_reflink_find_shared(ip->i_mount, agno, agbno,
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

/* Create a CoW reservation for a range of blocks within a file. */
static int
__xfs_reflink_reserve_cow(
	struct xfs_inode	*ip,
	xfs_fileoff_t		*offset_fsb,
	xfs_fileoff_t		end_fsb)
{
	struct xfs_bmbt_irec	got, prev, imap;
	xfs_fileoff_t		orig_end_fsb;
	int			nimaps, eof = 0, error = 0;
	bool			shared = false, trimmed = false;
	xfs_extnum_t		idx;

	/* Already reserved?  Skip the refcount btree access. */
	xfs_bmap_search_extents(ip, *offset_fsb, XFS_COW_FORK, &eof, &idx,
			&got, &prev);
	if (!eof && got.br_startoff <= *offset_fsb) {
		end_fsb = orig_end_fsb = got.br_startoff + got.br_blockcount;
		trace_xfs_reflink_cow_found(ip, &got);
		goto done;
	}

	/* Read extent from the source file. */
	nimaps = 1;
	error = xfs_bmapi_read(ip, *offset_fsb, end_fsb - *offset_fsb,
			&imap, &nimaps, 0);
	if (error)
		goto out_unlock;
	ASSERT(nimaps == 1);

	/* Trim the mapping to the nearest shared extent boundary. */
	error = xfs_reflink_trim_around_shared(ip, &imap, &shared, &trimmed);
	if (error)
		goto out_unlock;

	end_fsb = orig_end_fsb = imap.br_startoff + imap.br_blockcount;

	/* Not shared?  Just report the (potentially capped) extent. */
	if (!shared)
		goto done;

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
	error = xfs_qm_dqattach_locked(ip, 0);
	if (error)
		goto out_unlock;

retry:
	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, *offset_fsb,
			end_fsb - *offset_fsb, &got,
			&prev, &idx, eof);
	switch (error) {
	case 0:
		break;
	case -ENOSPC:
	case -EDQUOT:
		/* retry without any preallocation */
		trace_xfs_reflink_cow_enospc(ip, &imap);
		if (end_fsb != orig_end_fsb) {
			end_fsb = orig_end_fsb;
			goto retry;
		}
		/*FALLTHRU*/
	default:
		goto out_unlock;
	}

	trace_xfs_reflink_cow_alloc(ip, &got);
done:
	*offset_fsb = end_fsb;
out_unlock:
	return error;
}

/* Create a CoW reservation for part of a file. */
int
xfs_reflink_reserve_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error;

	trace_xfs_reflink_reserve_cow_range(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(mp, offset);
	end_fsb = XFS_B_TO_FSB(mp, offset + count);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	while (offset_fsb < end_fsb) {
		error = __xfs_reflink_reserve_cow(ip, &offset_fsb, end_fsb);
		if (error) {
			trace_xfs_reflink_reserve_cow_range_error(ip, error,
				_RET_IP_);
			break;
		}
	}
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	return error;
}

/*
 * Find the CoW reservation (and whether or not it needs block allocation)
 * for a given byte offset of a file.
 */
bool
xfs_reflink_find_cow_mapping(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	struct xfs_bmbt_irec		*imap,
	bool				*need_alloc)
{
	struct xfs_bmbt_irec		irec;
	struct xfs_ifork		*ifp;
	struct xfs_bmbt_rec_host	*gotp;
	xfs_fileoff_t			bno;
	xfs_extnum_t			idx;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
	ASSERT(xfs_is_reflink_inode(ip));

	/* Find the extent in the CoW fork. */
	ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	bno = XFS_B_TO_FSBT(ip->i_mount, offset);
	gotp = xfs_iext_bno_to_ext(ifp, bno, &idx);
	if (!gotp)
		return false;

	xfs_bmbt_get_all(gotp, &irec);
	if (bno >= irec.br_startoff + irec.br_blockcount ||
	    bno < irec.br_startoff)
		return false;

	trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
			&irec);

	/* If it's still delalloc, we must allocate later. */
	*imap = irec;
	*need_alloc = !!(isnullstartblock(irec.br_startblock));

	return true;
}

/*
 * Trim an extent to end at the next CoW reservation past offset_fsb.
 */
int
xfs_reflink_trim_irec_to_next_cow(
	struct xfs_inode		*ip,
	xfs_fileoff_t			offset_fsb,
	struct xfs_bmbt_irec		*imap)
{
	struct xfs_bmbt_irec		irec;
	struct xfs_ifork		*ifp;
	struct xfs_bmbt_rec_host	*gotp;
	xfs_extnum_t			idx;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	/* Find the extent in the CoW fork. */
	ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	gotp = xfs_iext_bno_to_ext(ifp, offset_fsb, &idx);
	if (!gotp)
		return 0;
	xfs_bmbt_get_all(gotp, &irec);

	/* This is the extent before; try sliding up one. */
	if (irec.br_startoff < offset_fsb) {
		idx++;
		if (idx >= ifp->if_bytes / sizeof(xfs_bmbt_rec_t))
			return 0;
		gotp = xfs_iext_get_ext(ifp, idx);
		xfs_bmbt_get_all(gotp, &irec);
	}

	if (irec.br_startoff >= imap->br_startoff + imap->br_blockcount)
		return 0;

	imap->br_blockcount = irec.br_startoff - imap->br_startoff;
	trace_xfs_reflink_trim_irec(ip, imap);

	return 0;
}