summaryrefslogtreecommitdiff
path: root/drivers/net/pfe_eth/pfe.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/pfe_eth/pfe.c')
-rw-r--r--drivers/net/pfe_eth/pfe.c1161
1 files changed, 1161 insertions, 0 deletions
diff --git a/drivers/net/pfe_eth/pfe.c b/drivers/net/pfe_eth/pfe.c
new file mode 100644
index 0000000..fc6631e
--- /dev/null
+++ b/drivers/net/pfe_eth/pfe.c
@@ -0,0 +1,1161 @@
+/*
+ * Copyright 2015-2016 Freescale Semiconductor, Inc.
+ * Copyright 2017 NXP
+ *
+ * SPDX-License-Identifier:GPL-2.0+
+ */
+#include <pfe_eth/pfe_eth.h>
+#include <pfe_eth/pfe/pfe.h>
+
+void *ddr_base_addr;
+unsigned long ddr_phys_base_addr;
+static struct pe_info pe[MAX_PE];
+
+/*
+ * Initializes the PFE library.
+ * Must be called before using any of the library functions.
+ *
+ * @param[in] cbus_base CBUS virtual base address (as mapped in
+ * the host CPU address space)
+ * @param[in] ddr_base DDR virtual base address (as mapped in
+ * the host CPU address space)
+ * @param[in] ddr_phys_base DDR physical base address (as mapped in
+ * platform)
+ */
+void pfe_lib_init(void *ddr_base, unsigned long ddr_phys_base)
+{
+ ddr_base_addr = ddr_base;
+ ddr_phys_base_addr = ddr_phys_base;
+
+ pe[CLASS0_ID].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(0);
+ pe[CLASS0_ID].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(0);
+ pe[CLASS0_ID].pmem_size = (u32)CLASS_IMEM_SIZE;
+ pe[CLASS0_ID].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA;
+ pe[CLASS0_ID].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
+ pe[CLASS0_ID].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
+
+ pe[CLASS1_ID].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(1);
+ pe[CLASS1_ID].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(1);
+ pe[CLASS1_ID].pmem_size = (u32)CLASS_IMEM_SIZE;
+ pe[CLASS1_ID].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA;
+ pe[CLASS1_ID].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
+ pe[CLASS1_ID].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
+
+ pe[CLASS2_ID].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(2);
+ pe[CLASS2_ID].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(2);
+ pe[CLASS2_ID].pmem_size = (u32)CLASS_IMEM_SIZE;
+ pe[CLASS2_ID].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA;
+ pe[CLASS2_ID].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
+ pe[CLASS2_ID].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
+
+ pe[CLASS3_ID].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(3);
+ pe[CLASS3_ID].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(3);
+ pe[CLASS3_ID].pmem_size = (u32)CLASS_IMEM_SIZE;
+ pe[CLASS3_ID].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA;
+ pe[CLASS3_ID].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
+ pe[CLASS3_ID].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
+
+ pe[CLASS4_ID].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(4);
+ pe[CLASS4_ID].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(4);
+ pe[CLASS4_ID].pmem_size = (u32)CLASS_IMEM_SIZE;
+ pe[CLASS4_ID].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA;
+ pe[CLASS4_ID].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
+ pe[CLASS4_ID].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
+
+ pe[CLASS5_ID].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(5);
+ pe[CLASS5_ID].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(5);
+ pe[CLASS5_ID].pmem_size = (u32)CLASS_IMEM_SIZE;
+ pe[CLASS5_ID].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA;
+ pe[CLASS5_ID].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
+ pe[CLASS5_ID].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
+
+ pe[TMU0_ID].dmem_base_addr = (u32)TMU_DMEM_BASE_ADDR(0);
+ pe[TMU0_ID].pmem_base_addr = (u32)TMU_IMEM_BASE_ADDR(0);
+ pe[TMU0_ID].pmem_size = (u32)TMU_IMEM_SIZE;
+ pe[TMU0_ID].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
+ pe[TMU0_ID].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
+ pe[TMU0_ID].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
+
+ pe[TMU1_ID].dmem_base_addr = (u32)TMU_DMEM_BASE_ADDR(1);
+ pe[TMU1_ID].pmem_base_addr = (u32)TMU_IMEM_BASE_ADDR(1);
+ pe[TMU1_ID].pmem_size = (u32)TMU_IMEM_SIZE;
+ pe[TMU1_ID].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
+ pe[TMU1_ID].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
+ pe[TMU1_ID].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
+
+ pe[TMU3_ID].dmem_base_addr = (u32)TMU_DMEM_BASE_ADDR(3);
+ pe[TMU3_ID].pmem_base_addr = (u32)TMU_IMEM_BASE_ADDR(3);
+ pe[TMU3_ID].pmem_size = (u32)TMU_IMEM_SIZE;
+ pe[TMU3_ID].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
+ pe[TMU3_ID].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
+ pe[TMU3_ID].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
+
+#if !defined(CONFIG_UTIL_PE_DISABLED)
+ pe[UTIL_ID].dmem_base_addr = (u32)UTIL_DMEM_BASE_ADDR;
+ pe[UTIL_ID].mem_access_wdata = (void *)UTIL_MEM_ACCESS_WDATA;
+ pe[UTIL_ID].mem_access_addr = (void *)UTIL_MEM_ACCESS_ADDR;
+ pe[UTIL_ID].mem_access_rdata = (void *)UTIL_MEM_ACCESS_RDATA;
+#endif
+}
+
+/*
+ * Writes a buffer to PE internal memory from the host
+ * through indirect access registers.
+ *
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] src Buffer source address
+ * @param[in] mem_access_addr DMEM destination address (must be 32bit
+ * aligned)
+ * @param[in] len Number of bytes to copy
+ */
+void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src, unsigned
+ int len)
+{
+ u32 offset = 0, val, addr;
+ unsigned int len32 = len >> 2;
+ int i;
+
+ addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
+ PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
+
+ for (i = 0; i < len32; i++, offset += 4, src += 4) {
+ val = *(u32 *)src;
+ writel(cpu_to_be32(val), pe[id].mem_access_wdata);
+ writel(addr + offset, pe[id].mem_access_addr);
+ }
+
+ len = (len & 0x3);
+ if (len) {
+ val = 0;
+
+ addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
+ PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
+
+ for (i = 0; i < len; i++, src++)
+ val |= (*(u8 *)src) << (8 * i);
+
+ writel(cpu_to_be32(val), pe[id].mem_access_wdata);
+ writel(addr, pe[id].mem_access_addr);
+ }
+}
+
+/*
+ * Writes a buffer to PE internal data memory (DMEM) from the host
+ * through indirect access registers.
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] src Buffer source address
+ * @param[in] dst DMEM destination address (must be 32bit
+ * aligned)
+ * @param[in] len Number of bytes to copy
+ */
+void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len)
+{
+ pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
+ src, len);
+}
+
+/*
+ * Writes a buffer to PE internal program memory (PMEM) from the host
+ * through indirect access registers.
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., TMU3_ID)
+ * @param[in] src Buffer source address
+ * @param[in] dst PMEM destination address (must be 32bit
+ * aligned)
+ * @param[in] len Number of bytes to copy
+ */
+void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len)
+{
+ pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
+ - 1)) | PE_MEM_ACCESS_IMEM, src, len);
+}
+
+/*
+ * Reads PE internal program memory (IMEM) from the host
+ * through indirect access registers.
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., TMU3_ID)
+ * @param[in] addr PMEM read address (must be aligned on size)
+ * @param[in] size Number of bytes to read (maximum 4, must not
+ * cross 32bit boundaries)
+ * @return the data read (in PE endianness, i.e BE).
+ */
+u32 pe_pmem_read(int id, u32 addr, u8 size)
+{
+ u32 offset = addr & 0x3;
+ u32 mask = 0xffffffff >> ((4 - size) << 3);
+ u32 val;
+
+ addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
+ | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
+ PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
+
+ writel(addr, pe[id].mem_access_addr);
+ val = be32_to_cpu(readl(pe[id].mem_access_rdata));
+
+ return (val >> (offset << 3)) & mask;
+}
+
+/*
+ * Writes PE internal data memory (DMEM) from the host
+ * through indirect access registers.
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] addr DMEM write address (must be aligned on size)
+ * @param[in] val Value to write (in PE endianness, i.e BE)
+ * @param[in] size Number of bytes to write (maximum 4, must not
+ * cross 32bit boundaries)
+ */
+void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
+{
+ u32 offset = addr & 0x3;
+
+ addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
+ PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
+
+ /* Indirect access interface is byte swapping data being written */
+ writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
+ writel(addr, pe[id].mem_access_addr);
+}
+
+/*
+ * Reads PE internal data memory (DMEM) from the host
+ * through indirect access registers.
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] addr DMEM read address (must be aligned on size)
+ * @param[in] size Number of bytes to read (maximum 4, must not
+ * cross 32bit boundaries)
+ * @return the data read (in PE endianness, i.e BE).
+ */
+u32 pe_dmem_read(int id, u32 addr, u8 size)
+{
+ u32 offset = addr & 0x3;
+ u32 mask = 0xffffffff >> ((4 - size) << 3);
+ u32 val;
+
+ addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
+ PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
+
+ writel(addr, pe[id].mem_access_addr);
+
+ /* Indirect access interface is byte swapping data being read */
+ val = be32_to_cpu(readl(pe[id].mem_access_rdata));
+
+ return (val >> (offset << 3)) & mask;
+}
+
+/*
+ * This function is used to write to CLASS internal bus peripherals (ccu,
+ * pe-lem) from the host
+ * through indirect access registers.
+ * @param[in] val value to write
+ * @param[in] addr Address to write to (must be aligned on size)
+ * @param[in] size Number of bytes to write (1, 2 or 4)
+ *
+ */
+void class_bus_write(u32 val, u32 addr, u8 size)
+{
+ u32 offset = addr & 0x3;
+
+ writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
+
+ addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
+ (size << 24);
+
+ writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
+ writel(addr, CLASS_BUS_ACCESS_ADDR);
+}
+
+/*
+ * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
+ * through indirect access registers.
+ * @param[in] addr Address to read from (must be aligned on size)
+ * @param[in] size Number of bytes to read (1, 2 or 4)
+ * @return the read data
+ */
+u32 class_bus_read(u32 addr, u8 size)
+{
+ u32 offset = addr & 0x3;
+ u32 mask = 0xffffffff >> ((4 - size) << 3);
+ u32 val;
+
+ writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
+
+ addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
+
+ writel(addr, CLASS_BUS_ACCESS_ADDR);
+ val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
+
+ return (val >> (offset << 3)) & mask;
+}
+
+/*
+ * Writes data to the cluster memory (PE_LMEM)
+ * @param[in] dst PE LMEM destination address (must be 32bit aligned)
+ * @param[in] src Buffer source address
+ * @param[in] len Number of bytes to copy
+ */
+void class_pe_lmem_memcpy_to32(u32 dst, const void *src, unsigned int len)
+{
+ u32 len32 = len >> 2;
+ int i;
+
+ for (i = 0; i < len32; i++, src += 4, dst += 4)
+ class_bus_write(*(u32 *)src, dst, 4);
+
+ if (len & 0x2) {
+ class_bus_write(*(u16 *)src, dst, 2);
+ src += 2;
+ dst += 2;
+ }
+
+ if (len & 0x1) {
+ class_bus_write(*(u8 *)src, dst, 1);
+ src++;
+ dst++;
+ }
+}
+
+/*
+ * Writes value to the cluster memory (PE_LMEM)
+ * @param[in] dst PE LMEM destination address (must be 32bit aligned)
+ * @param[in] val Value to write
+ * @param[in] len Number of bytes to write
+ */
+void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
+{
+ u32 len32 = len >> 2;
+ int i;
+
+ val = val | (val << 8) | (val << 16) | (val << 24);
+
+ for (i = 0; i < len32; i++, dst += 4)
+ class_bus_write(val, dst, 4);
+
+ if (len & 0x2) {
+ class_bus_write(val, dst, 2);
+ dst += 2;
+ }
+
+ if (len & 0x1) {
+ class_bus_write(val, dst, 1);
+ dst++;
+ }
+}
+
+/*
+ * Reads data from the cluster memory (PE_LMEM)
+ * @param[out] dst pointer to the source buffer data are copied to
+ * @param[in] len length in bytes of the amount of data to read
+ * from cluster memory
+ * @param[in] offset offset in bytes in the cluster memory where data are
+ * read from
+ */
+void pe_lmem_read(u32 *dst, u32 len, u32 offset)
+{
+ u32 len32 = len >> 2;
+ int i = 0;
+
+ for (i = 0; i < len32; dst++, i++, offset += 4)
+ *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
+
+ if (len & 0x03)
+ *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
+}
+
+/*
+ * Writes data to the cluster memory (PE_LMEM)
+ * @param[in] src pointer to the source buffer data are copied from
+ * @param[in] len length in bytes of the amount of data to write to the
+ * cluster memory
+ * @param[in] offset offset in bytes in the cluster memory where data are
+ * written to
+ */
+void pe_lmem_write(u32 *src, u32 len, u32 offset)
+{
+ u32 len32 = len >> 2;
+ int i = 0;
+
+ for (i = 0; i < len32; src++, i++, offset += 4)
+ class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
+
+ if (len & 0x03)
+ class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
+ 0x03));
+}
+
+#if !defined(CONFIG_UTIL_PE_DISABLED)
+/*
+ * Writes UTIL program memory (DDR) from the host.
+ *
+ * @param[in] addr Address to write (virtual, must be aligned on size)
+ * @param[in] val Value to write (in PE endianness, i.e BE)
+ * @param[in] size Number of bytes to write (2 or 4)
+ */
+static void util_pmem_write(u32 val, void *addr, u8 size)
+{
+ void *addr64 = (void *)((unsigned long)addr & ~0x7);
+ unsigned long off = 8 - ((unsigned long)addr & 0x7) - size;
+
+ /* IMEM should be loaded as a 64bit swapped value in a 64bit aligned
+ * location
+ */
+ if (size == 4)
+ writel(be32_to_cpu(val), addr64 + off);
+ else
+ writew(be16_to_cpu((u16)val), addr64 + off);
+}
+
+/*
+ * Writes a buffer to UTIL program memory (DDR) from the host.
+ *
+ * @param[in] dst Address to write (virtual, must be at least 16bit
+ * aligned)
+ * @param[in] src Buffer to write (in PE endianness, i.e BE, must have
+ * same alignment as dst)
+ * @param[in] len Number of bytes to write (must be at least 16bit
+ * aligned)
+ */
+static void util_pmem_memcpy(void *dst, const void *src, unsigned int len)
+{
+ unsigned int len32;
+ int i;
+
+ if ((unsigned long)src & 0x2) {
+ util_pmem_write(*(u16 *)src, dst, 2);
+ src += 2;
+ dst += 2;
+ len -= 2;
+ }
+
+ len32 = len >> 2;
+
+ for (i = 0; i < len32; i++, dst += 4, src += 4)
+ util_pmem_write(*(u32 *)src, dst, 4);
+
+ if (len & 0x2)
+ util_pmem_write(*(u16 *)src, dst, len & 0x2);
+}
+#endif
+
+/*
+ * Loads an elf section into pmem
+ * Code needs to be at least 16bit aligned and only PROGBITS sections are
+ * supported
+ *
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, ...,
+ * TMU3_ID)
+ * @param[in] data pointer to the elf firmware
+ * @param[in] shdr pointer to the elf section header
+ */
+static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
+{
+ u32 offset = be32_to_cpu(shdr->sh_offset);
+ u32 addr = be32_to_cpu(shdr->sh_addr);
+ u32 size = be32_to_cpu(shdr->sh_size);
+ u32 type = be32_to_cpu(shdr->sh_type);
+
+#if !defined(CONFIG_UTIL_PE_DISABLED)
+ if (id == UTIL_ID) {
+ printf("%s: unsupported pmem section for UTIL\n", __func__);
+ return -1;
+ }
+#endif
+
+ if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
+ printf(
+ "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
+ __func__, addr, (unsigned long) data + offset);
+
+ return -1;
+ }
+
+ if (addr & 0x1) {
+ printf("%s: load address(%x) is not 16bit aligned\n",
+ __func__, addr);
+ return -1;
+ }
+
+ if (size & 0x1) {
+ printf("%s: load size(%x) is not 16bit aligned\n", __func__,
+ size);
+ return -1;
+ }
+
+ debug("pmem pe%d @%x len %d\n", id, addr, size);
+ switch (type) {
+ case SHT_PROGBITS:
+ pe_pmem_memcpy_to32(id, addr, data + offset, size);
+ break;
+
+ default:
+ printf("%s: unsupported section type(%x)\n", __func__, type);
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Loads an elf section into dmem
+ * Data needs to be at least 32bit aligned, NOBITS sections are correctly
+ * initialized to 0
+ *
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] data pointer to the elf firmware
+ * @param[in] shdr pointer to the elf section header
+ */
+static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
+{
+ u32 offset = be32_to_cpu(shdr->sh_offset);
+ u32 addr = be32_to_cpu(shdr->sh_addr);
+ u32 size = be32_to_cpu(shdr->sh_size);
+ u32 type = be32_to_cpu(shdr->sh_type);
+ u32 size32 = size >> 2;
+ int i;
+
+ if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
+ printf(
+ "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
+ __func__, addr, (unsigned long)data + offset);
+
+ return -1;
+ }
+
+ if (addr & 0x3) {
+ printf("%s: load address(%x) is not 32bit aligned\n",
+ __func__, addr);
+ return -1;
+ }
+
+ switch (type) {
+ case SHT_PROGBITS:
+ debug("dmem pe%d @%x len %d\n", id, addr, size);
+ pe_dmem_memcpy_to32(id, addr, data + offset, size);
+ break;
+
+ case SHT_NOBITS:
+ debug("dmem zero pe%d @%x len %d\n", id, addr, size);
+ for (i = 0; i < size32; i++, addr += 4)
+ pe_dmem_write(id, 0, addr, 4);
+
+ if (size & 0x3)
+ pe_dmem_write(id, 0, addr, size & 0x3);
+
+ break;
+
+ default:
+ printf("%s: unsupported section type(%x)\n", __func__, type);
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Loads an elf section into DDR
+ * Data needs to be at least 32bit aligned, NOBITS sections are correctly
+ * initialized to 0
+ *
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] data pointer to the elf firmware
+ * @param[in] shdr pointer to the elf section header
+ */
+static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
+{
+ u32 offset = be32_to_cpu(shdr->sh_offset);
+ u32 addr = be32_to_cpu(shdr->sh_addr);
+ u32 size = be32_to_cpu(shdr->sh_size);
+ u32 type = be32_to_cpu(shdr->sh_type);
+ u32 flags = be32_to_cpu(shdr->sh_flags);
+
+ switch (type) {
+ case SHT_PROGBITS:
+ debug("ddr pe%d @%x len %d\n", id, addr, size);
+ if (flags & SHF_EXECINSTR) {
+ if (id <= CLASS_MAX_ID) {
+ /* DO the loading only once in DDR */
+ if (id == CLASS0_ID) {
+ debug(
+ "%s: load address(%x) and elf file address(%lx) rcvd\n"
+ , __func__, addr,
+ (unsigned long)data + offset);
+ if (((unsigned long)(data + offset)
+ &0x3) != (addr & 0x3)) {
+ printf(
+ "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
+ __func__, addr,
+ (unsigned long)data +
+ offset);
+
+ return -1;
+ }
+
+ if (addr & 0x1) {
+ printf(
+ "%s: load address(%x) is not 16bit aligned\n"
+ , __func__, addr);
+ return -1;
+ }
+
+ if (size & 0x1) {
+ printf(
+ "%s: load length(%x) is not 16bit aligned\n"
+ , __func__, size);
+ return -1;
+ }
+
+ memcpy((void *)DDR_PFE_TO_VIRT(addr),
+ data + offset, size);
+ }
+ }
+
+#if !defined(CONFIG_UTIL_PE_DISABLED)
+ else if (id == UTIL_ID) {
+ if (((unsigned long)(data + offset) & 0x3)
+ != (addr & 0x3)) {
+ printf(
+ "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
+ __func__, addr,
+ (unsigned long)data + offset);
+
+ return -1;
+ }
+
+ if (addr & 0x1) {
+ printf(
+ "%s: load address(%x) is not 16bit aligned\n"
+ , __func__, addr);
+ return -1;
+ }
+
+ if (size & 0x1) {
+ printf(
+ "%s: load length(%x) is not 16bit aligned\n"
+ , __func__, size);
+ return -1;
+ }
+
+ util_pmem_memcpy((void *)DDR_PFE_TO_VIRT(addr),
+ data + offset, size);
+ }
+#endif
+ else {
+ printf(
+ "%s: unsupported ddr section type(%x) for PE(%d)\n"
+ , __func__, type, id);
+ return -1;
+ }
+
+ } else {
+ memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
+ size);
+ }
+
+ break;
+
+ case SHT_NOBITS:
+ debug("ddr zero pe%d @%x len %d\n", id, addr, size);
+ memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
+
+ break;
+
+ default:
+ printf("%s: unsupported section type(%x)\n", __func__, type);
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Loads an elf section into pe lmem
+ * Data needs to be at least 32bit aligned, NOBITS sections are correctly
+ * initialized to 0
+ *
+ * @param[in] id PE identification (CLASS0_ID,..., CLASS5_ID)
+ * @param[in] data pointer to the elf firmware
+ * @param[in] shdr pointer to the elf section header
+ */
+static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
+{
+ u32 offset = be32_to_cpu(shdr->sh_offset);
+ u32 addr = be32_to_cpu(shdr->sh_addr);
+ u32 size = be32_to_cpu(shdr->sh_size);
+ u32 type = be32_to_cpu(shdr->sh_type);
+
+ if (id > CLASS_MAX_ID) {
+ printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
+ __func__, type, id);
+ return -1;
+ }
+
+ if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
+ printf(
+ "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
+ __func__, addr, (unsigned long)data + offset);
+
+ return -1;
+ }
+
+ if (addr & 0x3) {
+ printf("%s: load address(%x) is not 32bit aligned\n",
+ __func__, addr);
+ return -1;
+ }
+
+ debug("lmem pe%d @%x len %d\n", id, addr, size);
+
+ switch (type) {
+ case SHT_PROGBITS:
+ class_pe_lmem_memcpy_to32(addr, data + offset, size);
+ break;
+
+ case SHT_NOBITS:
+ class_pe_lmem_memset(addr, 0, size);
+ break;
+
+ default:
+ printf("%s: unsupported section type(%x)\n", __func__, type);
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Loads an elf section into a PE
+ * For now only supports loading a section to dmem (all PE's), pmem (class and
+ * tmu PE's), DDDR (util PE code)
+ * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
+ * ..., UTIL_ID)
+ * @param[in] data pointer to the elf firmware
+ * @param[in] shdr pointer to the elf section header
+ */
+int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
+{
+ u32 addr = be32_to_cpu(shdr->sh_addr);
+ u32 size = be32_to_cpu(shdr->sh_size);
+
+ if (IS_DMEM(addr, size))
+ return pe_load_dmem_section(id, data, shdr);
+ else if (IS_PMEM(addr, size))
+ return pe_load_pmem_section(id, data, shdr);
+ else if (IS_PFE_LMEM(addr, size))
+ return 0;
+ else if (IS_PHYS_DDR(addr, size))
+ return pe_load_ddr_section(id, data, shdr);
+ else if (IS_PE_LMEM(addr, size))
+ return pe_load_pe_lmem_section(id, data, shdr);
+ else
+ printf("%s: unsupported memory range(%x)\n", __func__, addr);
+
+ return 0;
+}
+
+/**************************** BMU ***************************/
+/*
+ * Resets a BMU block.
+ * @param[in] base BMU block base address
+ */
+static inline void bmu_reset(void *base)
+{
+ writel(CORE_SW_RESET, base + BMU_CTRL);
+
+ /* Wait for self clear */
+ while (readl(base + BMU_CTRL) & CORE_SW_RESET)
+ ;
+}
+
+/*
+ * Enabled a BMU block.
+ * @param[in] base BMU block base address
+ */
+void bmu_enable(void *base)
+{
+ writel(CORE_ENABLE, base + BMU_CTRL);
+}
+
+/*
+ * Disables a BMU block.
+ * @param[in] base BMU block base address
+ */
+static inline void bmu_disable(void *base)
+{
+ writel(CORE_DISABLE, base + BMU_CTRL);
+}
+
+/*
+ * Sets the configuration of a BMU block.
+ * @param[in] base BMU block base address
+ * @param[in] cfg BMU configuration
+ */
+static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
+{
+ writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
+ writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
+ writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
+
+ /* Interrupts are never used */
+ writel(0x0, base + BMU_INT_ENABLE);
+}
+
+/*
+ * Initializes a BMU block.
+ * @param[in] base BMU block base address
+ * @param[in] cfg BMU configuration
+ */
+void bmu_init(void *base, struct bmu_cfg *cfg)
+{
+ bmu_disable(base);
+
+ bmu_set_config(base, cfg);
+
+ bmu_reset(base);
+}
+
+/**************************** GPI ***************************/
+/*
+ * Resets a GPI block.
+ * @param[in] base GPI base address
+ */
+static inline void gpi_reset(void *base)
+{
+ writel(CORE_SW_RESET, base + GPI_CTRL);
+}
+
+/*
+ * Enables a GPI block.
+ * @param[in] base GPI base address
+ */
+void gpi_enable(void *base)
+{
+ writel(CORE_ENABLE, base + GPI_CTRL);
+}
+
+/*
+ * Disables a GPI block.
+ * @param[in] base GPI base address
+ */
+void gpi_disable(void *base)
+{
+ writel(CORE_DISABLE, base + GPI_CTRL);
+}
+
+/*
+ * Sets the configuration of a GPI block.
+ * @param[in] base GPI base address
+ * @param[in] cfg GPI configuration
+ */
+static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
+{
+ writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
+ + GPI_LMEM_ALLOC_ADDR);
+ writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
+ + GPI_LMEM_FREE_ADDR);
+ writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
+ + GPI_DDR_ALLOC_ADDR);
+ writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
+ + GPI_DDR_FREE_ADDR);
+ writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
+ writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
+ writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
+ writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
+ writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
+ writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
+ writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
+
+ writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
+ GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
+ writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
+ writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
+
+ /*Make GPI AXI transactions non-bufferable */
+ writel(0x1, base + GPI_AXI_CTRL);
+}
+
+/*
+ * Initializes a GPI block.
+ * @param[in] base GPI base address
+ * @param[in] cfg GPI configuration
+ */
+void gpi_init(void *base, struct gpi_cfg *cfg)
+{
+ gpi_reset(base);
+
+ gpi_disable(base);
+
+ gpi_set_config(base, cfg);
+}
+
+/**************************** CLASSIFIER ***************************/
+/*
+ * Resets CLASSIFIER block.
+ */
+static inline void class_reset(void)
+{
+ writel(CORE_SW_RESET, CLASS_TX_CTRL);
+}
+
+/*
+ * Enables all CLASS-PE's cores.
+ */
+void class_enable(void)
+{
+ writel(CORE_ENABLE, CLASS_TX_CTRL);
+}
+
+/*
+ * Disables all CLASS-PE's cores.
+ */
+void class_disable(void)
+{
+ writel(CORE_DISABLE, CLASS_TX_CTRL);
+}
+
+/*
+ * Sets the configuration of the CLASSIFIER block.
+ * @param[in] cfg CLASSIFIER configuration
+ */
+static inline void class_set_config(struct class_cfg *cfg)
+{
+ if (PLL_CLK_EN == 0) {
+ /* Clock ratio: for 1:1 the value is 0 */
+ writel(0x0, CLASS_PE_SYS_CLK_RATIO);
+ } else {
+ /* Clock ratio: for 1:2 the value is 1 */
+ writel(0x1, CLASS_PE_SYS_CLK_RATIO);
+ }
+ writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
+ writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
+ writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
+ CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
+ CLASS_ROUTE_HASH_ENTRY_SIZE);
+ writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
+
+ writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
+ memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
+ ROUTE_TABLE_SIZE);
+
+ writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
+ writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
+ writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
+ writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
+ writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
+
+ writel(23, CLASS_AFULL_THRES);
+ writel(23, CLASS_TSQ_FIFO_THRES);
+
+ writel(24, CLASS_MAX_BUF_CNT);
+ writel(24, CLASS_TSQ_MAX_CNT);
+
+ /*Make Class AXI transactions non-bufferable */
+ writel(0x1, CLASS_AXI_CTRL);
+
+ /*Make Util AXI transactions non-bufferable */
+ /*Util is disabled in U-boot, do it from here */
+ writel(0x1, UTIL_AXI_CTRL);
+}
+
+/*
+ * Initializes CLASSIFIER block.
+ * @param[in] cfg CLASSIFIER configuration
+ */
+void class_init(struct class_cfg *cfg)
+{
+ class_reset();
+
+ class_disable();
+
+ class_set_config(cfg);
+}
+
+/**************************** TMU ***************************/
+/*
+ * Enables TMU-PE cores.
+ * @param[in] pe_mask TMU PE mask
+ */
+void tmu_enable(u32 pe_mask)
+{
+ writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
+}
+
+/*
+ * Disables TMU cores.
+ * @param[in] pe_mask TMU PE mask
+ */
+void tmu_disable(u32 pe_mask)
+{
+ writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
+}
+
+/*
+ * Initializes TMU block.
+ * @param[in] cfg TMU configuration
+ */
+void tmu_init(struct tmu_cfg *cfg)
+{
+ int q, phyno;
+
+ /* keep in soft reset */
+ writel(SW_RESET, TMU_CTRL);
+
+ /*Make Class AXI transactions non-bufferable */
+ writel(0x1, TMU_AXI_CTRL);
+
+ /* enable EMAC PHY ports */
+ writel(0x3, TMU_SYS_GENERIC_CONTROL);
+
+ writel(750, TMU_INQ_WATERMARK);
+
+ writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
+ TMU_PHY0_INQ_ADDR);
+ writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
+ TMU_PHY1_INQ_ADDR);
+
+ writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
+ TMU_PHY3_INQ_ADDR);
+ writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
+ writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
+ writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
+ TMU_BMU_INQ_ADDR);
+
+ /* enabling all 10 schedulers [9:0] of each TDQ */
+ writel(0x3FF, TMU_TDQ0_SCH_CTRL);
+ writel(0x3FF, TMU_TDQ1_SCH_CTRL);
+ writel(0x3FF, TMU_TDQ3_SCH_CTRL);
+
+ if (PLL_CLK_EN == 0) {
+ /* Clock ratio: for 1:1 the value is 0 */
+ writel(0x0, TMU_PE_SYS_CLK_RATIO);
+ } else {
+ /* Clock ratio: for 1:2 the value is 1 */
+ writel(0x1, TMU_PE_SYS_CLK_RATIO);
+ }
+
+ /* Extra packet pointers will be stored from this address onwards */
+ debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
+ writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
+
+ debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
+ writel(cfg->llm_queue_len, TMU_LLM_QUE_LEN);
+
+ writel(5, TMU_TDQ_IIFG_CFG);
+ writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
+
+ writel(0x0, TMU_CTRL);
+
+ /* MEM init */
+ writel(MEM_INIT, TMU_CTRL);
+
+ while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
+ ;
+
+ /* LLM init */
+ writel(LLM_INIT, TMU_CTRL);
+
+ while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
+ ;
+
+ /* set up each queue for tail drop */
+ for (phyno = 0; phyno < 4; phyno++) {
+ if (phyno == 2)
+ continue;
+ for (q = 0; q < 16; q++) {
+ u32 qmax;
+
+ writel((phyno << 8) | q, TMU_TEQ_CTRL);
+ writel(1 << 22, TMU_TEQ_QCFG);
+
+ if (phyno == 3)
+ qmax = DEFAULT_TMU3_QDEPTH;
+ else
+ qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
+ DEFAULT_MAX_QDEPTH;
+
+ writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
+ writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
+ }
+ }
+ writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
+ writel(0, TMU_CTRL);
+}
+
+/**************************** UTIL ***************************/
+/*
+ * Initializes UTIL block.
+ */
+void util_init(void)
+{
+ /*Make Util AXI transactions non-bufferable */
+ writel(0x1, UTIL_AXI_CTRL);
+
+ if (PLL_CLK_EN == 0) {
+ /* Clock ratio: for 1:1 the value is 0 */
+ writel(0x0, UTIL_PE_SYS_CLK_RATIO);
+ } else {
+ writel(0x1, UTIL_PE_SYS_CLK_RATIO);
+ /* Clock ratio: for 1:2 the value is 1 */
+ }
+}
+
+/**************************** HIF ***************************/
+/*
+ * Enable hif tx DMA and interrupt
+ */
+void hif_tx_enable(void)
+{
+ writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
+}
+
+/*
+ * Disable hif tx DMA and interrupt
+ */
+void hif_tx_disable(void)
+{
+ u32 hif_int;
+
+ writel(0, HIF_TX_CTRL);
+
+ hif_int = readl(HIF_INT_ENABLE);
+ hif_int &= HIF_TXPKT_INT_EN;
+ writel(hif_int, HIF_INT_ENABLE);
+}
+
+/*
+ * Enable hif rx DMA and interrupt
+ */
+void hif_rx_enable(void)
+{
+ writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
+}
+
+/*
+ * Disable hif rx DMA and interrupt
+ */
+void hif_rx_disable(void)
+{
+ u32 hif_int;
+
+ writel(0, HIF_RX_CTRL);
+
+ hif_int = readl(HIF_INT_ENABLE);
+ hif_int &= HIF_RXPKT_INT_EN;
+ writel(hif_int, HIF_INT_ENABLE);
+}
+/*
+ * Initializes HIF copy block.
+ */
+void hif_init(void)
+{
+ /* Initialize HIF registers */
+ writel(HIF_RX_POLL_CTRL_CYCLE<<16|HIF_TX_POLL_CTRL_CYCLE,
+ HIF_POLL_CTRL);
+ /* Make HIF AXI transactions non-bufferable */
+ writel(0x1, HIF_AXI_CTRL);
+}